
Implementation of eye tracking functions in the Presentation interface
for the EyeLink-II eye tracking system, Version 0.9-Beta

Missing functions and remarks are shown in red.

new eye_tracker(string object_id) : eye_tracker

Creates a new eye_tracker object and returns a reference to it. "object_id" can be either
the GUID of the object to be used (in the text format "{XXXXXXXX-XXXX-XXXX-
XXXX-XXXXXXXXXXXX}") or the friendly name given to the eye tracker extension
when it was registered with Presentation.

set_max_buffer_size(int data_type, int size) : void

Sets the maximum number of data samples of the specified data type that will be buffered
in Presentation when eye_tracker::start_data(int, bool) is called with a store_data value of
true or eye_tracker::start_data(int) is called. The maximum buffer size for all types is by
default set to 100. The "size" argument must be between 1 and 100,000. The buffers are
circular, meaning that when a buffer is filled new data begins overwriting the oldest data.
Calling set_max_buffer_size clears the buffer of the specified type. Use one of the
following pre-defined values for data_type: dt_position, dt_saccade, dt_fixation, dt_aoi,
dt_pupil, dt_blink

start_data(int data_type, bool store_data) : void

Instructs the eye tracker to start sending data of the specified type. If "store_data" is false,
the eye_tracker object will only store the most recent data sample. Use the
"new_xxx_data" methods to find out how many samples have been received since the
buffer was last cleared. If "store_data" is true, the eye_tracker object will store incoming
data in a buffer. Access this data using "get_xxx_data" methods. Presentation is not
meant to be a data acquisition system. Do not store large volumes of position or pupil
data as this data is stored in RAM. Any data of the specified type collected from a
previous call to "start_data" will be erased. Use one of the following pre-defined values
for data_type: dt_position, dt_pupil

start_data(int data_type) : void

Instructs the eye tracker to start sending data of the specified type. Use the
"new_xxx_data" methods to find out how many samples have been received since the
buffer was last cleared. The eye_tracker object will store incoming data in a buffer.
Access this data using "get_xxx_data" methods. Any data of the specified type collected

from a previous call to "start_data" will be erased. Use one of the following pre-defined
values for data_type: dt_saccade, dt_fixation, dt_aoi, dt_blink

stop_data(int data_type) : void

Instructs the eye tracker to stop sending data of the specified type. Use one of the
following pre-defined values for data_type: dt_position, dt_saccade, dt_fixation, dt_aoi,
dt_pupil, dt_blink

clear_buffer(int data_type) : void

Instructs Presentation to clear any stored data of the specified type. Use one of the
following pre-defined values for data_type: dt_position, dt_saccade, dt_fixation, dt_aoi,
dt_pupil, dt_blink.

event_count(int data_type) : int

Returns the number of events of the specified type that have been received since the
buffer for the specified type was last cleared. The buffer for a given data type is cleared
explicitly by a call to eye_tracker::clear_buffer or implicitly by calls to
eye_tracker::start_data or eye_tracker::set_max_bufer_size. For the pupil_data and
position_data event types, if start_data(int,int) is called with a "store_data" value of false,
the return value of this method will still increase as each new event is received. However,
since Presentation is only storing the most recent data sample, the buffer will always
cantain only one item. Use one of the following pre-defined values for data_type:
dt_position, dt_saccade, dt_fixation, dt_aoi, dt_pupil, dt_blink.

buffer_position(int data_type) : int

Returns the index of the last buffer slot to be filled with data of the specified type. If data
of the specified types has been received, values will be between 1 and the maximum
buffer size for the specified type. If no data has been received since the last call to
start_data, clear_buffer, or set_max_buffer_size, the return value will be 0. Buffer sizes
for all types default to 100 unless explicitly set by a call to
eye_tracker::set_max_buffer_size. Use one of the following pre-defined values for
data_type: dt_position, dt_saccade, dt_fixation, dt_aoi, dt_pupil, dt_blink.

get_position_data(int index) : eye_position_data

Returns an eye_position_data with index "index" in the buffer of stored position data. If
start_data was called with a "store_data" argument of false, the buffer will contain a
maximum of 1 item. The index of the first item is 1.

last_position_data() : eye_position_data

Returns an eye_position_data reference containing the most recent eye position data
received. It is an error to call this method if no data is available.

new_position_data() : int

Returns the number of new position data has been received since the last call to this
method. Calling start_data, clear_buffer or set_max_buffer_size for this data type resets
this value to 0. The value returned by this method will increase as each new data sample
is received, even if start_data(int,int) is called with a "store_data" argument value of
false. If Presentation is not buffering multiple position data samples, the buffer will still
only contain the most recent sample.

get_trigger() : int

Returns a numerical code received from the eye tracker. The return value of trigger_count
must be > 0 before calling this method. get_trigger returns codes in the order in which
they were received.

Triggers not yet implemented.

send_trigger(int code) : void

Sends a trigger code to the eye tracker hardware. The effect is device dependent.

Triggers not yet implemented.

trigger_count() : int

Returns the number of numerical codes received from the eye tracker that are ready to be
retrieved. Use the "get_trigger" method retrieve the codes. They must be read one by one.

