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Abstract

Vergence eye-movements occur not only in real environ-
ments, but also in virtual 3D environments. Autostere-
ograms can cover large visual angles without requiring
vergence beyond natural parameters and are thus well-
suited for the investigation of vergence movements in
virtual 3D images. We developed an anaglyph-based
3D calibration procedure and used a parametrized self-
organizing map (PSOM) to approximate the 3D gaze
point from a subject’s binocular eye-movement data.
Besides analyzing the general pattern of vergence eye-
movements in autostereogram images, the present study
examined the influence of image granularity on these
movements. Unlike previous research on random-dot
stereograms, we found substantially overshooting con-
vergence eye-movements, especially for medium gran-
ularities. Moreover, divergence movements were com-
pleted more quickly for coarse than for fine granularities.
Results are discussed in the context of granularity effects
on autostereogram perception and the dissociation be-
tween convergence and divergence eye-movements.

Vergence Eye-Movements in
Autostereograms

In everyday life, we employ vergence eye-movements to
successively fixate objects at different distances. It is in-
teresting to note that these movements are also produced
in virtual 3D environments. Some work has been done
on the analysis of vergence movements occurring while
viewing Random-Dot Stereograms (RDS). For RDS two
slightly different images for the left and the right eye seen
through a special device, a so-called stereoscope, lead to
the perception of 3D information. Mowforth, Mayhew
and Frisby (1981) found that RDS are perceptually fil-
tered by spatial frequencies. Low frequencies enable the
3D perception of RDS with larger disparities and lead
to faster vergence movements than do high frequencies.
Furthermore, vergence velocities were found to be faster
for convergent than for divergent eye movements.

In another study, Rashbass and Westheimer (1961)
found reaction times of about 160 ms for both conver-
gent and divergent eye movements in response to sud-
denly introduced target vergence changes. The authors
reported start velocity varying with stimulus amplitude,
and vergence reaching asymptotically its final level af-
ter approximately 800 msec without any overshoots or a
prolonged period of oscillations. They also found turn-
abouts in the response before the target vergence change

reaches zero, showing the anticipatory behavior of the
eye-vergence system.

For our experiment, however, instead of RDS we used
Single Image Random Dot Stereograms (SIRDS), also
called autostereograms. The difference between RDS and
SIRDS is that in SIRDS the two slightly different im-
ages of the RDS are combined into a single image. No
stereoscope is necessary to perceive the 3D information
in a SIRDS. To achieve the 3D perception of a SIRDS,
observers have to combine the information of the two
images for the left and the right eye to one depth per-
ception by focusing a point before (cross-eyed method)
or behind (wide-eyed method) the image plane, whereby
our preliminary studies (Essig, 1998) demonstrated that
the later method leads to a more stable perception of
the depth information and was therefore used for the
reported experiments. Once the observers perceive the
3D scene, they may move their gaze to any position in
the image without losing the 3D impression. Most im-
portant in the present context, SIRDS can cover large
visual angles without requiring vergence beyond natural
parameters, which makes them appropriate stimuli for
studying vergence movements in virtual 3D images.

In our natural environment, and when looking at RDS,
we move our eyes inward (convergence) to inspect near
objects and outward (divergence) to inspect distant ob-
jects. An obvious question is: Do these vergence move-
ments also occur during the observation of autostereo-
gram images? Belopolskii and Logvinenko (1994) found
that vergence movements are not necessary to get the
3D perception of an autostereogram. However, in recent
experiments (Essig, 1998) we found that in fact vergence
eye-movements are executed during the examination of
autostereogram images. These results encouraged us
to conduct further experiments investigating stereogram
parameters that are likely to influence vergence move-
ments.

