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Abstract

In this paper, we propose an affine parameter estimation algorithm from block motion vectors for extracting accurate motion information with
the assumption that the undergoing motion can be characterized by an affine model. The motion may be caused either by a moving camera or a
moving object. The proposed method first extracts motion vectors from a sequence of images by using size-variable block matching and then
processes them by adaptive robust estimation to estimate affine parameters. Typically, a robust estimation filters out outliers (velocity vectors that
do not fit into the model) by fitting velocity vectors to a predefined model. To filter out potential outliers, our adaptive robust estimation defines a
continuous weight function based on a Sigmoid function. During the estimation process, we tune the Sigmoid function gradually to its hard-limit
as the errors between the model and input data are decreased, so that we can effectively separate non-outliers from outliers with the help of the
finally tuned hard-limit form of the weight function. Experimental results show that the suggested approach is very effective in estimating affine

parameters reliably.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Along with the progress of image processing and multi-
media technologies, there has been much interest in the areas of
analyzing dynamic images and estimating motion information
over the last few years. In particular, estimating affine model
parameters from block motion vectors is a fundamental and
important research topic since we may presume that a camera
motion or moving target can be represented as a parametric
model [1]. Such an approach is often used in many applications
like image panorama composition, model-based video coding,
moving object tracking, and camera calibration [2-5]. We can
find various types of methods for this topic in related literature.
Among these, the robust estimation approach based on the
outlier rejection scheme provides very promising results [1].

In general, the robust estimation method is well known for a
good statistical estimator that is insensitive to small departures
from the idealized assumptions for which the estimation is
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optimized [6]. It requires a merit function that measures the
agreement between the input data (velocity vectors) and the
model with a particular choice of parameters. The merit
function is conventionally arranged so that small values
represent close agreement. The parameters of the model are
then adjusted to achieve the minimum in the merit function.
The adjustment process is thus a problem of minimizing the
residual error with respect to model parameters by filtering out
suspected outliers in input data.

A common approach to multi-dimensional minimization
problems is the Levenberg—Marquardt method [7]. This
method works well in practice and has become the standard
of nonlinear least-square data fitting. This is a continuous
optimization method that offers a powerful compromise
between the steepest gradient method and the inverse-Hessian
method. It uses the latter method when the process is far from
the minimum. It switches continuously to the former as the
minimum is approached. However, the Levenberg—Marquardt
method does not improve global convergence capabilities if it
is not controlled effectively [8]. In a practical environment, we
also noticed that the existing robust estimation method uses a
binary weight function called a threshold even in the initial
steps of the minimization process. In those steps, it is very
difficult to separate non-outliers (velocity vectors of concern)
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Fig. 1. Overall flow of our method.

from outliers (velocity vectors out of concern) based on a
threshold since model parameters have not been fitted yet.
Thus, the parameters could be updated incorrectly. In addition,
the estimation method generates a new binary weight function
in every iteration, discarding the previous one. This can cause
oscillations of weights because the method discards the
correlation between the two weight functions.

To deal with these limitations, this paper proposes affine
model parameter estimation using adaptive robust estimation.
The proposed method first extracts motion vectors from a
sequence of images by using size-variable block matching and
then processes them by adaptive robust estimation to estimate
affine parameters. Typically, a robust estimation filters out
outliers by fitting velocity vectors to a predefined model. To
filter out potential outliers, our adaptive robust estimation
defines a continuous weight function based on a Sigmoid
function. During the estimation process, we tune the Sigmoid
function gradually to its hard-limit as the errors between
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Fig. 2. Overall flow of size-variable block matching.

the model and input data are decreased, so that we can
effectively separate non-outliers from outliers with the help of
the finally tuned hard-limit form of the weight function. Fig. 1
shows the overall procedure of our method.