Triggers not yet implemented.

send_string(string message) : void

Sends a string message to the eye tracker hardware; like eyemsg_printf().

send_command(string message) : int

Sends a command message to the eye tracker hardware. Returns a response code from the
eye tracker; like eyecmd_printf().

set_recording(bool recording_on) : void

Instructs the eye tracker to record data (on the eye tracking computer) whenever it it
tracking eye position. The effect is device dependent.

is_recording() : bool

Indicates whether or not the eye tracker is storing data on the eye tracker computer. This
is independent of whether or not data is being sent to Presentation.

start_tracking() : void

Instructs the eye tracker to start tracking eye position data. This is independent of
whether or not the data is being sent to Presentation.

stop_tracking() : void

Instructs the eye tracker to stop tracking eye position data.

get_status() : int

Retrieves a code that represents the status of the eye tracker hardware. The returned value
will be equal to one of the following pre-defined PCL values: et_status_stopped,
et_status_initializing, et_status_tracking, et_status_tracking_left,
et_status_tracking_right. The meaning of these states is device-dependent. Check your
vendor's documentation for details.

supports(int feature_code) : bool

Returns a value specifying whether or not the eye tracker extension supports a given
feature. The available features to query are provided as the following PCL pre-defined
values: et_feature_position, et_feature_pupil_diameter, et_feature_fixation,
et_feature_saccade, et_feature_aoi, et_feature_blink, et_feature_multiple_eyes

calibrate(int calibration_type, double parameter1, double
parameter2, double parameter3) : void

Instructs the eye tracker to perform a calibration operation. calibration_type can be one of
the predefined variables et_calibrate_default or et_calibrate_drift_correct, or an integer
provided by the eye tracker manufacturer to designate a vendor-specific calibration
routine. The additional parameters are eye tracker specific. See your eye tracker
documentation for the use, if any, of these parameters. This method does not return until
the calibration procedure has completed. If you define a picture stimulus named
"et_calibration", this picture stimulus will be used for the calibration display. The eye
tracker extension controls the positioning of the picture parts in this stimulus during
calibration. If you don't define a picture stimulus named "et_calibration", Presentation
will use a default white cross on a black background. The eye tracker extension can
optionally use its own graphic for calibration, overriding the picture parts you put in your
"et_calibration" picture.

Currently, et_calibration_default switches the EyeLink system to setup mode; i.e.
the experimenter can setup the cameras, set options, and do the calibration and
validation procedures from the Operator PC.

Also, et_calibrate_drift_correct is implemented and triggers the usual drift
correction procedure with one central target.

Parameters 1 to 3 have no effect yet.

new_saccade_events() : int

Returns the number of new saccade events that have been received since the last call to
this method. Calling start_data, clear_buffer or set_max_buffer_size for this data type
resets this value to 0.

get_saccade_event(int index) : saccade_event_data

Returns saccade_event_data with index "index" in the buffer of stored saccade data. Call
event_count to find out how many items have been received since the last call to
start_data, clear_buffer or set_max_buffer_size for this data type. The index of the first
item is 1.

last_saccade_event() : saccade_event_data

Returns a saccade_event_data reference containing the most recent saccade event
received. It is an error to call this method if no data is available.

new_fixation_events() : int

Returns the number of new fixation events that have been received since the last call to
this method. Calling start_data, clear_buffer or set_max_buffer_size for this data type
resets this value to 0.

get_fixation_event(int index) : fixation_event_data

Returns fixation_event_data with index "index" in the buffer of stored fixation event
data. Call event_count to find out how many items have been received since the last call
to start_data, clear_buffer or set_max_buffer_size for this data type. The index of the first
item is 1.

last_fixation_event() : fixation_event_data

Returns a fixation_event_data reference containing the most recent fixation event data
received. It is an error to call this method if no data is available.

new_aoi_events() : int

Returns the number of new aoi events that have been received since the last call to this
method. Calling start_data, clear_buffer or set_max_buffer_size for this data type resets
this value to 0.

AOIs not yet implemented.

get_aoi_event(int index) : aoi_event_data

Returns aoi_event_data with index "index" in the buffer of stored aoi event data. Call
event_count to find out how many items have been received since the last call to
start_data, clear_buffer or set_max_buffer_size for this data type. The index of the first
item is 1.

AOIs not yet implemented.

last_aoi_event() : aoi_event_data

Returns an aoi_event_data reference containing the most recent aoi event data received. It
is an error to call this method if no data is available.

AOIs not yet implemented.

set_aoi_set(int aoi_set) : void

Sets the AOI set for which aoi_event_data will be returned by calls to the aoi methods.
AOI sets are groups of AOI regions that are defined before a trial using your eye tracker
vendor's software.

AOIs not yet implemented.

new_pupil_data() : int

Returns the number of new pupil data have been received since the last call to this
method. Calling start_data, clear_buffer or set_max_buffer_size for this data type resets
this value to 0. The value returned by this method will increase as each new data sample
is received, even if start_data(int,int) is called with a "store_data" argument value of
false. If Presentation is not buffering multiple position data samples, the buffer will still
only contain the most recent sample.

get_pupil_data(int index) : pupil_data

Returns pupil_data with index "index" in the buffer of stored pupil data. Call event_count
to find out how many items have been received since the last call to start_data,
clear_buffer or set_max_buffer_size for this data type. If start_data was called with a
"store_data" argument of false, the buffer will contain a maximum of 1 item. The index
of the first item is 1.

last_pupil_data() : pupil_data

Returns a pupil_data reference containing the most recent eye position data received. It is
an error to call this method if no data is available.

new_blink_events() : int

Returns the number of new blink events that have been received since the last call to this
method. Calling start_data, clear_buffer or set_max_buffer_size for this data type resets
this value to 0.

get_blink_event(int index) : blink_event_data

Returns blink_event_data with index "index" in the buffer of stored blink event data. Call
event_count to find out how many items have been received since the last call to
start_data, clear_buffer or set_max_buffer_size for this data type. The index of the first
item is 1.

last_blink_event() : blink_event_data

Returns a blink_event_data reference containing the most recent eye position data
received. It is an error to call this method if no data is available.