A distinguishing feature of autostereogram images is
their grain size (granularity). Figure 1 shows examples
for autostereogram images with small (upper panel) and
big grain sizes (lower panel). The reported experiment
used autostereogram images with different grain sizes to
systematically investigate the influence of this parame-
ter on the vergence movements. According to Mowforth
et al. (1981), overshoots and oscillations should be more
likely for autostereogram images with coarser granulari-
ties, i.e. lower spatial frequencies, which, however, is in-



Figure 1: Autostereogram images with granularities 1
(upper panel) and 12 (lower panel).

consistent with the findings of Rashbass and Westheimer
(1961). For a clarifying analysis of this issue, we mea-
sured vergence eye-movements with a modern binocular
eye tracker with a sampling rate of 250 Hertz. For in-
creased precision of vergence and 3D gaze-position mea-
surement, we developed and applied a novel neural-net
based calibration interface, which is described in the fol-
lowing section.

A Neural Approach to 3D Gaze-Point
Calculation

During the examination of autostereograms shown on
the computer screen, the intersection of the viewing axes
is in general in front of or behind the screen plane, de-
pending on the 3D gaze position. As a consequence, the
correct coordinates for the actual gaze position are dif-
ferent from the screen coordinates which the eye tracker
provides, because the system uses a 2D calibration to cal-
culate the relation between the pupil positions and the
gaze point on the screen. We tackled this problem by de-
veloping a 3D calibration that precedes the experiment
and uses a parametrized self-organizing map (PSOM) to
approximate the 3D gaze point from a subject’s binocu-
lar eye-movement data.

Since the experimental conditions change from sub-
ject to subject (e.g. subjects have physical differences,
their gaze characteristics are individually different, and
the eye-tracker setup varies across sessions), it is clearly
advantageous to use a method which is able to “learn”

these individual parameters. Additionally, we have to
take into consideration that the mapping from pupil to
screen coordinates is non-linear. Hence neural nets are
suitable for the solution of these problems, because they
are able to “learn” nonlinear functions. Kohonen (1990)
developed the so-called self-organizing maps (SOMs),
which could learn the correct mapping from the pupil
to the screen coordinates. However, SOMs have two
disadvantages: They supply only the position of the
most stimulated neuron in a “neuron lattice” instead
of a continuous output, and they usually require thou-
sands of training examples. Therefore, we use a variant
of SOMs, namely a so-called parametrized self-organizing
map (PSOM) (Ritter, 1993). This variant does not have
the disadvantages mentioned above, because it provides
the demanded continuous output and gets only some se-
lected input/output pairs as parameters, i.e. the coordi-
nates of the calibration points and the related positions
of the pupils measured by the eye tracker.

A 2D version of the PSOM was already used in (Pom-
plun, Velichkovsky & Ritter, 1994), reducing the average
calibration error to about 30% of its previous value. In
opposition, our “new” PSOM does not only enhance the
accuracy of measurement, it also approximates the sub-
ject’s 3D gaze position from the two 2D coordinates of
the eye tracker system.

A PSOM can be considered as a recursive neural net
that realizes a distinct, mostly multi-dimensional pro-
jection f. The input data of this projection consist of
the “correct” coordinates of 27 calibration points k ∈ A
(standardized in the interval from 0 to 2 by the PSOM),
where A = {kxyz|kxyz = xêx + yêy + zêz; x, y, z = 0...2}

Figure 2: The calibration points in the virtual 3 x 3 x 3
cuboid. For the PSOM the coordinates are standardized
in such a way that they only have the values 0, 1, and 2.

(see Figure 2) arranged in a 3 x 3 x 3 grid and presented
to the subjects during the calibration procedure. In or-
der to create a virtual 3D perception, the calibration grid
was presented as an anaglyph image, viewed through
red-green glasses. The calibration points were drawn on
the planes of a cuboid, where the planes before and be-
hind the screen plane formed its surfaces. This made it
perceptually easier for the subjects to locate the stimuli
on one of the three planes of the cuboid. For each of these



27 calibration markers, we have the associated gaze coor-
dinates measured by the eye tracker and the x-divergence
between the gaze positions of the left and right eye on
the screen calculated from this data. Thus, the reference
vector is wk = (xplk, yplk, xprk, yprk, xdk) ∈ IR5. xplk

is the x-coordinate for the left eye, and yplk the corre-
sponding y-coordinate for the left eye belonging to the
vector wk. For the right eye the corresponding values
are xprk and yprk. The fifth element of wk results from
xdk := xprk − xplk.