Our algorithm has two main modules: a block matching
module and an adaptive robust estimation module. The block-
matching module extracts motion vectors from consecutive
input images. We introduce a size-variable block-matching
algorithm, which dynamically determines the search area

Table 1
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Fig. 3. Relationship between np and DT.
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and the size of a block. We first exploit the constraint of small
velocity changes of a block in the course of time to determine
the origin of the search area. The range of the search area is
then adjusted according to the motion coherence of spatially
neighboring blocks. The process of determining the size of a
block begins matching with a small block. If the matching
degree is not good enough, we expand the size of a block a little
bit and then repeat the matching process until our matching
criterion is satisfied or the predetermined maximum size has
been reached. The adaptive robust estimation module filters out
the extracted block motion vectors with an estimation model.
We define the estimation model to be fitted based on the affine
model. The model is used to eliminate outliers when analyzing
statistical distribution of input data. Nonlinear least-square data
fitting is then performed with only non-outliers and the affine
parameters are adjusted based on the fitting in turn. Therefore,
it prevents the model parameters from falling into a false
saturation point.

The organization of this paper is as follows. Section 2
presents a technique to extract block motion vectors from a
sequence of images by using size-variable block matching.
Section 3 presents a technique to filter out block motion vectors
by using the adaptive robust estimation. In Section 4, we
present some experimental results to show that the suggested
approach can work as a promising solution, and give some
conclusions in Section 5.

2. Extraction of motion vectors

Block matching techniques have been extensively used for
motion vector estimation. In this technique, a present frame is
divided into rectangular or square blocks of pixels. The process
of block matching is to find a candidate block, within a search
area in the previous frame, which is most similar to the current
block in the present frame, according to a predetermined
criterion. Many block-matching techniques have been
developed and evaluated in the literature [9-11]. Many
block-matching techniques are concerned on how to define a
search area where a candidate block is looked for. Some
examples are the full search (FS) algorithm [9], the three-step
search (TSS) algorithm [10], and the four-step search (FSS)
algorithm [11].

The full search block matching exhaustively examines all
locations of the search window in the previous frame and
provides the good solution. The three-step search algorithm
uses a uniformly allocated checking point pattern and is the
most popular one for low bit-rate video application because of
its simplicity and effectiveness, but it is not very efficient to
catch small motions appearing in stationary and quasi-
stationary blocks. The four-step search algorithm utilizes a
center-biased search pattern with nine checking points on a 5 X

Size-Variable Block Matching Algorithm

step 2 : Set the search area (SA).
step 3 : Set Ny, and Ny

step 4 : Set n «— Nyip.

matching template is nxn.

step 1 : Divide the image into nxn rectangular blocks of pixels.

step 5 : Compute the displaced block similarity (DBS) in SA.
step 5.1 : If n== n;,, compute the DBS in the given global search area (SAg).
step 5.2 : If n # ny,, compute the DBS in the given local search area (SAy).
step 6 : Sort the DBSs in ascending order (DBS;,DBS,,..., DBS,,.x) and set the SA| as the
positions in which blocks have DBSs from DBSy to DBS,;,.x (k = maxx4/5).
step 7 : Find the position (i,f;n) of the block which has DBS,,,, when the size of

step 8 : Compute the value of the evaluation function ®(i,j;n).

step 9 : Decide whether or not we expand the size of a block.
step 9.1 : If ®(G,j;,n)<0 or n==n,,,, set the block of this position as the matched block.
step 9.2 : If ®(i,j,n)>0, set n < n+1 and go to step 5.2.

step 10 : Define a motion vector as the relative positions between two blocks.

Fig. 5. Pseudo-code for size-variable block matching.
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5 window, and a halfway-stop technique is employed with
searching steps of 2—4 for fast block motion estimation.

On the other hand, the proper selection of block size is
another important criterion that determines the quality of the
resulting motion vectors. Generally, larger blocks are suitable
for rough but robust estimation. While smaller blocks are
suitable for localizing the estimation, they are susceptive to
noise. We introduce a size-variable block-matching algorithm,
which dynamically determines the search area and the size of a
block. Fig. 2 shows the overall flow of our size-variable block-
matching algorithm. With a current size of a block, a matching
degree is computed for each candidate block in a search area.
The evaluation function (EF) determines the appropriateness of
the size of a block based on the matching degrees. If the
function has a positive value, it means that we need to enlarge
the size of a block. Otherwise, the current size of a block is
taken as a proper one and the best match is chosen to compute a
corresponding motion vector.

