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Abstract 
 

We present an approach towards a simple, explicit model of 
saccadic selectivity in visual search tasks. The model in its 
present state includes weights for target-distractor similarities 
and fixation field size as its only adjustable parameters. Based 
on these, the model predicts the statistical distribution of 
saccadic endpoints for any given visual search display. 
Besides providing an explicit and complete mathematical 
specification of the model, we demonstrate the performance 
of its computer simulation in a triple-conjunctive search task. 
The model successfully simulates empirical data reported by 
Williams and Reingold (in press).  

 
Modeling Visual Search 

How do we detect a prespecified target item among a set of 
distractors? Numerous studies employing the paradigm of 
visual search have attempted to answer this question (see 
Treisman, 1988 and Wolfe, 1998, for reviews). In a typical 
visual search task, subjects have to decide whether a search 
display contains a designated target item, indicating their 
decision by pressing either a �yes� or a �no� button. In most 
studies, reaction times (RTs) and error rates were analyzed 
as a function of the number of items in the display (display 
size). The majority of current models of visual search were 
based on data obtained within this paradigm.  

An early attempt to model visual search is the Feature 
Integration Theory (Treisman & Gelade, 1980; Treisman, 
1988). This theory proposes the existence of preattentive 
feature maps, one for each stimulus dimension such as color 
or shape. These maps are created in parallel after stimulus 
onset and allow immediate target detection if the target is 
defined by a unique feature in any single dimension (feature 
search). If the target is defined by a specific combination of 
features (conjunctive search), attention is necessary to 
locally combine the information of the corresponding 
feature maps. As a result, subjects have to inspect the 
display in an item-by-item fashion until target detection or 
exhaustive search. The Feature Integration Theory thus 
explains the finding that reaction time tends to increase with 
display size in conjunctive search tasks, while it is almost 
constant in feature search tasks. 

A more recent approach is the Guided Search Model 
(Cave & Wolfe, 1990; Wolfe, Cave & Franzel, 1989; Wolfe, 

1994), which proposes a two-stage model of visual search. 
In the first, parallel stage, an activation map containing 
likely target locations is created on the basis of both top-
down and bottom-up sources of activation. The second, 
serial stage uses the activation map to guide visual attention 
from item to item, starting with the item with the highest 
activation, then proceeding to the second highest, and so on, 
until the target is found or the current activation falls below 
a certain threshold (see Chun & Wolfe, 1996). 

Besides many variations of these two models, there are 
also more complex approaches like the one by Grossberg, 
Mingolla and Ross (1994). Their model uses artificial neural 
networks to achieve perceptual grouping of search displays 
into subregions. Visual search is assumed to proceed serially 
between these subregions and in parallel within them. 

Recently, several researchers have analyzed participants� 
eye movements during visual search to supplement 
traditional RT and accuracy measures (e.g. Findlay, 1997; 
Hooge & Erkelens, 1999; Jacobs, 1987; Luria & Strauss, 
1975; Motter & Belky, 1998; Rayner & Fisher, 1987; 
Scialfa & Joffe, 1998; Shen, Reingold, & Pomplun, in press; 
Viviani & Swensson, 1982; Williams, Reingold, 
Moscovitch, & Behrmann, 1997; Williams & Reingold, in 
press; Zelinsky, 1996; see Rayner, 1998, for a review). 
Some of these studies have further examined saccadic 
selectivity, i.e. the proportion of saccades directed to each 
distractor type, by assigning saccadic endpoints to the 
closest display item. Such studies have found a strong 
selectivity towards distractors sharing a particular feature 
with the target item (e.g. Findlay, 1997; Hooge & Erkelens, 
1999; Luria & Strauss, 1975; Motter & Belky, 1998;  Scialfa 
& Joffe, 1998; Shen, Reingold & Pomplun, in press; 
Williams & Reingold, in press; but see Zelinsky, 1996). 
Given that eye movements are usually accompanied by 
shifts of attention (see Hoffman, 1998, for a review), it 
seems that subjects can selectively attend to a critical subset 
of items in the display rather than perform an item-by-item 
search as suggested by the original Feature Integration 
Theory.  

