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ABSTRACT

One of the major challenges for protein–protein docking methods is to accurately dis-
criminate nativelike structures. The protein docking community agrees on the existence of
a relationship between various favorable intermolecular interactions (e.g. Van der Waals,
electrostatic, desolvation forces, etc.) and the similarity of a conformation to its native
structure. Different docking algorithms often formulate this relationship as a weighted
sum of selected terms and calibrate their weights against specific training data to evaluate
and rank candidate structures. However, the exact form of this relationship is unknown
and the accuracy of such methods is impaired by the pervasiveness of false positives.
Unlike the conventional scoring functions, we propose a novel machine learning approach
that not only ranks the candidate structures relative to each other but also indicates
how similar each candidate is to the native conformation. We trained the AccuRMSD
neural network with an extensive dataset using the back-propagation learning algo-
rithm. Our method achieved predicting RMSDs of unbound docked complexes with 0.4Å
error margin.

Key words: machine learning, neural networks, protein docking and refinement, RMSD pre-

diction, scoring functions.

1. INTRODUCTION

Proteins are the primary machinery within cells. They play various roles as enzymes for the

catalysis of metabolic reactions; antibodies for the recognition of foreign molecules; hormones for

transmission of signals; transport molecules for binding and carrying small molecules within the body; and

structural components for holding the cell shape and enabling its movements (Lesk, 2008; Gray, 2006). To

perform these duties, proteins often bind with other proteins and form protein complexes (Goodsell and

Olson, 2000). When proteins fail to perform their vital functions, diseases occur. Finding out how these

diseases develop and the ways to cure them requires understanding how protein complexes are formed (Gray,

2006; Kastritis and Bonvin, 2010; Moal et al., 2013).

Protein–protein docking methods aim to compute the correct bound form of two or more proteins,

usually starting with the atomic coordinate information only. This is a difficult problem because for each

protein, there are three translational and three rotational degrees of freedom; yielding many possible spatial
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arrangements for two bodies with respect to each other. Depending on the size of the components, the

search space can grow exponentially (Cherfils and Janin, 1993; Moreira et al., 2010). The complexity of the

problem further increases when molecular flexibility is also considered. Therefore, the docking methods not

only need to employ search algorithms to effectively cover the conformational space, but they should also

be able to accurately discriminate nativelike structures from the rest.

In order to achieve this, docking algorithms utilize a wide variety of scoring functions, which are

designed to favor conformations with low binding energy, good geometric fit, more evolutionarily con-

served interface residues, etc. Top-ranking conformations based on such scoring functions are hoped to be

the most similar to the native conformation. Indeed, some docking algorithms are able to rank a few near-

native conformations among their top solution candidates ( Janin, 2010). Yet, most of the highest rank

candidates are often false positives (Halperin et al., 2002; Janin, 2010). In other words, the ranking and root

mean square deviation (RMSD) of candidates compared to the native structures are usually not highly

correlated. Pervasiveness of false positives in ranking makes it extremely difficult to accurately identify

nativelike structures. Furthermore, even the most accurate scoring functions cannot estimate the RMSD of a

docked structure with respect to its native conformation as they are geared toward relative ranking of a set

of docked structures.

The protein docking community seems to agree on the existence of a relationship between various

scoring terms (e.g., Van der Waals, electrostatic, desolvation forces, etc.) and the similarity of a confor-

mation to its native structure. However, the exact form of this relationship is unknown. Therefore, docking

algorithms often formulate this relationship as a weighted sum of selected terms and calibrate their weights

against specific training data (Kastritis and Bonvin, 2010; Moal et al., 2013). Yet, the widespread in-

accuracy of rankings may suggest that the relationship between these terms and RMSD of a conformation

may indeed be much more complex.

Complex function approximation is one of the typical uses of neural networks in the artificial intelligence

field. Numerous applications of multilayer neural networks can be found in the fields of signal processing,

pattern recognition, and computer vision to estimate the relationship between a set of input and output

variables. Learning algorithms are methods for estimating parameters in a neural network from a training

dataset. The backpropagation learning algorithm (Mehrotra et al., 1997; Rumelhard et al, 1986; Werbos,

1990) was the first successful approach to the training of multilayer networks with continuous input and

output, and it is still the most widely used neural network learning algorithm today.