In order to define the search area, we presume that the
motion vector of a block is likely to be similar to the motion
vector of one of its neighboring blocks. We also presume that
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Fig. 8. Tuning of the parameter a.

the motion of a block does not change rapidly along a relatively
small time interval. We therefore use, as the origin of a search
area, the location in the previous frame, which points to the
current block by its motion vector. The range of the search area
is adjusted according to the motion coherence of spatially
neighboring blocks. We take advantage of the inter-block
motion correlation to adaptively determine the size of a search
area. We do not describe how to determine the search area any
further since it is not our main concern. There are more
details in [12].

Given a block of size nXn, the block motion estimation
looks for the best matching block within a search area. One can
consider various criteria as a measure of the match between
two blocks [14]. In this paper, we define the displaced block
similarity (DBS) as a matching degree between two blocks as
in (1). In (1), n denotes the size of a block, (i,j) denotes the
starting position of a current block in a present image, and (u,v)
denotes the corresponding disparity between two blocks. I, and
I, denote the present frame and the previous frame,
respectively. I,.x denotes the maximum of the intensity
value, 255. The displaced block similarity has values between
0 and 100.

DBS(, j; u, v;n; 1)

y=0 x=0

I

max

1,(i+x,j+y)—1,l(i-i—u—l—x,j-i-v—l—y)D

X100
1

Our size-variable block-matching algorithm employs an
evaluation function that examines matching degrees of
candidate blocks to determine the appropriateness of the size
of a block. This function is designed with the following
considerations. First, we consider the distinctiveness of the best
match. When the degree of the best match is considerably
higher than those of its neighbor candidates, we say that the
match is distinctive and the corresponding size of a block is
proper. However, if the degree of the best match is close to
those of its neighbor candidates, it may reflect that candidate
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Robust Estimation

step 2 : Set a binary weight function

step 3 : Compute x*(a).

step 6 : Reset the binary weight function

go back to step 5.

go back to step 5.

step 1 : Give an initial guess for the set of fitted parameters a

step 4 : Pick a modest value for the scale factor A, say A=0.001

step 5 : Calculate an accumulated residual error E*(j)

step 7 : Solve the linear equations for 8a and evaluate y*(a+8a)

step 8 : If y*(a+8a) > y*(a), increase A by a factor of 10 (or any other substantial factor) and

step 9 : x*(a+da) < x*(a), decrease ) by a factor of 10, update the trial solution a < a+8a, and

step 10 : Iteration stops when the affine parameters sufficiently converge.

Fig. 9. Pseudo-code for robust estimation.

blocks are within a somewhat large area of a homogeneous
region. We then suspect the inappropriateness of the size of a
block and try to expand it. The second consideration is when to
stop expanding the size. We take a simple criterion such that
expanding stops when the distinctiveness of the best match
does not improve any further even if we expand the size.

In order to formalize the above idea in the form of an
equation, we define the evaluation function ®(i,j;n) as in (2). In
2), *J*; n) is the position where the best match occurs for the
block at (i,j) of the size of n. We denote as DT(i,j;n) the
distinctiveness of the best match, which is the minimal
difference between matching degrees of the best match and
its neighbor candidates. GD(i,j;n) denotes the gradient of the
distinctiveness with respect to size, which is computed by
subtracting the distinctiveness evaluated at size of n—1 from

the distinctiveness evaluated at size of n. max[e; +TH(i,j;n),
e,+GD(ij;n)] means the greater one between e+ TH(i,j;n)
and e, +GDC(ij;n). Tpk denotes a predetermined threshold
value, and e, and e, are infinitesimal positive and negative
values, respectively.

e; +THG, jin) + TH(, j;
&(i,j; n) = max ! J xel—m @)
e, +GD(i,j;n) | e +GD(@,j;n)

TH(, jsn) = Tex —DT(, j;n)
GD(,j;n) = DT(,j;n) —DT(, j;n—1)

DT(i,j;n) = _1r<r}ir£1<l[DBS(i*, j*in)—DBS( + 1,j + m;n)]

Adaptive Robust Estimation

step 2 : Set the continuous weight function

step 3 : Compute x*(a).

affine parameters.