We introduce the divergence (xdk) as the fifth dimen-
sion of wk because the z-coordinate of the 3D gaze-
position mainly depends on this divergence. Since the
differences in the divergence are smaller than those in the
x- and y-directions, the divergence has to be weighted by
a specific factor. This method leads to a faster termi-
nation of the PSOM-calculations. Hence, every fixation
point k ∈ A is associated with a corresponding refer-
ence vector wk ∈ IR5. With the reference vectors wk we
could already construct a SOM which could enable the
projection from the 2D coordinates of the system to the
“correct” 3D coordinates. This SOM would only enable
a crude approximation to the real 3D coordinates, be-
cause it could only choose one of the calibration points
as a possible output. In the present context, however,
we are looking for a projection which can interpolate be-
tween the vectors wk. This projection can be done by a
PSOM.

The desired interpolation function f(s) can be con-
structed from the superposition of a suitable number of
simpler basis functions H(.,.) as follows:

f(s) =
∑

k∈A

H(s, k)wk (1)

The values of the basis functions are within the in-
terval [0,1] depending on different values s, so that the
coordinates of a calibration point, which is close to the
desired gaze position, is weighted strongly (near 1) and
points which are far away are weighted weakly (near 0).
The basis functions H : IR3 × A → IR have to comply
with the requirement

H(s, k) = δs,k ∀ s, k ∈ A (2)

where δ represents the Kronecker symbol. It is defined

as: δij =
{

1 : i = j
0 : i 6= j

∀ i, j = 0, 1, 2

(in this special case). This ensures that

f(s) = ws ∀ s ∈ A

Thus, it is guaranteed that the interpolation function
passes through the given points. But how can we choose
suitable functions H that obey equation (2), that are
smooth and simple to handle?

One convenient solution is to make a product ansatz
and to derive the suitable function by combining three
1D functions (one in each case for every coordinate di-
rection x, y, and z). The new 1D functions must then
have the property H(1) : IR× {0, 1, 2} → IR:

H(1)(q, n) = δq,n ∀ q ∈ IR, n ∈ {0, 1, 2} (3)

Because n has only three possible values (0, 1, and
2), it is sufficient to choose an account of three basis
functions IR → IR. For this purpose, polynomials of sec-
ond degree are especially suitable, because they have no
redundant degrees of freedom.

Now we have built a function which projects 3D coor-
dinates onto 2D gaze-positions for both eyes. Our final
aim is to find a function which does just the opposite
though, namely to approximate the 3D gaze-position of
the subject from the system’s 2D measurements. There-
fore, we have to calculate the inverse function f−1 of f.
The non-linearity of f forces us to use a numerical pro-
cedure. Thus we have to create an error function E(s),
which is defined as:

E(s) =
1
2
(f(s)− fet)2 (4)

i.e. the deviation of the pupil coordinates provided by
the eye tracker (fet) from the eye tracker data calculated
by the PSOM f(s) for the actually assigned two screen
points.

If this difference exceeds a specified threshold, the co-
ordinates of these points are modified in an iterative
gradient-descent procedure until the results of Equation
(1) closely approximate the actual eye tracker data pro-
vided by the system:

s(t + 1) = s(t)− ε · δE(s)
δs

, with ε > 0 (5)

This means that the iteration process stops if E(s(t))
falls below the threshold, which we should adapt to the
screen resolution. In this way, an exact 3D gaze position
of the subject during the examination of a 3D stimulus
is assigned to the 2D eye tracker data for the left and
right eye.