In this article, inspired by machine learning techniques, we propose a different approach to formulating

the relationship between a wide set of scoring function terms and RMSD of a docked structure. We show

that a properly trained backpropagation neural network can be used to approximate this complex function

and to accurately predict RMSDs of docked structures. As opposed to the conventional scoring functions,

the proposed tool not only ranks the decoys relative to each other but also indicates how similar each decoy

is to the native conformation.

In the initial version of this study (Akbal-Delibas et al., 2014), we tested the proposed tool on an

extensive set of perturbed structures (created by random perturbation of native protein conformations) and

refinement candidates generated from coarsely docked input structures. The results encouraged us to train

and test AccuRMSD with unbound complexes as reported in this extended version.

2. Scoring Functions for Protein–Protein Docking

Over the last 20 years several scoring functions have been developed for ranking putative docked

complexes. Traditionally, docking algorithms used geometric criteria to distinguish nativelike complexes

from false positives. More recent methods realize the need to include physical and chemical interactions

as well (Halperin et al., 2002). Several recent scoring functions such as Haddock (Dominguez et al.,

2003), pyDock (Cheng et al., 2007), ZRank (Pierce and Weng, 2007), ClusPro (Comeau et al., 2004) and

RosettaDock (Lyskov and Gray, 2008) use physical energy terms. They employ a combination of Van der

Waals (VdW) energy, electrostatic interactions, and desolvation terms. The combination and weighing of

the terms is what differentiates these methods from one another. Some methods like Attract (Vries and

Zacharias, 2013) use VdW and electrostatic energy calculated on a coarse grained modeling of the protein

to save computational time. While it is known that proteins often change their conformations upon binding,

modeling flexibility is a challenging problem due to the additional computational cost to an already difficult

problem. Recent methods incorporate limited flexibility. Examples include SwarmDock, which uses normal
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mode analysis (Li et al., 2010), and Firedock (Mashiach et al., 2008), which uses side-chain flexible

refinement combined with soft rigid-body optimization and partial electrostatic interaction energy. A recent

docking refinement method (Akbal-Delibas et al., 2012; Akbal-Delibas and Haspel, 2013) uses a scoring

function that includes an evolutionary traces (ET) term (Wilkins et al., 2012; Mihalek et al., 2006), in

addition to the VdW and electrostatic component. The assumption is that binding interfaces tend to be

evolutionarily conserved due to their importance.

Despite recent development in scoring functions for protein docking, they are still lacking when it comes

to predicting the correct binding conformation. A recent large-scale benchmarking of many current docking

methods revealed that most current physics-based scoring functions still fail to accurately predict the

binding affinity of complexes (Kastritis and Bonvin, 2010). Therefore, more work is needed to improve the

existing scoring functions or design new methods.

3. METHODS

In order to predict the RMSD of a docked protein structure with respect to its native conformation, we

devised a backpropagation neural network. Backpropagation networks typically consist of three layers of

artificial neurons. The input layer holds the input to the network and sends it to the hidden layer. Each

hidden-layer neuron receives input from all input neurons, computes their weighted sum, applies a

sigmoid function to it, and sends the resulting output to the output layer. The same type of computation is

performed at the output layer, with the results constituting the output of the network. Learning is

achieved in a supervised manner by picking a random input from the training set, computing the

network’s output for it, and comparing it with the desired output for the given training sample. The

backpropagation algorithm uses a variant of high-dimensional gradient descent to modify the weights in

the hidden and output layers in such a way that the same input will produce an output closer to the desired

one. In a training epoch, each training sample is picked exactly once in random order, followed by weight

adjustment through backpropagation. Multiple epochs are run until the network error falls below a certain

threshold or no further improvement can be reached. In the remainder of this section, we first describe the

selected network features, then explain how the AccuRMSD neural network is set up and trained with an

extensive dataset.

3.1. Feature selection

We built an artificial neural network to approximate the relationship between 11 different features, most

of which are used as scoring function terms by a wide variety of docking and refinement algorithms

(Dominguez et al., 2003; Cheng et al., 2007; Pierce and Weng, 2007; Comeau et al., 2004; Lyskov and

Gray, 2008; Akbal-Delibas et al., 2012; Akbal-Delibas and Haspel, 2013; Lopes et al., 2013). Below is a

description of features we selected.

� Van der Waals: The total van der Waals force for interface atoms (defined as the atoms within

at most 6Å distance to the adjacent chain atoms) is computed using a soft Lennard-Jones po-

tential (Ferrari et al., 2004), with an attenuated repulsion term. Decreasing the repulsion term’s

power from 12 to 9 reduces the growth rate of the function, resulting in more permissive VdW

interactions.

X
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� Electrostatic: Computed for interface atoms, based on Coulomb’s law:

332 �
X

atompairs

qi � qj

e � rij

(2)

where qi and qj are the electrostatic charges of atoms i and j taken from AMBER force field (Cornell

et al., 1995), e is the dielectric constant (vacuum constant 1 is used), and rij is the distance between the

ij atom pair. The total value is converted from Coulomb to kcal/mol by multiplying with 332.
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� Conservation: Evolutionary traces (ET) are based on the idea that residues on functional interfaces are

important for correct binding, and more likely to be conserved throughout evolution. Therefore, we

define the interface conservation score as follows based on the evolutionary conservation rankings of

residues provided by the ET server (Mihalek et al., 2006):

X
atoms

k � ci (3)

where ci is the ET coverage value of the residue that the interface atom i belongs; ci ranges between 0

and 1, where lower values imply higher evolutionary importance. It is taken from the coverage column

of the corresponding ET file, produced by a sequence analysis on homologous proteins (Wilkins et al.,

2012). Variable k is -1 if ci is less than the threshold defined as below; otherwise it is 1.

threshold = l - r=2 (4)

where l and r are the mean and standard deviation of ET coverage values in the chain, respectively; ci

is multiplied with this constant to avoid bias toward conformations with smaller interfaces.

� Interface conserved atom ratio (ICAR): The ratio of the evolutionarily conserved interface atoms to

the total interface size. We define atoms belonging to a residue with ET coverage value less than the

threshold as conserved.
� Conservation per interface atom (CPIA): Average conservation score for interface atoms. While

ICAR favors conformations with more interface atoms that are conserved, CPIA favors confor-

mations with interface atoms that have higher magnitude of conservation (e.g., ET coverage 0.1

vs. 0.4).
� Hydrophobic ratio: The ratio of interface atoms belonging to a hydrophobic residue (A, C, G, I, L, M,

P, V) to the total interface size.
� Positively charged ratio: The ratio of interface atoms belonging to a positively charged residue (H, K,

R) to the total interface size.
� Negatively charged ratio: The ratio of interface atoms belonging to a negatively charged residue (D,

E) to the total interface size.
� Polar ratio: The ratio of interface atoms belonging to a polar residue (N, Q, S, T) to the total interface

size.
� Aromatic ratio: The ratio of interface atoms belonging to an aromatic residue (F, H, W, Y) to the total

interface size.
� Protein category: The numeric representation of the protein category (1:enzyme/inhibitor, 2:other).

The categories are assigned based on the Protein–Protein Docking Benchmark version 4.0 (Hwang

et al., 2010) classifications.

3.2. AccuRMSD neural network

We trained an artificial neural network using the backpropagation learning algorithm to predict the

RMSD value of a given structure based on its values of the 11 selected features. These features were used

as inputs to the network. Since backpropagation networks process continuous inputs and outputs ranging

between 0 and 1, the values for each feature were scaled linearly to fall into this range. The protein category

feature was treated differently because its two feature values do not represent a scale. Two inputs were used

to represent this feature, each of which corresponded to one of the categories. For a given category, the

corresponding input was set to 1, and the other input was set to 0. Therefore, the network received 10 inputs

representing the continuous features and 2 inputs for the categorical feature for a total of 12 inputs,

requiring the same number of input neurons. Through experimentation it was found that using 25 hidden-

layer neurons led to the best results. The output layer consisted of only a single neuron, whose output, after

appropriate linear scaling, represented the predicted RMSD value. In this scaling scheme, an output of 0.01

corresponds to the minimum RMSD value in the training data and 0.99 corresponds to the maximum one. It

should also be noted that each hidden and output-layer neuron received an additional input that was

constantly set to 1, enabling offset adjustment through the corresponding weight. Running 5000 epochs

yielded the smallest network error.
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3.3. Training data

In our previous work (Akbal-Delibas et al., 2014), we trained the network with 40,000 samples generated

by perturbing native conformations of 20 randomly selected proteins: 1ACB, 1BDJ, 1C1Y, 1CGI, 1CSE,

1DFJ, 1DS6, 1FSS, 1G4U, 1OHZ, 1SQ2, 1TX4, 1WQ1, 2RIV, 2SNI, 2V4Z, 2ZFD, 3LS5, 3LXR, and

3M18. We selected these proteins from two previously published works (Kanamori et al., 2007; Gray et al.,

2003) and extended the dataset by an RCSB Protein Data Bank search with the objectives that are explained

in Akbal-Delibas et al. (2015). For each protein, we created 2,000 samples by applying a random number

(i.e., 1 to 15) of rigid-body rotations to the native conformation around arbitrary axes. Angles and axes of

rotations are also chosen randomly as explained in Akbal-Delibas et al. (2012). After creating 2,000

samples for each protein, we analyzed their interfaces and calculated the values of the network features.

Figure 1a depicts the RMSD distribution of 40,000 samples in the perturbed training dataset. It is worth

noting that we used a slightly different feature set and network specification in the previous work (Akbal-

Delibas et al., 2014) than what we describe here.

In this work, to test AccuRMSD’s prediction accuracy on unbound docked structures, we trained the

neural network with an extensive dataset, composed of 35,000 samples of 35 dimer proteins listed in the

Protein–Protein Docking Benchmark 4.0 (Hwang et al., 2010): 1B6C, 1EFN, 1EWY, 1FFW, 1CL1, 1GLA,

1GPW, 1GXD, 1H9D, 1US7, 1J2J, 1JTG, 1OC0, 1OYV, 1PVH, 1S1Q, 1T6B, 1XD3, 1YVB, 1Z0K, 1Z5Y,

1ZHH, 1ZHI, 2AST, 2AJF, 2B42, 2FJU, 2HLE, 2HQS, 2J0T, 2O8V, 2OOB, 2VDB, 3DSS, and 4CPA.

We focused on the dimers from the rigid-body category in this benchmark, and among those we selected

the proteins for which the corresponding evolutionary trace files existed in the ET server (Mihalek et al.,

2006). For each protein, we created 1,000 docked structures by feeding unbound ligands and receptors to

RosettaDock (Lyskov and Gray, 2008). The RMSD distribution of the samples in the docked dataset

is shown in Figure 1d. We then analyzed interfaces of each structure and calculated the values of the

network features.

FIG. 1. RMSD distribution of the training and test datasets. RMSD is against the native PDB structure. RMSD, root

mean square deviation.
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4. RESULTS

4.1. Experimental setup

In this section, we discuss the prediction accuracy of AccuRMSD by comparing predicted and actual

RMSDs of 54,600 test samples. We grouped these test samples into three major classes based on how the

corresponding protein structures were created:

� Perturbed tests: For each of the 20 proteins used in the perturbed training dataset, we also generated a

test set through similar perturbations to native conformations. AccuRMSD was able to predict RMSDs

of 8,000 perturbed test structures with an error margin of 0.59Å (calculated as root mean square error).

� Refinement candidate tests: AccuRMSD was initially designed to accurately discriminate docking

refinement candidates generated from putative docked protein complexes. Therefore, we tested the

prediction accuracy of the proposed tool over a test set including 11,600 refinement candidates

generated from 29 coarsely docked protein complexes. AccuRMSD was able to predict RMSDs of the

refinement candidates with an error margin of 0.92Å.

� Docked tests: In the extended version of this study, we also tested the precision of AccuRMSD’s

predictions on 35,000 docked complexes created via unbound docking. For this purpose, an entirely

new dataset is developed based on the Protein–Protein Docking Benchmark 4.0 (Hwang et al., 2010) to

train the network. AccuRMSD was able to predict RMSD value of the extensive docked tests with only

0.40Å error.

Perturbed and refinement candidate tests were conducted after training the AccuRMSD neural network

with the perturbed training dataset. On the other hand, the unbound docked structure tests were performed

as a cross-validation of the newly proposed docked training dataset. Below, we describe the details of the

experiments with both training datasets.

4.2. Experiments with the perturbed training dataset

First, we generated 400 test samples for each of the 20 proteins shown in Table 1 based on the Protein–

Protein Docking Benchmark 4.0 (Hwang et al., 2010) by applying random rigid-body transformations to the

Table 1. Correlation Coefficient and Prediction

Error Values of 20 Perturbed Test Cases

Protein Correlation Error (Å)

1ACB 0.91 0.46

1BDJ 0.97 0.60

1C1Y 0.91 0.67

1CGI 0.96 0.52

1CSE 0.94 0.41

1DFJ 0.93 0.43

1DS6 0.89 0.56

1FSS 0.88 0.41

1G4U 0.93 0.93

1OHZ 0.92 0.99

1SQ2 0.96 0.50

1TX4 0.88 0.48

1WQ1 0.94 0.50

2RIV 0.95 0.36

2SNI 0.90 0.36

2V4Z 0.95 0.53

2ZFD 0.95 0.53

3LS5 0.88 0.86

3LXR 0.87 0.61

3M18 0.86 0.52

Overall 0.93 0.59
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native protein structure. Our motivation for testing with an extensive set of perturbed structures was to

provide initial validation of the learning capability of the AccuRMSD neural network. As the perturbed

tests and the training data were generated in a similar manner, a high correlation between predicted and

actual RMSD values as well as a reasonably low error would prove that the AccuRMSD network is set up

properly to learn the training data.

The RMSD range of the perturbed tests is shown in Figure 1b. As seen, the distribution is comparable to

the perturbed training dataset. To measure the difference between the predicted and actual RMSDs, we

calculated the root mean square error of the prediction, which we refer to as error in the rest of this article.

For the 8,000 perturbed tests, the error was 0.59Å while the correlation coefficient between predicted and

actual RMSDs was 0.93. Figure 2a displays the distribution of perturbed tests with respect to actual and

predicted RMSD values. Table 1 presents a summary of correlation coefficients and errors for each of the

20 different test cases.

After gaining confidence in the network’s learning capability, we assessed the prediction accuracy of

AccuRMSD on real refinement candidates created from coarsely docked protein complexes. We generated

refinement candidates from 29 different docked complexes (400 test samples for each) by applying small

rigid body rotations to each putative docked complex. The test cases are shown in Table 2. Putative docked

complexes are generated from three different docking tools: ClusPro (Comeau et al., 2004), pyDock (Cheng

et al., 2007), and HopDock (Hashmi and Shehu, 2013). The RMSD distribution for these complexes is

FIG. 2. Predicted vs. actual RMSD values of (a)

8,000 perturbed test samples and (b) 11,600 refinement

test samples. The diagonal line represents the perfect

prediction.
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shown in Figure 1c. Figure 2b depicts how predicted and actual RMSD values compare for 11,600

refinement candidates. The overall error was 0.92Å while the correlation coefficient between predicted and

actual RMSDs was 0.65. Table 2 lists the correlation and error values for each test case.

Three observations about the refinement candidate tests are worth noting. First, while the overall cor-

relation coefficients for ClusPro, pyDock, and HopDock test cases were comparable (0.65, 0.61, and 0.68,

respectively), the overall error for the ClusPro test cases was relatively higher. Among the ClusPro test

cases, 1BDJ, 1CSE, 1G4U, and 1OHZ are notable due to their relatively higher error values. Further

exploration of these cases revealed significantly higher number of test samples with near-empty interfaces

(i.e., less than 50 atoms). Removing such samples makes the overall error of ClusPro test cases comparable

to the overall error of pyDock and HopDock. Second, the prediction accuracy of refinement candidates

generated from different docked solutions of the same protein, like 1ACB and 1CSE, may vary a lot. For

instance, while the error for pyDock 1ACB test case was 0.38Å, it jumped to 0.92Å in the ClusPro solution.

On the other hand, three different 1C1Y test cases resulted in similar prediction error (0.94Å for ClusPro,

0.96Å for pyDock, and 0.71Å for HopDock). Finally, although the overall prediction error for the re-

finement candidates (0.92Å) was very favorable, it was not as low as the error for the perturbed structures

(0.59Å). This is expected because the perturbed training data and the perturbed test set were created from

the native conformations, whereas the refinement candidates were generated using coarsely docked

Table 2. Correlation Coefficient and Prediction

Error for 29 Refinement Candidate Test Cases

(400 Samples for Each)

Method Protein Correlation Error (Å)

ClusPro 1ACB 0.53 0.92

1BDJ 0.69 1.60

1C1Y 0.36 0.94

1CGI 0.64 1.04

1CSE 0.85 1.25

1DS6 0.70 0.52

1FSS 0.20 0.95

1G4U 0.40 1.28

1OHZ 0.59 1.37

1SQ2 0.69 1.00

1TX4 0.54 0.63

2RIV 0.37 1.10

2 SNI 0. 45 0.89

2V4Z 0.71 0.80

2ZFD 0.50 0.99

Overall 0.64 1.01

pyDock 1ACB 0.86 0.38

1BDJ 0.68 1.20

1C1Y 0.24 0.96

1CGI 0.73 1.07

1CSE 0.65 0.53

1SQ2 0.69 1.19

1TX4 0.69 0.46

2SNI - 0.20 0.46

3M18 0.17 0.76

Overall 0.61 0.84

HopDock 1BDJ 0.19 0.89

1C1Y 0.56 0.72

1CSE 0.64 0.92

1DS6 0.38 0.80

1TX4 0.87 0.38

Overall 0.68 0.77

All Overall 0.65 0.92
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FIG. 3. Predicted vs. actual RMSD values of 35,000 unbound docked

protein samples. The diagonal line represents the perfect prediction.

Table 3. Correlation Coefficient and Prediction

Error Values of 35 Unbound Complexes

Docked Using Rosetta

Protein Correlation Error

1B6C - 0.42 0.13

1EFN 0.50 0.44

1EWY 0.39 0.19

1FFW - 0.27 0.93

1GL1 0.46 0.22

1GLA - 0.12 0.30

1GPW 0.33 0.31

1GXD - 0.11 0.36

1H9D 0.26 0.15

1US7 0.52 0.17

1J2J 0.51 0.17

1JTG 0.20 0.29

1OC0 - 0.39 0.45

1OYV 0.73 0.19

1PVH 0.46 0.43

1S1Q 0.44 0.21

1T6B 0.28 0.14

1XD3 - 0.11 0.35

1YVB 0.26 0.10

1Z0K - 0.05 0.11

1Z5Y 0.81 0.05

1ZHH - 0.21 0.42

1ZHI 0.06 0.49

2AST - 0.14 0.62

2AJF - 0.01 0.12

2B42 0.42 0.69

2FJU 0.50 0.38

2HLE 0.10 0.15

2HQS 0.06 0.38

2J0T - 0.04 0.24

2O8V 0.39 0.67

2OOB 0.36 0.23

2VDB 0.70 0.13

3DSS 0.02 1.04

4CPA 0.05 0.18

Overall 0.88 0.40
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structures. We plan to further improve the prediction accuracy for refinement candidates by creating a new

training dataset from coarsely docked structures.

4.3. Experiments with the docked training dataset

An important distinction of this extended article compared to the initial version (Akbal-Delibas et al.,

2014) is its focus on predicting RMSD values of complexes created by unbound docking. Therefore, we

developed a new training dataset by evaluating 35,000 conformations generated by RosettaDock for 35

different proteins via unbound docking. Below, we discuss the prediction accuracy of AccuRMSD on these

35,000 samples. We also present a comparison of AccuRMSD and RosettaDock’s internal scoring function

based on how accurately each ranks 1000 docked conformations produced by RosettaDock.

We conducted a 35-fold cross-validation to test how well the RMSD values of conformations for a given

protein can be predicted by the data from all 34 other proteins. Figure 3 displays the distribution of samples