step 8 : Tune the weight function ij

go back to step 5.

go back to step 5.

step 1 : Give an initial guess for the set of fitted parameters a

step 4 : Pick a modest value for the scale factor A, say A=0.001

step 5 : Calculate residual error r;, 1< i< N, for each observation using the current

step 6 : Sort the residual errors, so that ||r;{|<|[r|| for all i<j

step 7 : Calculate an accumulated residual error E*(j)

step 9 : Solve the linear equations for 8a and evaluate y*(a+8a)

step 10 : If y*(a+8a) > ’(a), increase A by a factor of 10 (or any other substantial factor) and

step 11 : x*(a+da) < x*(a), decrease )\ by a factor of 10, update the trial solution a <— a+3a, and

step 12 : Iteration stops when the affine parameters sufficiently converge.

Fig. 10. Pseudo-code for adaptive robust estimation.
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(d) Proposed method

(c) Four-step search method

Fig. 12. Estimated motion vectors (zooming).
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Fig. 13. Estimated motion vectors (rotation).
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The evaluation function ®(i,j;n) is constructed in such a way how the sign of the evaluation function is determined
that it has a positive value only when the distinctiveness of the depending on signs of TH and GD.
best match is not greater than the threshold of Tj, and the Fig. 3 shows the relationship between the optimal size
gradient of the distinctiveness is positive. Table 1 summarizes of a block, 7y, and the value of DT, and Fig. 4 shows the
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Fig. 17. Accumulated residual error.

relationship between np,, and the value of GD. As shown
in Figs. 3 and 4, we can note that the optimal size of a
block is obtained when the distinctiveness of the best
match is highest. Furthermore, the gradient of the
distinctiveness reaches 0 at that point. Fig. 5 summarized
our size-variable block-matching algorithm in the form of
a pseudo-code. We start with a global search area that is
large enough, and we reduce the search area.

The FSBMA and the proposed block matching method can
work similar since our method is basically based on the
FSBMA method, but not exactly the same. Actually, our block
matching works similar to the coarse-to-fine full search block
matching approach, but it has the following difference. The
coarse-to-fine approach performs motion estimation at each
level successively, from the coarsest level to the finest level, so
the time complexity is very high. On the other hand, the
suggested block matching employs an evaluation function that
examines matching degrees of candidate blocks to determine
the appropriateness of the size of a block. With the help of the
proposed evaluation function, our method repeats the matching
process only while the matching degree is appropriate. That is,

the proposed method stops block matching when the
distinctiveness of the best match does not improve any further
even if we expand the size of the block. By using this strategy,
our method reduces the time complexity.

3. Estimation of affine parameters

We process extracted motion vectors by adaptive robust
estimation to filter out them and estimate affine parameters.
The robust estimation method is one of the most popular
techniques in statistical estimation since it provides an
optimal estimation by eliminating outliers of input data [6].
While there are many existing robust estimation techniques
that have been proposed in the literature, two main techniques
used in computer vision are M-estimators and least median of
squares (LMS) [15]. Among these, we used the M-estimators
since they are known to provide an optimal estimation of
affine motion parameters. The M-estimators are generaliz-
ations of maximum likelihood estimations (MLEs) and least
squares. The M-estimators have higher statistical efficiency
but tolerate much lower percentages of outliers unless
properly initialized. It also uses a binary weight function to
separate non-outliers and outliers even in the initial steps of
the minimization process. However, it is very hard to do that
since the affine parameters have not fitted yet in those steps,
so that it causes the estimation result to be unreliable. Our
adaptive robust estimation is intended to solve the above
problems.