To date, no explicit model has been proposed which 
allows for simulating saccadic selectivity in visual search. In 
the present article, we propose such an approach, referred to 
as the Area Activation Model. Following the description of 



the model, we examine its performance by simulating the 
saccadic selectivity findings reported by Williams and 
Reingold (in press). 

 
The Area Activation Model 

The Area Activation Model is based on assumptions 
concerning three aspects of visual search performance: (1) 
the extent of available resources for processing, (2) the 
choice of fixation positions, and (3) the scan-path structure. 
Processing resources -The extent of available resources for 
processing is determined by a two-dimensional Gaussian 
function with its peak centered at the current gaze position 
(e.g. Pomplun, Ritter & Velichkovsky, 1996). The standard 
deviation σf of the Gaussian function would be affected by a 
variety of factors such as task difficulty, item density, and 
item heterogeneity, but in essence should be a function of 
the area from which information is extracted during a 
fixation (henceforth �fixation field�). For example, if the 
target and distractors are easily discriminable and the 
density and heterogeneity of items are low, we would expect 
the fixation field to be larger than when discriminability is 
low and density and heterogeneity are high. This theoretical 
measure is likely to be correlated with the number or density 
of fixations in a given area. If the fixation field is smaller, 
we would expect more fixations per display area. In fact, in 
the current simulation we are using the empirically observed 
number of fixations per trial to adjust σf. 
Fixation positions - Fixation positions are chosen to 
optimize the amount of information acquired. However, the 
execution of saccades entails a certain amount of error, 
which causes fixations to deviate from these optimal 
positions. Another source of error in empirical data is 
related to inaccurate measurement of eye movements. It is 
important for a valid comparison between empirical and 
simulated data to consider both saccadic error and 
measurement error. 

For every point in the display it is possible to calculate its 
informativeness or relevance to the search task, creating an 
activation map. In the present simulation, we use weights 
corresponding to features along several dimensions to 
determine activation for individual items. A variety of 
models may suggest different activation maps (e.g. Cave & 
Wolfe, 1990; Wolfe, 1994). 

In order to make the method transparent and applicable to 
a wide variety of tasks, we provide a general, explicit 
specification of the model. A search display consists of N 
items with positions (xn, yn) and features fn

(d) along D 
dimensions, n∈ {1,�, N}, d∈ {1,�, D}. The search target 
has the features t(d). Each dimension d is assigned a weight 
w(d), which currently has to be estimated on the basis of the 
results from a pilot-study. If, for example, subjects rely 
entirely on color, the color weight should be set to 1 and all 
other weights set to 0.  

If an item n is identical to the target in dimension d, the 
item's feature activation an

(d) is set to the weight of that 
dimension: 
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The total activation of item n is then calculated as the sum 
of its feature activations, implying the possibility of 
simultaneous guidance of attention by two or more 
dimensions:  
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In a triple-conjunction search task, for instance, with color, 
shape, and orientation weighted 1, 0.5, and 0 respectively, a 
distractor item of the same color and shape as the target 
would receive a total activation of 1.5, surpassing those 
distractors with single-feature correspondence. Results from 
empirical studies support the hypothesis of combined 
activation across dimensions (see Williams & Reingold, in 
press). 

As argued above, the activation map function m(x, y) 
should reflect the amount of information that could be 
processed during a fixation at any position (x, y) in the 
display, given a Gaussian distribution of resources for 
processing. In the current model, m(x, y) is calculated as the 
sum of total activations of all the items, with each item 
weighted by the amount of resources it receives, as a 
function of its distance from (x, y):  
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The fixation targets are chosen as those maxima (peaks) of 
m(x, y) that are greater than or equal to the activation of a 
single target item, i.e. those coordinates (xp, yp) meeting the 
following two requirements: 
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While the first requirement achieves a plausible selection 
of fixation points for most efficient acquisition of 
information, the second requirement simulates a subject's 
ability to give a negative response even before attending to 
every item in the display. According to this equation, 
subjects can decide whether a peak in the activation map is 
high enough to possibly contain a target item. They can thus 
stop the search after inspecting all relevant peaks, without 
directing their attention to the irrelevant ones.  

 After calculating the fixation targets, the actual fixation 
points are determined by simulating normally distributed 
saccadic error and measurement error. Saccadic error is 
assumed to increase with a larger fixation field, which 
corresponds to faster search, longer saccades, and a more 
diffused activation map. Accordingly, in the present 



simulation, we set the saccadic error parameter to equal the 
fixation field parameter σf. Measurement error is set to a 
constant standard deviation σm corresponding to the 
precision of the eye tracker used in the empirical study. The 
actual fixation point for an activation peak (xp, yp) is thus 
determined on the basis of the following probability 
distribution p(x, y): 
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Scan paths - The structure of scan paths is governed by the 
principle that every fixation target, i.e. every relevant peak 
in the activation map, is visited exactly once. The order in 
which these fixation targets are inspected is chosen in terms 
of spatial optimization, as suggested by empirical results 
(e.g. Zelinsky, 1996). Among the unvisited peaks, the 
current implementation of the model always chooses the one 
that is nearest to the current gaze position. This type of local 
scan-path minimization - also termed the "Greedy Heuristic" 
- has been shown to to resemble human scanning strategies 
without assuming extensive planning processes (see 
Pomplun, Carbone, Koesling, Sichelschmidt & Ritter, 
submitted).  

Turning back to the distinction between feature and 
conjunctive search, the current model makes the following 
predictions: If the distractors' activations are too weak to 
form peaks that exceed the target activation - for example, if 
the target has a unique feature in one dimension (feature 
search) - the target item produces the only relevant peak in 
the display, yielding a highly efficient "pop out" search.  In 
contrast, increasing target-distractor similarity (e.g. 
conjunctive search) leads to more fixations and a stronger 
influence of display size on search performance. These 
predictions of the model are consistent with empirical 
results. 

 
Empirical Validation of the Model 

The Area Activation model is illustrated by simulating 
saccadic selectivity findings reported by Williams and 
Reingold (in press). The authors reported two visual search 
experiments with 32 participants in each experiment. 
Participants were presented with displays of 6, 12, and 24 
items, half of them containing a target item defined by a 
unique combination of three dimensions - color, shape, and 
orientation. Each experiment consisted of a single-feature 
(SF) and a two-feature (TF) condition, in which the 
distractor items shared one or two dimensions respectively 
with the target item. While both experiments used the same 
colors (red and blue) and orientations (upright and rotated 
clockwise by 90 degrees), the stimuli differed in the 
discriminability of the shape dimension. Experiment 1 
employed the similar letters E and F (low discriminability), 
whereas Experiment 2 used the distinct letters T and C (high 
discriminability). Figure 1 (upper row) presents a sample 
stimulus for each of the two experiments. Eye movements 

were measured with the SR Research Ltd. EyeLink system. 
The measurement error in this study was determined as σm 
=0.6 deg. 

In our comparison of empirical and simulated data, only 
target-absent trials were analyzed in order to avoid the 
disruptive influence of target items (see Zelinsky, 1996). In 
the present article, only the results for display size 24 were 
simulated. 

Since we had no a-priori knowledge about the subjects� 
fixation field in each of the four conditions (SF and TF 
conditions in Experiments 1 and 2), we used an iterative 
algorithm to adjust the model�s fixation field parameter σf in 
such a way that the simulated number of fixations per trial 
matched the empirical one.  

Another problem was to determine the weights w(d) for the 
color, shape, and orientation dimensions. We used the SF 
conditions in both experiments to adjust these weights and 
we tested their generality by applying them to the TF 
conditions. In the SF condition of Experiment 1, subjects 
showed strong saccadic selectivity towards color and 
equally low selectivity towards shape and orientation (see 
Figure 2, top row). This suggested that only the color 
dimension induced feature guidance, while shape and 
orientation were irrelevant to the search process. 
Consequently, for both the SF and TF conditions in 
Experiment 1, the weights were set to 1, 0, and 0 for color, 
shape, and orientation respectively. Experiment 2 differed 
from Experiment 1 only in the shape discriminability. 
Therefore, a larger shape weight was required in Experiment 
2, but the other two weights had to be the same. We adjusted 
the shape weight to 0.6 in order to match the empirical 
saccadic selectivity towards the shape dimension in the SF 
condition of Experiment 2. 

With these adjustments, the computer simulation of the 
Area Activation Model attempted to address several 
important questions: Is the model able to quantitatively 
reproduce the empirical saccadic selectivity? Does the 
implemented concept of simultaneous guidance by multiple 
dimensions match the human data, i.e. do the parameters for 
the SF conditions predict selectivity values in the TF 
conditions? Do the simulated gaze trajectories correspond to 
the empirical ones, as indicated by the distribution of 
saccade amplitudes? 

Figure 1 (lower left) shows the activation map calculated 
by the computer simulation for the sample stimulus of 
Experiment 1. It reveals four peaks induced by groups of 
distractors sharing the target color blue, since in this 
condition only color features contribute to the activation 
map. As shown in Figure 1 (lower right), the simulation 
fixates once in the vicinity of each peak while always 
choosing the nearest unvisited peak as the next saccade 
target. 

Figure 2 allows a comparison between simulated and 
empirical results, with each row referring to one of the four 
conditions. The first row shows a remarkable 
correspondence in the SF condition of Experiment 1, for 
both the amplitude and the feature selectivity of saccades.  



 

Figure 1: Sample stimuli and illustration of the Area Activation Model. Blue and red items are displayed in black and gray 
respectively. Upper left: Experiment 1, SF condition, target is a blue, upright �F� (absent). Upper right: Experiment 2, TF 
condition, target is a red, upright �T� (present). Lower left: Activation map ("activation landscape") calculated for the sample 
stimulus of Experiment 1. Lower right: Scan path generated by the model for the same stimulus. The four fixations 
correspond to the four peaks in the activation map. 
 

 
The same is true for the TF condition, as shown in the 

second row. Despite a profound difference in search 
efficiency between these two conditions (3.77 versus 10.41 
fixations per trial), the distribution of saccades and their 
selectivity is well predicted with the same set of parameters 
used in the SF condition. 

With regard to the SF condition of Experiment 2, the 
model's saccadic selectivity once again closely resembles 
the empirical one, whereas the saccade histogram indicates a 
significant mismatch. The empirical data revealed a peak at 
an amplitude of approximately 3 degrees, but the model 
produced a smoother distribution extending further towards 

higher amplitudes. This discrepancy might be related to the 
high search efficiency in this condition (only 2.59 fixations 
per trial).  

Finally, the TF condition, which is substantially less 
efficient (6.31 fixations per trial), showed an excellent 
correspondence between simulated and empirical data. The 
same parameters that failed to replicate the distribution of 
saccade amplitude in the SF condition almost perfectly 
reproduced the empirical amplitude histogram in the TF 
condition. Again, the model precisely predicted the effect of 
simultaneous guidance by two dimensions. 
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Figure 2: Comparison between empirical and simulated data with each row corresponding to one of the four experimental 
conditions. Left column: Empirical number of fixations per trial and simulated visual span size required to match the number 
of fixations. Middle column: Comparative histograms of saccade amplitude. Right column: Comparative diagrams of 
saccadic selectivity towards different distractor types. 



Conclusions 
In all four conditions, empirical saccadic selectivity was 
precisely replicated, supporting the concept of simultaneous 
guidance by multiple dimensions. Moreover, saccade 
amplitude produced by the model was remarkably accurate. 
One exception found was the SF condition in Experiment 2. 
This is perhaps due to the fact that search in this condition 
was highly efficient. It may be the case that highly efficient 
searches induce a qualitatively different saccadic scanning 
behavior. For example, if it is always possible to detect the 
target from the central gaze position, an efficient strategy 
could be to avoid any eye movements to the periphery. 
Another factor could be an increased amount of corrective 
saccades due to faster scanning of the display. Further 
research is necessary to investigate this issue. 

As indicated by the model's accurate saccadic selectivity, 
not only the area-based activation map, but also the 
implementation of saccadic error - as identical to the 
fixation field size σf - have passed their first test. The 
generally successful replication of saccade amplitude 
supports the hypothesis of spatial scan-path optimization 
within the relevant display areas.  

All in all, the current version of the Area Activation 
Model can be considered a promising approach towards an 
explicit, quantitative model of saccadic selectivity in visual 
search.  
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