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Abstract. This paper presents a neural-network based calibration method for 

measuring the 3D eye-gaze position in a stereoscopic display. The method is 

based on depth computation through local non-linear regression and 

interpolation using a parameterized self-organizing map (PSOM). A novel, 

efficient 3D calibration method for this application is introduced. We report an 

experiment in which we compare the performance of the neural-network based 

method with a simple geometric method. The results show that the PSOM-

based method provides significantly better accuracy of measurement than the 

geometric method.  
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1   Introduction 

Using eye tracking for the investigation of visual attention has become increasingly 

popular during the last few decades. Nevertheless, only a small number of eye-

tracking studies have employed three-dimensional displays, although such displays 

would closely resemble our natural visual environment. The main reason for the 

paucity of research using three-dimensional displays is the problem of computing a 

participant’s current 3D gaze position based on the measured binocular gaze angles. 

Determining the depth of the gaze position requires very precise measurement of a 

subjects’ vergence, i.e., the angle between their viewing axes. However, the best 

video-based systems reach an absolute precision of approximately 0.3 to 0.5 of 

visual angle source (e.g., Stampe, 1993), which may deteriorate over time due to 

small shifts of the headset.  

Binocular video-based eye trackers compute this pupil-to-gaze mapping separately 

for each eye, and the calibration marker only appears on the two-dimensional screen. 

While this approach is well suited for 2D on-screen gaze tracking, it is less 

appropriate for measuring 3D gaze positions. Clearly, for 3D tracking the calibration 

should include marker positions at various depths within the 3D stimulus presentation 

area. Furthermore, since determining 3D gaze positions requires the combined gaze 

angle information from both eyes, the pupil-to-gaze mapping should be based on this 

combined information instead of using separate mappings for each eye. Such a 

binocular mapping, however, would be even more complex than the monocular one 
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for the 2D case and may produce large measurement errors due to inaccurate 

interpolation. 

In a previous study, the parameterized self-organizing map (PSOM, see Ritter, 

1993), which is a fast-learning variant of Kohonen’s self-organizing maps (SOMs, see 

Kohonen, 1990) was applied to the 3D gaze-tracking task (Essig, Pomplun, & Ritter, 

2006). The PSOM received the binocular gaze data obtained by a 333 calibration 

as its input and learned the mapping of binocular gaze positions on the screen to 3D 

gaze positions. While this approach was able to greatly reduce the error in 3D gaze-

position measurement compared to geometrical, 2D calibration-based methods, 

subsequent experiments (e.g., Garaas, Xiao, & Pomplun, 2006) revealed a 

shortcoming of this method. It was found that in situations when no drift correction 

can be performed for durations longer than about 20 to 30 seconds, the small errors 

accumulating in the binocular gaze positions can cause substantial deviation in the 

computed 3D gaze position. The reason for this effect is that the PSOM recursively 

approximates the most likely 3D gaze coordinates for a given pair of binocular gaze 

positions as a general mapping from R
4
 to R

3
 without considering the underlying 

geometry at all. Consequently, small deviations in measurement, especially those 

affecting the vergence angle, may not only lead to large error in the computation of 

the z-coordinate (depth), but can also considerably affect precision in the x- and y-

coordinates.   

To tackle this problem, we devised a new approach that both considers the 

underlying geometry of the eye-tracking setup and uses a PSOM for the interpolation 

of calibration data. Moreover, we introduced a novel calibration method yielding a 

large amount of data within a reasonable amount of time. 

2   The 3D Calibration Procedure 

Fig. 1: Stereo image-pair showing a sample screen used for measuring the precision 

of the neural network and geometric methods. If you cross your visual axes to fuse the 

two images into one, objects should be perceived as floating in 3D stereo.  

As shown in Figure 1, the full 19-inch screen, divided into 12 sections, was used to 

display the virtual 3D scene. During the calibration procedure, however, only one red 



cube at a time was shown. It appeared in the center of every section and moved back 

and forth once, spanning the depth of the 37 cm (width)  30 cm (height)  27 cm 

(depth) cuboid within which 3D gaze position was to be measured. Every red cube 

had a black dot (fixation marker) in the center of its front plane. The subjects were 

instructed to look at the black dot and keep track of it while the red cube moved along 

its path. This procedure was conducted for every section of the screen. It allowed us 

to collect a large number of binocular gaze-position samples across the depth 

dimension of the tracking cuboid. 

3   Description of the Calculation Method 

Since the greatest challenge in the measurement of 3D gaze position is the 

computation of the z-coordinate (depth), we will focus on the computation of this 

variable. In an ideal experimental setup, gaze depth only depends on the vergence 

angle. However, in a real setup there are systematic distortions and noise in the 

measurement. While our approach assumes that locally, i.e., for similar gaze angles, 

depth entirely depends on vergence, it maintains that for different gaze angles the 

mapping from vergence to depth may vary. To account for this, we use non-linear 

regression on the calibration data to obtain an individual vergence-to-depth mapping 

for each of the 12 calibration gaze angles. Our algorithm then uses a PSOM to 

interpolate between these 12 positions so that vergence can be translated into gaze 

depth for any given horizontal and vertical gaze angles. 