The proposed adaptive robust estimation addresses the
problem of detecting outliers [5]. Outliers are mainly due to
local moving objects out of concern or the unsatisfactory
correspondence between some feature points of image
sequences. They can seriously degrade the estimation
accuracy if we do not discard them during the estimation
process. Therefore, they should be properly eliminated for a
good estimation of affine parameters. We assume that
the motion of concern is represented with an affine model
as in (3).

y(x,y,a) = lu(x,y)] _ {all 6112] [x] + [an] 3)
v(x,y) az axn |y as

where a denotes affine parameters, and u(x,y) and v(x,y)
denote the horizontal and vertical components of a motion
vector of a block at (x,y). As a result of block matching, we
get a disparity vector at each block, {(x;y;) and (x},y)}, i=
1,2,...,N, where N is the number of blocks. (x;y;) and (x},y})
denote the positions of a matching pair of blocks in two
successive images. We also assume that the zero-mean white
Gaussian noise is added to velocity vectors. Then, the least-
square estimator is optimal in the sense of maximum
likelihood. The x> merit function based on our estimation
model is defined as in (4).
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Table 2
Estimated affine model parameters
Motion vectors Estimated affine model parameters
Fig. 15(b) ap ais as as) ar as
Actual Values Values +1.0500 +0.0000 +0.0000 +0.0000 +1.0500 +0.0000
Error +0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000
Robustestimation Values +0.9088 +0.0848 +0.2120 +0.0000 +0.9992 —0.0050
Error —0.1412 +0.0848 +0.2120 +0.0000 —0.0508 —0.0050
Proposedestimation Values +1.0421 +0.0001 +0.0459 —0.0006 +1.0481 +0.0645
Error —0.0079 +0.0001 +0.0459 —0.0006 —0.0019 +0.0645
Fig. 15(d) apy ais as asy ax as
Actualvalues Values +0.9993 +0.0348 +0.0000 —0.0348 +0.9993 +0.0000
Error +0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000
Robustestimation Values +0.9061 +0.0054 —0.3704 —0.0218 +0.9955 —0.0072
Error —0.0932 —0.0294 —0.3704 +0.0130 —0.0038 —0.0072
Proposedestimation Values +0.9992 +0.0352 —0.0009 —0.0355 +0.9998 +0.0432
Error —0.0001 +0.0004 —0.0009 —0.0007 +0.0005 +0.0432
Fig. 15(f) ap apz ais azy ar a;
Actualvalues Values +1.0492 +0.0365 —2.0000 —0.0365 +1.0492 +2.0000
Error +0.0000 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000
Robustestimation Values +0.8586 +0.0007 —0.4352 +0.0435 +0.9982 +0.4983
Error —0.1906 —0.0358 +1.5648 +0.0800 —0.0510 —1.5017
Proposedestimation Values +1.0361 +0.0298 —1.4371 —0.0268 +1.0396 +1.4237
Error —0.0131 —0.0067 +0.5629 +0.0097 —0.0096 —0.5763
k k _k k k
Wo = (Wi, wa, s Wy, oo, W) 5)

N r—$ . . 2
v = w [yy(xya)}

O;

_ZN: [(x§_)?i(xi’yi,a))2 (yg_y’i(xi,))i’a))z
- w; +

2 2
I, Ty,

N
= wilrl 4)

where w; denotes a weight factor, (0,;,0,;) denotes the
standard deviation of input data (velocity vectors), X;(x;, y;, a)
and J;(x;,y;,a) denote x and y components, respectively, of
the new image coordinates obtained by transforming (x;y;)
according to the affine parameters a [5]. We want to obtain
parameters that could minimize the merit function of (4).
Since the problem is nonlinear, we solve it numerically by
using the Levenberg—Marquardt method [6].

Our adaptive robust estimation focuses on rejecting outliers
since the outliers may lead to undesirable results of estimation.
We assign a weight to each input datum. The weight represents
how likely the corresponding input is a non-outlier. The weight
is to be adjusted as the iteration proceeds, and eventually has a
binary value when the minimization process saturates. The
weight function is defined based on a Sigmoid function. The
Sigmoid function is set roughly when the iteration begins. As
the iteration proceeds and the errors between the model and
input data is minimized, the function is tuned towards its hard-
limit. The function is finally tuned to its hard-limit when the
affine parameters sufficiently converge. With the help of the
hard-limit, we can nicely separate non-outliers from outliers.
(5) represents our continuous weight function.

wh = a-wi™ + (1 —Sighx = j;d', M)

1

sk SR Ky —
Slg (x7a 76)_1+e_ak(x_ck)

where

0<a,f<1l, a+p=1

In (5), WX denotes the weight vector that is assigned to input
data in the kth iteration, and wjl-‘ denotes the weight of the jth
input datum. It is designed to have a value between 0 and 1. If
an input datum has a weight value close to 1, it has a high
possibility of being a non-outlier. On the other hand, if it has a
weight value close to 0, it has a high possibility of being an
outlier. The o and @ are control factors that specify the
importance of related terms. In the Sigmoid function
Sigk(x;ak,ck), x denotes the input variable, ¢ denotes a bias,
and a* denotes the gradient of the position where x equals to c.
For example, Fig. 6 shows a Sigmoid function with ¢=0.5 and
c=50.

Although (5) has a similar form with the delta rule of neural
computing, it is not the delta rule. The second term of (5) is to
calculate the current weight by considering the form of the
accumulated residual error graph, not the term representing the
difference between the target output and the real output in
neural computing. In other words, o works as the velocity of
convergence in neural computing, but 8 does not operate as the
learning rate.

Our adaptive robust estimation is defined to take into
consideration the weights of previous iterations when it
computes the weight of the present iteration. It also tunes
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(c) Motion vectors

(d) Filtered motion vectors

Fig. 18. Motion vector filtering with the image of ‘table tennis’.

the Sigmoid weight function to its hard-limit. For this
purpose, we tune the parameters ¢* and a* of the Sigmoid
weight function in a recursive manner. The parameters ¢’ and
d* determine the center position of the Sigmoid function and
the slope of the function at that position, respectively. The
principle of tuning parameters is based on the following
observation. If we list the residual errors of input data in an
ascending order, the accumulated residual errors begin to
increase abruptly at some value as depicted in Fig. 7. Hence
we claim that the input data whose residual errors are greater
than the determined value are highly likely to be outliers. In
Fig. 7, the horizontal axis denotes the residual errors of input
data that are sorted by the corresponding residual errors, and
the vertical axis denotes the accumulated residual errors. We
therefore adjust the parameter ¢* of the Sigmoid function at
the kth iteration, so that it corresponds to the bending
position of the graph of the accumulated residual error. In
other words, we extract the x coordinate of the graph that
corresponds to the steepest gradient. In order to find the
bending position, we generate a straight line which connects
the starting point EX(1) and the ending point E“(N) of the
graph and then obtain the position that is most distant from
this line.

In order to formalize the above idea in the form of an
equation, we define the parameter c* as in (6). In (6), Ek(j)
denotes an accumulated residual error, and D; denotes the
distance between the graph of an accumulated residual error
and the line connecting EX(1) and EX(N). The v and d are weight
factors that control the importance of the previous parameter

¢*~! and the current parameter c*.

k_ o k-l ) '
=y +0 a§g 122\/{[)]} (6)

Ef(V—EF(D) ks N-Ef()—1-Ef (N
(1\3—1()J_E(1)+ (13’_1 )

2
¢@%@0+Hf

J
EGy =Y wi Il
=1

As for the parameter ak, we compute the accumulated
residual error at the bending position and then get the ratio of
the computed value against the overall accumulated residual
error as in Fig. 8. In order to formalize the above idea in the
form of an equation, we compute the parameter a* as in (7),
where E*(c) denotes the accumulated residual error at the
bending position ¢ and E“(N) denotes the overall residual
error. As can be noted in (7), the value of parameter a*
becomes large as the iteration is repeated and it eventually
induces the hard-limit. Also, the value of a“ ' plays the role
of accelerating the updating process and stabilizing the
result.

B (e
EFT(N)
X EX(e) (7)
EF(N)

dk = g

Our outlier rejection algorithm is inserted in the iteration
loop of the Levenberg—Marquart method. Figs. 9 and 10
show the overall pseudo-codes of the robust estimation and
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our adaptive robust estimation, respectively. In the adaptive
robust estimation, when the affine parameters sufficiently
converge, the iteration stops and the weight function has the
form of its hard-limit. With the help of the hard-limited
weight function, we can finally eliminate outliers of input
data corresponding to motion vectors out of our concern. As
can be noticed in the pseudo-codes, the proposed robust
estimation has similar algorithm complexity to the robust
estimation.

4. Experimental results

This section presents some experimental results that
illustrate operational characteristics of the proposed method.
We evaluate the performance of the proposed size-variable
block matching algorithm and the adaptive robust estimation
of affine parameters in terms of the accuracy of resulting
motion vectors. Fig. 11 shows four frames selected in a
sequence of test images. They are captured in an indoor
environment. Fig. 11 (a) is a base frame. Fig. 11 (b) and (c)
are captured with such camera operations as the zooming by
1.05 magnification per frame and the rotation by two degrees
per frame in a clockwise direction, respectively. Fig. 11 (d)
is captured in a quite complex situation where it includes
camera operations as the rotation by two degrees per frame
in a clockwise direction, translation by two pixels per frame
in a southeast direction, and zooming by 1.05 magnification
per frame. In other words, camera operations included in
Fig. 11 (b)-(d) can be expressed as (8)—(10) using affine
parameters.

1261
x r r
| = ap a12} [x] + a13]
y Ld21 axn ] LY L 423
[1.0500 0.0000] T x] 0.0000 ®
| 0.0000 1.0500 | Ly 0.0000
X _ [ayy 012} [x] n 'a13]
y' Laz axn | Ly L a2
[ 0.9993  0.0348 | [x] 0.0000 ©
i —0.0348 0.9993 Ly 0.0000
X [ay ap|[x [ai3
o ][]+ o]
y' @21 an | LY L d23
[ 1.0492  0.0365 | H —2.0000 (10)
B _—0.0365 1.0492_ y 2.0000

To compare the performance of our size-variable block
matching approach with those of other approaches, we also
implemented the full search method, the three-step search
method, and the four-step search method [9-11]. Fig. 12
depicts motion vectors extracted from Fig. 11(a) and (b) by
using these methods. Ideally, the motion vectors should
diverge out in a form of radiation whose origin is the center
of the image. We can clearly see that our approach
outperforms others.

(a) Input image at t

(b) Input image at t+At
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(¢) Motion vectors

(d) Filtered motion vectors

Fig. 19. Motion vector filtering with the image of ‘Terminator’.
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Similar results for Fig. 11(c) and (d) are given in Figs. 13
and 14. Ideally, the motion vectors should rotate around the
center of the image in Fig. 13 and diverge out in a form of spiral
whose origin is a couple of pixels off to a southeast direction in
Fig. 14, respectively. As we may notice, all the methods may
obtain accurate results in the area where the intensity difference
is distinctive. However, in areas where edge features and line
features are overwhelming, our method shows superior results.
It is confirmed that the corresponding size of a block is
expanded in those areas.

Furthermore, as the input image includes more complex
camera operations, our method shows better results. To
evaluate the performance quantitatively, we define the error
measure as in (11), which reflects the cross-correlation
between an actual motion vector and an estimated motion
vector [16].In (11), denotes Vi denotes an actual motion vector
and V{ denotes an estimated motion vector.

E, = z”’:cos_l (VE, D(VE, 1) an
VIHIVER T+ Nvel?

Fig. 15 depicts the computed errors for Figs. 12—-14. Our
approach shows the best results, while the four-step search
method gets the poorest results. The performance of the three-
step search method is nearly the same as for the four-step
search method.

As can be noticed in [13], TSS and FSS algorithms are very
simple and effective, but becomes inefficient for the estimation
of small motions. The full search method requires (2W+ 1)?
matching supposing that the maximum motion in vertical and
horizontal directions is + W. That is, it needs to check all
search points in its search window. The proposed size-variable
block matching is basically based on the full search method. If
the matching degree is not good enough, we expand the size of
a block a little bit and then repeat the matching process until
our matching criterion is satisfied. Therefore, the proposed
algorithm requires more computational overhead than the full
search method.

We do not discuss the algorithm complexity of the existing
block matching algorithms against the proposed algorithm in
detail, since the main goal of this paper is to estimate accurate
affine motion model parameters by using the proposed adaptive
robust estimation, not to focus on the development of the size-
variable block-matching algorithm. In other words, motion
vectors extracted from any block matching algorithms can be
the input of our adaptive robust estimation, and the estimation
results of our robust estimation are superior to the existing
robust estimation.

In order to filter out the extracted motion vectors and
estimate affine parameters, we process them by our
adaptive robust estimation. During the robust estimation
process, motion vectors corresponding to outliers are
eliminated. Fig. 16 shows outlier-filtered motion vectors
for Figs. 12(d)-14(d). In Fig. 16(a), (c), and (e) depicts
motion  vectors filtered by robust estimation,

and Fig. 16(b), (d), and (f) shows motion vectors filtered
by our method. We can observe that our adaptive robust
estimation eliminates outliers successfully. When input
images include simple camera operations such as panning
or tilting, both methods may filter motion vectors
accurately. However, when complex camera operations
such as zooming, rotation, and multiple camera operations
are involved, we can clearly see that our approach
outperforms existing methods. Fig. 17 plots one example
of accumulated residual errors obtained finally in the
iteration. The horizontal axis represents indices of residual
errors sorted in ascending order, and the vertical axis
represents an accumulated residual error. As we can notice,
our adaptive robust estimation has an accumulated error
that is minimized effectively.

Table 2 shows estimated affine model parameters for the
filtered motion vectors in Fig. 16(b), (d) and (f). We can see
that the proposed adaptive robust estimation has smaller errors
than the robust estimation. Figs. 18 and 19 show experiments
that use input images including moving objects. Fig. 18 is the
image of ‘Table tennis’ and Fig. 19 is the image of
‘Terminator’, respectively. Input images of Fig. 18 contain
two moving objects. One is an arm holding a racket of table
tennis, and the other is a table tennis ball. Fig. 18(c) shows the
extracted motion vectors, containing noisy motion vectors at
the left bottom corner. As we can notice, both motion vectors
extracted from areas of two moving objects and noisy motion
vectors are eliminated properly, since they are treated as
outliers in our adaptive robust estimation process.

Input images of Fig. 19 include one person riding a
motorcycle. The extracted motion vectors from them have
many noisy motion vectors since adjacent blocks of the
background show similar color values though their internal
structures are different. Therefore, the matching metric may
choose as a candidate anyone of the blocks, resulting in
inaccurate block motion vectors. As in Fig. 19(d), our adaptive
robust estimation shows that it can filter out motion vectors
successfully under such a bad condition so that we can estimate
affine parameters accurately.

5. Conclusions and discussions

In this paper, we propose an affine parameter estimation
algorithm from block motion vectors for extracting accurate
motion information. We first extract motion vectors from a
sequence of images by using size-variable block matching and
then process them by adaptive robust estimation to estimate
affine parameters.

We introduce a size-variable block-matching algorithm
which dynamically determines the search area and the size of a
block. To determine the search area, we exploit the generally
accepted constraint on motion, ‘motions are smooth and slow-
varying’. We employ the evaluation function that examines
matching degrees of candidate blocks to determine the
appropriateness of the size of a block. The process of
determining the size of a block begins matching with a small
block. If the matching degree is not good enough, we expand
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the size of a block a little bit and then repeat the matching
process until our matching criterion is satisfied.

We also introduce an adaptive robust estimation to filter out
the extracted motion vectors and estimate affine parameters
accurately. Our adaptive robust estimation focuses on the
outlier rejection method since it is very important to correctly
detect and eliminate outliers for robust estimation. It defines a
continuous weight function based on a Sigmoid function.
During the estimation process, we tune the Sigmoid function
gradually to its hard-limit as the errors between the model and
input data are decreased. Therefore, we can effectively separate
non-outliers and outliers corresponding to noisy motion vectors
with the help of the finally tuned hard-limit of the weight
function without a threshold. As can be noticed in pseudo-
codes, the proposed adaptive robust estimation requires similar
algorithm complexity to the existing robust estimation.

The experimental results are very promising in terms of
extracting and filtering out block motion vectors so that we can
estimate affine parameters accurately. The size-variable block
matching outperforms other algorithms in terms of accuracy of
the estimated motion vectors, though our algorithm requires
some computational overhead. The adaptive robust estimation
also shows better results than the robust estimation. We may
draw as a conclusion that our approach provides a good
framework for estimating affine parameters from motion
vectors that significantly improves existing approaches.
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