We conducted an experiment in which the accuracy
of the PSOM gaze-point calculation is compared to one
provided by a geometrical solution. Subjects had to vi-
sually track a dot that appeared at positions of a 4 x 4 x
4 grid in 3D space in a random sequence. In the geome-
trical method the equations for the right and left visual
axes are calculated on the basis of both the measured
gaze-positions on the screen and the subjects’ (assumed)
constant head position. The gaze point is determined as
the point where the visual axes are closest to one an-
other. It results as the center of the shortest straight
link between the visual axes.

The results show that the neural net calculates gaze
positions from the eye tracker data which are nearly 46%
closer to the actual gaze positions than those of the geo-
metrical solution. The average total error for all sub-
jects, separated for the individual coordinates, is shown
in Table 1 (the values for the geometrical method and the
neural net show the average total error and the standard
error).

It is obvious that the z-error is always higher than the
x− and y−errors, because the z-coordinate is much more
sensitive to small changes in the binocular gaze position
than the x− and y−coordinates. We also found that the
measurement errors decrease from the back to the front



Table 1: Average total error for individual coordinates.

both
methods

geometrical
method

neural
net

coordinate average to-
tal error

average to-
tal error

average to-
tal error

x 0.97cm 1.41cm ±
0.04cm

0.52cm ±
0.05cm

y 1.03cm 1.24cm ±
0.05cm

0.82cm ±
0.05cm

z 4.16cm 5.79cm ±
0.36cm

2.53cm ±
0.11cm

plane. The neural net compensates the errors in the back
plane better than the geometrical method, because small
changes in the gaze position at the back plane lead to
severe inaccuracies. Obviously, the precision of our novel
method of 3D gaze-position measurement provided an
appropriate basis for the autostereogram study.

The Autostereogram Experiment

Method

Subjects. Eight paid subjects (1 female, 7 male), all
of them were students at the University of Bielefeld,
participated in this experiment. They had normal or
corrected-to-normal visual acuity and were experienced
in viewing autostereogram images.
Stimuli. The stimuli in this experiment were auto-
stereogram images whose depth impression arose from
two horizontally divided half planes, which were recog-
nized at different virtual distances. The autostereogram
images used in the experiment varied in their granulari-
ties. Using the autostereogram generation program rds-
gen V1.2b by Frederic N. Feucht1, we produced different
autostereogram images in which one dot of the auto-
stereogram image corresponded to one, two, four, eight,
or twelve screen pixels in height and width. The sub-
jects always got the spatial perception that the lower
plane was nearer than the upper one. The depth differ-
ence between the two planes corresponded to a vergence
angle difference of 0.859o.

By using rdsgen we created two autostereogram im-
ages for each of the granularities 1, 2, 4, 8, and 122.
These 10 autostereogram images were presented to the
subjects in a random order on a 20-inch screen and a spa-
tial resolution of 640x480 pixels. The images consisted
of black and blue (luminance: 24 cd/m2) points, where
one pixel corresponded to 4.17 min arc. The distance
from the subject to the screen was 50 cm.

1http://www.bcc.cc.nc.us/graphics/g2c.html.
2We first changed the distance between the repeating pat-

terns of the autostereogram image and magnified it with the
corresponding “enlargement factor” (grain size) to keep the
distance between the repeating patterns (and therefore the
depth impression) constant.

Apparatus. We used an SMI EyeLink eye tracker for
the experiments. This system employs a headset with
two cameras to enable binocular eye-movement record-
ing. Further features of the EyeLink system are a high
sampling rate of 250 Hz and an average on-screen gaze
position error between 0.5o and 1.0o.

Procedure. Prior to the experiment, subjects were
presented with autostereogram images without using the
eye tracker. This way the subjects could practice the per-
ception of the depth information. A lamp fixed behind
the subjects to create reflections on the screen helped
the subjects to fixate a virtual point behind the screen
plane, facilitating the 3D perception of the autostereo-
gram image. When the subject got the 3D impression,
the light from behind was switched off.

