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Abstract. The studies reported in this chapter exemplify the experimental-simulative 
approach of the interdisciplinary research initiative on “Situated Artificial Communica-
tors”. Two experiments on visual tagging strategies are described. In Experiment 1, par-
ticipants were presented with random distributions of identical dots. The task was to 
look exactly once at each dot, with a starting dot specified. This setting allowed a quanti-
tative analysis of scan-path structures and hence made it possible to compare empirical 
scan paths to computer-generated ones. Five different scan-path models were imple-
mented as computer simulations, and the similarity of their scan paths to the empirical 
ones was measured. Experiment 2 was identical to Experiment 1 with the exception that 
it used items of varying color and form attributes instead of identical dots. Here, the in-
fluence of the distribution of colors and forms on empirical scan paths was investigated. 
The most plausible scan-path models of Experiment 1 were adapted to the stimuli of 
Experiment 2. The results of both experiments indicate that a simple, scan path minimiz-
ing algorithm (“Traveling Salesman Strategy”; TSS) is most effective at reproducing 
human scan paths. We also found an influence of color information on empirical scan 
paths and successfully adapted the TSS-based model to this finding. 
 
 
1. Introduction 
 
One important aspect of situated communication is that it requires the interlocu-
tors to generate comprehensive representations of their physical environment 
(Rickheit & Sichelschmidt, 1999). This is the case not only in task-oriented dia-
logue, where interlocutors, being part of the environment, collaborate in solving 
physical problems (e.g., Rickheit, 2005); this also applies to the production and 
comprehension of referential verbal expressions in general (e.g., Sichelschmidt, 
2005). Locatives, for instance, can hardly be used without recourse to a visuo-
spatial frame of reference (see Vorwerg, Wachsmuth, and Socher, this volume). 
Successful reference to elements in the visual environment has as a prerequisite 
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a detailed exploration of the surrounding scene (Henderson & Ferreira, 2004). 
Visuolinguistic processing and scene exploration, in particular, the extraction of 
relevant information about what is located where in the scene, is mostly effort-
less. We are hardly aware of the fact that such scene perception is a serial proc-
ess which involves adequate eye movements. The high efficiency of this process 
is not only based on the high speed of human eye movements, but also on our 
strategies to direct them (Findlay, 2004). These strategies have been optimized 
during a long period of evolution. They are crucial for our understanding of the 
human visual system, visuolinguistic information processing, and the construc-
tion of technical vision systems (Najemnik & Geisler, 2005). The studies re-
ported here focus on a fundamental question: What factors determine the se-
quence in which we inspect a given set of items?  

There are numerous approaches that have tried to provide at least partial an-
swers to this question. Most experiments in the “classic” paradigm of visual 
search, but also in sophisticated variants such as comparative visual search, use 
simple, abstract stimuli. In classic visual search (e.g., Treisman & Sato, 1990; 
Wolfe, Cave & Franzel, 1989), participants are typically presented with a set of 
abstract items, such as letters or geometrical objects, and have to decide whether 
a designated target item is among them. In contrast, in comparative visual search 
(Pomplun, 1998; Pomplun, Sichelschmidt, Wagner, Clermont, Rickheit & Ritter, 
2001), participants have to detect the only difference between two almost identi-
cal sets of objects. While most studies rely on reaction times and error rates as 
the principal indicators for search performance, several researchers have also 
investigated the visual scan paths taken during visual search or comparison (e.g. 
Koesling, 2003; Pomplun et al., 2001). Williams and Reingold (2001), for ex-
ample, used a triple conjunction search task in which the presented items varied 
in the three dimensions color, form, and orientation. The authors analyzed the 
proportion of fixations on each distractor type. They found that the highest pro-
portion of fixations was directed towards those distractors that were of the same 
color as the target. This finding suggests that it is possible to use color informa-
tion for choosing an efficient scan path: Only the subset of items with the appro-
priate color has to be searched.  

Eye-movement patterns during visual search or comparison and viewing im-
ages have been used as a basis for modeling visual scanning strategies (e.g., 
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Koesling, Carbone & Ritter, 2003; Pomplun, