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Abstract. In the present paper, we propose a neurally-inspired model of the 
primate motion processing hierarchy and describe its implementation as a 
computer simulation. The model aims to explain how a hierarchical 
feedforward network consisting of neurons in the cortical areas V1, MT, MST, 
and 7a of primates achieves the detection of different kinds of motion patterns. 
Moreover, the model includes a feedback gating network that implements a 
biologically plausible mechanism of visual attention. This mechanism is used 
for sequential localization and fine-grained inspection of every motion pattern 
detected in the visual scene. 

1 The Feedforward Mechanism of Motion Detection 

In the present paper, we propose a neurally-inspired model of the primate motion 
processing hierarchy and describe its implementation as a computer simulation. The 
model aims to explain how a hierarchical feed-forward network consisting of neurons 
in the cortical areas V1, MT, MST, and 7a of primates achieves the detection of 
different kinds of motion patterns. 

Cells in striate area V1 are well known to be tuned towards a particular local speed 
and direction of motion in at least three main speed ranges [1]. In the model, V1 
neurons estimate local speed and direction in five-frame, 256×256 pixel image 
sequences using spatiotemporal filters (e.g., [2]). Their direction selectivity is 
restricted to 12 distinct, Gaussian-shaped tuning curves. Each tuning curve has a 
standard deviation of 30º and represents the selectivity for one of 12 different 
directions spaced 30º apart (0º, 30º, …, 330º). V1 is represented by a 60×60 array of 
hypercolumns. The receptive fields (RFs) of V1 neurons are circular and 
homogeneously distributed across the visual field, with RFs of neighboring 
hypercolumns overlapping by 20%.  

In area MT a high proportion of cells are tuned towards a particular local speed 
and direction of movement, similar to direction and speed selective cells in V1 [3, 4]. 
A proportion of MT neurons are also selective for a particular angle between 
movement direction and spatial speed gradient [5]. Both types of neurons are 
represented in the MT layer of the model, which is a 30×30 array of hypercolumns. 
Each MT cell receives input from a 4×4 field of V1 neurons with the same direction 
and speed selectivity.  



Neurons in area MST are tuned to complex motion patterns: expand or approach, 
shrink or recede, rotation, with RFs covering most of the visual field [6, 7]. Two types 
of neurons are modeled: one type selective for translation (as in V1) and another type 
selective for spiral motion (clockwise and counterclockwise rotation, expansion, 
contraction and combinations). MST is simulated as a 5×5 array of hypercolumns. 
Each MST cell receives input from a large group (covering 60% of the visual field) of 
MT neurons that respond to a particular motion/gradient angle. Any coherent 
motion/gradient angle indicates a particular type of spiral motion. 

Finally, area 7a seems to involve at least four different types of computations [8]. 
Here, neurons are selective for translation and spiral motion as in MST, but they have 
even larger RFs. They are also selective for rotation (regardless of direction) and 
radial motion (regardless of direction). In the simulation, area 7a is represented by a 
4×4 array of hypercolumns. Each 7a cell receives input from a 4×4 field of MST 
neurons that have the relevant tuning. Rotation cells and radial motion cells only 
receive input from MST neurons that respond to spiral motion involving any rotation 
or any radial motion, respectively. 

Fig. 1 shows the activation of neurons in the model as induced by a sample 
stimulus. Note that in the actual visualization different colors indicate the response to 
particular angles between motion and speed gradient in MT gradient neurons. In the 
present example, the gray levels indicate that the neurons selective for a 90º angle 
gave by far the strongest responses. A consistent 90º angle across all directions of 
motion signifies a pattern of clockwise rotation. Correspondingly, the maximum 
activation of the spiral neurons in areas MST and 7a corresponds to the clockwise 
rotation pattern (90º angle). Finally, area 7a also shows a substantial response to 
rotation in the medium-speed range, while there is no visible activation that would 
indicate radial motion. 

2 The Feedback Mechanism of Visual Attention 

Most of the computational models of primate motion perception that have been 
proposed concentrate on bottom-up processing and do not address attentional issues. 
However, there is evidence that the responses of neurons in areas MT and MST can 
be modulated by attention (Treue & Maunsell, 1996). Moreover, we claim that 
attention is necessary for a precise localization of motion patterns in image sequences. 
As a result of the model’s feedforward computations, the neural responses in the high-
level areas (MST and 7a) roughly indicate the kind of motion patterns presented as an 
input but do not localize the spatial position of the patterns. 

In order to create a comprehensive motion model that is in agreement with 
biological findings and is capable of localizing motion patterns, we added a 
mechanism of visual attention to it. We decided to use the biologically plausible 
Selective Tuning approach [9], requiring the introduction of a feedback gating 
network to the model. Each neuron in the original motion hierarchy received an 
assembly of gating units that control the bottom-up information flow to that neuron.  
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Fig. 1. The model’s response to a clockwise rotating stimulus (panel a). Brightness indicates 
activation in areas V1, MT, MST, and 7a (panels b to e). Arrows represent selectivity for 
direction of motion or the angle between motion and speed gradient, and the three concentric 
circles stand for the three speed selectivity ranges in the model. 



The attentional processing works as follows: First, a “motion activity'' map with 
the same size as a 7a layer is constructed after the bottom-up processing. The value of 
a node in the activity map is a weighted sum of the activations of all 7a neurons at this 
position and it reflects the overall activation. Second, a WTA (Winner-Take-All) 
algorithm finds the globally most active location. Then at this location, two WTAs 
will compete among all the translational motion patterns and spiral motion patterns 
respectively and thus result in two winner neurons. A WTA runs among the winners’ 
gating units, whose activation pattern is initially identical to the one in the winner 
neurons’ RFs. The resulting winners activate the connected neurons in lower layers, 
whereas the bottom-up information flow through the losing gating units is inhibited. 
This process continues until the bottom layer, and the recognized motions are 
localized in the input sequence. The gating network then inhibits the feed-forward 
processing of neighboring motion patterns so that no interfering information reaches 
the higher levels of the model. Loosely speaking, the model “focuses its attention“ on 
the winning motion pattern. Afterwards, a simple inhibition of return mechanism 
induces the model to switch attention to the second most active motion, and so on.  

In addition, the wirings between the neurons within the same layer and the 
direction-selective attribute of some of the neurons enable our model to do a 
simplified constant motion tracking. If a neuron sensitive to motion direction a is 
activated at time t, then it passes its activation to neighboring neurons in the direction 
a at time t+1. In this way, the model focuses on the relevant area without 
recomputation of the whole motion hierarchy under the assumption that the motions 
do not change with time. In addition to tracking motion, a simple method for 
detecting the start and stop of motion is included. We applied a DOG operator to the 
area MST to detect motion changes [10]. Fig. 2 presents a 3D visualization of the 
model receiving an image sequence that contains an approaching object and a 
counterclockwise rotating object. Both motion patterns are correctly detected and 
localized. 

3 Discussion and Conclusions 

Due to the incorporation of functionally diverse neurons in the motion hierarchy, the 
output of the present model encompasses a wide variety of selectivities at different 
resolutions. This enables the computer simulation of the model to detect and classify 
various motion patterns in artificial and natural image sequences showing one or more 
moving objects. Most other models of biological motion perception focus on a single 
cortical area. For instance, the models by Simoncelli and Heeger [11] and Beardsley 
and Vaina [12] are biologically adequate approaches that explain some specific 
functionality of MT and MST neurons, respectively, but do not include the 
embedding hierarchy in the motion pathway. On the other hand, there are hierarchical 
models for the detection of motion (e.g., [13, 14]), but unlike the present model they 
do not provide a biologically plausible replica of the motion processing hierarchy in 
primates. 

Another strength of our model is its mechanism of visual attention. To our 
knowledge, the only other motion model employing attention is the one by Grossberg, 
Mingolla, and Viswanathan [15], which is a motion integration and segmentation 



model for motion capture. Their idea is that MST cells tuned to the winning direction 
have an excitatory influence on MT cells tuned to the same direction and 
nonspecifically inhibit all directionally tuned cells in MT. This kind of top-down 
influence from MST to MT has not been proved to exist yet. The current knowledge 
of effects of attention on single cell responses in area MT and MST suggests that cells 
in these areas have stronger responses when attention is directed into their RFs 
relative to when attention is directed outside the RF [16], which is compatible with 
our model. 
 
 

 
 
Fig. 2. Visualization of the attentional mechanism applied to an image sequence showing an 
approaching object and a counterclockwise rotating object at the same time. First, the model 
detects the approaching motion and attends to it (panel a); the localization of the approaching 
object can be seen most clearly from below the motion hierarchy (bright area in panel b). Then, 
input from the activated area is inhibited, and the model attends to the rotating motion (panels c 
and d). 
 
 

The model has been tested on a variety of artificial and real image sequences. 
Simple motion patterns such as rotation, expansion, translation or combined motions 
with two or three patterns can be correctly recognized, localized in the image 
sequences and attended serially. Simple dynamic motions such as motion start, 
motion stop and motion pattern changes have been correctly detected as well. We 



conclude that by combining four stages of motion processing with an attentional 
mechanism, our approach yields a biologically plausible model of visual motion 
processing. No current motion processing system, whether biologically inspired or 
not, exhibits such labeling and spatial-localization of motion patterns in image 
sequences. 

The compatibility of our model with current neurophysiological findings and its 
incorporation of the diverse types of neurons found in the motion pathways provide it 
with predictive power for biological vision systems. Some of its predictions about 
activation patterns in V1, MT and MST are currently being tested in fMRI 
experiments on human subjects. Future work will address the perception of ego-
motion, including the use of the model for controlling autonomous robots. 
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