At the beginning of every trial the light was switched
on as soon as the autostereogram image appeared on
the screen. When the subject got the 3D impression of
the image, the experimenter switched off the light and
started the eye-movement recording. It was the subjects’
task to change their view from the front plane to the back
plane and vice versa (every few seconds). Between these
eye movements subjects kept their view on one plane for
a while before changing their view to the other one. The
vergence movements were recorded over a duration of 1
minute per image. If subjects “lost” the 3D impression
during the recording interval, they had to press the right
mouse button, recover the 3D impression, and press the
left button to continue recording. Ten autostereogram
images were shown to the subject in a random order so
that every granularity appeared twice.

Data Analysis. In general, the vergence angle α is
used to make statements about a subject’s vergence. The
bigger the vergence angle is, the stronger the eyes con-
verge, i.e. the nearer the (virtual) surface fixated by the
subject. The time course of vergence movements was
the most important data to be analyzed in this experi-
ment, especially during the period right before and after
subjects changed their gaze point from one plane to an-
other. We distinguished between eye movements from
the near to the far plane and vice versa. For the evalua-
tion process we summarized the data of all subjects and
calculated the arithmetic mean and the standard error
of the vergence angle as a function of time relative to
gaze transitions between the two depth planes.

There were two criteria for the presence of a gaze tran-
sition between planes: First, there had to be a change in
the measured y-value that indicated a crossing of the hor-
izontal boundary. Second, any such change from plane A
to plane B had to be preceded by a contiguous sequence
of 50 measured gaze positions (200 msec) on plane A,
and succeeded by a contiguous sequence of 250 gaze po-
sitions (1000 ms) on plane B. To account for a small
fraction of measurement errors, we allowed a maximum
of 4 violations of these conditions among the 300 mea-
surements. After detecting a plane transition, the time
course of vergence from 200 ms before to 1000 ms after
the transition was calculated.



Results and Discussion

Our first observation was that subjects had problems to
achieve a stable 3D perception of autostereogram im-
ages with large grain size (granularities 8 and 12). Once
achieved, it was difficult for them to maintain the sta-
ble depth impression when changing their gaze point
from one plane to the other. Subjects classified the au-
tostereogram images with the granularities 2 and 4 as
most pleasant to view. Figure 3 shows the temporal
progress of the convergence and divergence movements
during the examination of autostereogram images across
granularities. The vergence angles are standardized, i.e.
0 corresponds to the back and 1 to the front plane. In
the figures the value 0 on the time axis signals the time
of plane transition. Each panel shows the vergence data
from 200 ms before to 1 s after an eye movement be-
tween the two planes. Figure 3 also illustrates that, for
all granularities, the convergence movements are obvi-
ously faster than the divergence movements. This is in
line with the observations in Mowforth, Mayhew and
Frisby (1981). The final values are reached after a pe-
riod of about 800 ms, as stated in Rashbass and West-
heimer (1961). As can clearly be seen, both convergence
and divergence movements already start before the onset
of an eye movement between planes, suggesting that the
imagination of the target distance is already sufficient for
the execution of vergence eye-movements (proximal ver-
gence). Similar results were already obtained by Yarbus
(1967).

The high overshoot of the convergence movements
(Figure 3, upper panel) for the granularities 2 and 4
is very obvious. Both show an overshoot of 1.8 and ap-
proach the end value at nearly 900 ms. The similarity
between those vergence movements is in line with the
subjects reporting that it is easier to get and stabilize
the 3D illusion of these two types of autostereogram im-
ages. One reason could be that the perception of the
depth planes is particularly stable for these granular-
ities. Subjects can perceive the near plane very well,
even if they fixate a point on the back plane. As a con-
sequence, the visual system might perform a particularly
fast, overshooting vergence movement towards an angle
that would project the pattern of the near plane to corre-
sponding points on the retina. This mechanism allows us
a fast focussing of near or approaching objects, which is
an important capability to react in dangerous situations.

The vergence movements during the observation of
the autostereogram image with granularity 1 are sim-
ilar to those for granularities 2 and 4. It is obvious,
though, that the overshoot of the convergence move-
ments for granularity 1 is smaller (1.5) than for gran-
ularities 2 and 4 (granularity 1 seems too fine for a sta-
ble extrafoveal perception). Also the approaching to the
end value is shorter (nearly 750 ms instead of approx.
900 ms). These results further support the finding that
vergence movements can clearly be driven by relatively
high spatial frequencies (fine granularities), as stated in
Mowforth, Mayhew and Frisby (1981).

The data for the coarse granularities 8 and 12 are
clearly different from those for 1, 2, and 4. Hence it
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Figure 3: Convergence (upper panel) and divergence
movements (lower panel) occurring during the exami-
nation of autostereogram images with different granu-
larities.

is much more difficult for the subjects to perceive both
planes simultaneously in those autostereogram images,
which is consistent with the subjects’ impressions. An
important point is that the overshoot of the convergence
movements is substantially weaker (1.4) than for those
occurring in the images with finer granularities. The
standard error for the convergence as well as for the di-
vergence movement is high. This can be interpreted as
indicating an instable perception of the depth planes.
Furthermore, the progress of the divergence movements
is faster and finishes sooner than 600 ms after the gaze
shift.

The finding of overshoots for convergence movements
is inconsistent with the results obtained by Rashbass and
Westheimer (1961). It is possible that either the appa-
ratus used in their study did not allow the detection
of these overshoots, or that vergence eye-movements in
RDS – in contrast to those in SIRDS – do not show



overshoots. Rashbass and Westheimer describe the ver-
gence system as a damped system, because it does not
show any oscillations. In the present study, however, we
found overshoots, but no following undershoots or any
kind of oscillations. It seems therefore correct to speak
of a damped system but with a strong tendency towards
overshoots for convergence movements in SIRDS.

With regard to divergence movements (Figure 3, lower
panel), we found faster approximation of the target an-
gle for the autostereogram images with coarser granular-
ities than for those with finer granularities. This is just
the opposite of the results we got for the convergence
movements. A possible explanation is a fundamental
difference in nature between convergence and divergence
movements, as can be seen from Figure 3. Convergence
movements are fast and impulse-like, whereas divergence
movements are slower and smoother. From an evolu-
tionary standpoint, since distant or vanishing objects
are less dangerous, there is no need for fast divergence
eye-movement mechanisms. Instead, this divergence re-
sembles more a relaxation process. And this relaxation
might be facilitated by easily losing the perception of the
near plane. In other words, for the finer granularities 1,
2, and 4, the continuous stable perception of the front
plane might impede the subjects’ effort to focus atten-
tion – and consequently vergence – on the far plane.

All in all, some findings for the RDS were confirmed in
our experiments with SIRDS, in particular that conver-
gence is faster than divergence, that the vergence mech-
anism can clearly be driven by relatively high spatial fre-
quencies, and that vergence response occurs even before
the disparity reaches zero. Inconsistent with previous
studies, however, our experiment demonstrates substan-
tial differences in vergence movements between SIRDS
and previously investigated RDS, especially with regard
to the overshoot for convergence movements. This differ-
ence, however, might have been caused by the possibly
low resolution of the apparatus used in the RDS study
(Rashbass & Westheimer, 1961).

Furthermore, our experiments show a clear influence
of granularity on vergence movements. The pattern of
influence seems to be more complex than described in
Mowforth, Mayhew and Frisby (1981), because, accord-
ing to our results, lower frequencies (coarser granulari-
ties) do not always lead to faster vergence movements.
One reason might be the more difficult simultaneous per-
ception of different depth planes in the stimuli of very
low frequencies. At any rate, these complex granular-
ity effects on vergence eye-movements in autostereogram
images indicate that there may be rather non-intuitive
factors that can have a significant impact on the coordi-
nation of both eyes. Future research will have to address
further issues, such as the timing of coordinated binocu-
lar saccades and its dependence on various pattern fea-
tures. This is a research area that so far has been ex-
plored very little, and the rather recent possibility of fast
and accurate binocular eye tracking, combined with ap-
propriate techniques for 3D gaze measurement like the
approach presented here, will greatly contribute to its
advancement.
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