Table 4. Ranking Accuracy Comparisons of AccuRMSD

and RosettaDock’s Own Scoring Function

Protein

RosettaDock

ranking error

AccuRMSD

ranking error

AccuRMSD

vs RosettaDock

1B6C 482.76 479.25 1% less

1EFN 423.14 261.64 38% less

1EWY 556.01 293.83 47% less

1FFW 476.36 446.42 6% less

1GL1 405.00 307.79 24% less

1GLA 524.02 423.85 19% less

1GPW 381.56 346.70 9% less

1GXD 415.93 440.71 6% more

1H9D 409.45 344.83 16% less

1J2J 408.65 293.51 28% less

1JTG 425.07 373.06 12% less

1OC0 485.50 468.58 3% less

1OYV 214.84 174.61 19% less

1PVH 503.04 374.34 26% less

1S1Q 566.06 286.01 49% less

1T6B 367.96 351.51 4% less

1US7 544.09 270.57 50% less

1XD3 500.55 416.65 17% less

1YVB 445.10 361.78 19% less

1Z0K 424.14 413.11 3% less

1Z5Y 377.91 257.15 32% less

1ZHH 332.03 456.92 38% more

1ZHI 565.69 378.24 33% less

2A5T 450.05 452.55 1% more

2AJF 523.13 441.19 16% less

2B42 300.34 307.45 2% more

2FJU 553.97 280.42 49% less

2HLE 327.17 370.63 13% more

2HQS 335.62 365.32 9% more

2J0T 358.75 468.27 31% more

2O8V 454.06 337.74 26% less

2OOB 512.62 314.35 39% less

2VDB 220.73 215.10 3% less

3D5S 534.34 413.54 23% less

4CPA 543.08 391.90 28% less

For each protein, ranking error is calculated as root mean squared error between

real ranks of 1000 conformations (based on actual RMSD values) and ranks

suggested each tool. For 28 proteins (out of 35) AccuRMSD outperformed

RosettaDock’s own scoring function.
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with respect to actual and predicted RMSD values. Table 3 zooms into this data and presents a summary of

correlation coefficients and errors for each of the 35 proteins. The overall error between predicted and

actual RMSD values was only 0.4Å. Moreover, prediction errors for individual proteins were highly

favorable too. For all proteins other than 1FFW and 3DSS, AccuRMSD was able to predict the RMSD

values of 1000 conformations with an error margin less than 0.69Å. The correlation coefficient between

predicted and actual RMSDs was 0.88. However, it is worth noting that correlation coefficients between

predicted and actual RMSDs were relatively variable. For several proteins—like 1Z5Y, 1OYV, and

2VDB—predicted and actual RMSDs showed high positive correlation (e.g., the coefficient was above

0.70). On the other hand, there were also proteins, like 1B6C, 1FFW, and 1OC0, for which correlation

coefficients were low or even negative.

After assessing AccuRMSD’s prediction accuracy on extensive sets of 35,000 docked structures pro-

duced by RosettaDock, we also analyzed the relative ranking capability of AccuRMSD by comparing it to

RosettaDock’s own ranking tool (i.e., scoring function). In order to objectively compare the ranking

accuracy of the two methods, for each protein, we (i) ranked all 1,000 docked solutions based on their

actual RMSD values and identified each solution’s real rank; (ii) ranked all solutions based on the total

score calculated by RosettaDock and determined each solution’s RosettaDock rank; (iii) ranked all solu-

tions based on AccuRMSD’s predicted RMSD values and found each solution’s AccuRMSD rank; and

finally (iv) calculated the root mean square error between each methods’ ranking of 1,000 solutions and

their real ranks. Table 4 presents results of this analysis. It is worth noting that AccuRMSD’s ranking

outperformed RosettaDock’s scoring function in 28 out of 35 cases. Indeed for 13 proteins, AccuRMSD’s

ranking errors were at least 25% less compared to RosettaDock’s.

5. DISCUSSION

We presented AccuRMSD, a novel ranking method to accurately discriminate nativelike structures

during protein–protein docking and refinement. Using a backpropagation neural network, AccuRMSD

approximates the nonlinear relationship between a large set of features used by different scoring functions

and a structure’s similarity to its native conformation. Unlike the traditional scoring functions, AccuRMSD

not only ranks a set of structures relative to each other but also estimates their RMSDs with respect to the

native structure with a 0.4Å error margin even on a set of unbound docking candidates.

Future directions for this study are fourfold. First, we would like to expand the RMSD distribution of the

training data by adding more samples with higher RMSD values in order to increase the prediction

accuracy of the network for relatively poorly docked conformations. Second, we plan to test AccuRMSD

with docked structures produced by other docking tools in addition to RosettaDock. Third, we plan to

evaluate AccuRMSD’s prediction accuracy on proteins under the medium and difficult categories of the

Protein–Protein Docking Benchmark 4.0 (Hwang et al., 2010), as well as multimers. Finally, we will use

AccuRMSD as the ranking tool in a new method we will propose for refining coarsely docked protein

complexes.
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