In order to determine a subject’s vergence angle, we use the standard 2D on-screen 

gaze-position measurement provided by most standard eye-tracking systems. Greater 

vergence, i.e., more pronounced crossing of the visual axes, is then indicated by a 

greater distance d = sl – sr between the horizontal on-screen gaze positions sl and sr 

measured for the left and the right eye, respectively. Our regression function for 

computing gaze depth z in each of the 12 local regressions was chosen to account for 

the underlying physical geometry: 
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where the variables v, e, and, c are determined in such a way that they minimize the 

MSE between the gaze samples obtained during calibration and the function z(d) (see 

Figure 2a). If v is set to the distance between the subject and the screen, e is set to the 

distance between the subject’s eyes, and c is set to 0, then the above formula turns 

into the ideal geometric computation of gaze depth. The adaptation of these three 

variables allows the algorithm to account for variations in the vergence-to-depth 

mapping for different gaze angles. The variables v, e, and c are interpolated across the 

range of relevant gaze angles using a 4 x 3 PSOM (see Ritter, 1993). We tested the 

improvement in 3D gaze-measurement accuracy over the standard 2D geometrical 

computation in an empirical study described in the following section. 
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Fig. 2: (a) Object depth as a function of horizontal distance of the binocular eye gaze 

positions (dark line) and the regression function (bright line). (b) Average error in 

depth estimation by the PSOM neural network and the geometric method.  

4   Empirical Evaluation of the Method 

Participants  

Ten students from the University of Massachusetts at Boston were tested individually. 

All participants had normal or corrected-to-normal vision. They were paid for their 

participation.  

 

Apparatus 

Eye movements were recorded with the SR Research Ltd. EyeLink-II system, which 

operated at a sampling rate of 500 Hz and measured the subjects’ gaze position with 

any average error of less than 0.5 degrees of visual angle. The stimuli were presented 

on a 19’’ DTI autostereoscopic (using no glasses) 3D display with 1280 x 1024 pixels 

resolution and 60 Hz refresh rate.  

 

Materials and Procedure 

At the start of each experimental session, the 3D calibration procedure was 

performed. The subject was instructed to focus on a fixation marker in the center of 

the screen to do a drift correction. Then the subject was asked to focus on the black 

marker on the front plane of the red cube, which was shown in one of the 12 sections 

of the screen, and its virtual depth was aligned with the physical screen. The cube 

moved from its initial position towards the subject, and thereby subtended a visual 

angle increasing from 1.5 to 7 degrees. When it reached its maximum size, it moved 

back on the same path. This procedure was performed once per screen section.  

After the calibration, sample data for the evaluation of our method were collected. 

The subject was asked to focus on the black dot on the center of the screen again to do 

the drift correction. Now the screen showed 12 cubes at a time at random positions 

and depths. While such a testing set was displayed, the subject had to focus 

sequentially on the black rectangle on each of the red cubes and click the cube using a 



mouse pointer to indicate the selection of the object. The object then disappeared. 

This procedure was performed 11 times.  

 

Results 

One of the subjects’ data were excluded from analysis, because the subject did not 

follow the instructions correctly. The data of the remaining nine subjects showed that 

the PSOM neural-network method gave us a significantly better estimation of the 

objects’ depth (average error of 4.96 cm) than using only the geometric calculation 

(6.85 cm) in such a virtual 3D environment, t(8) = 2.863, p < 0.05 (see Figure 2b).  

5   Discussion 

As predicted, the present neural-network based method of 3D gaze-position 

estimation outperformed the purely geometric solution by adapting to each user’s 

binocular gaze characteristics and compensating for system-related measurement 

distortions. By incorporating the underlying physical geometry of the experimental 

setup, the new method also overcame a problem observed with a previous neural-

network approach (Essig, Pomplun, & Ritter, 2006). The latter approach computed an 

abstract mapping of binocular gaze angles onto 3D gaze positions, which made it very 

sensitive to small 2D measurement errors, as they are commonly introduced by 

headset shifts. The current approach, slightly constrained by assumptions about the 

geometry of the experimental setup, is more robust and yields reasonable accuracy 

even if noise is introduced. The ability to estimate a user’s gaze depth with a reliable 

precision of about 5 cm is a step toward useful 3D gaze selection in human-computer 

interfaces. Three-dimensional displays would allow more effective interaction, for 

example, when robots or cameras need to be remotely controlled by human operators. 
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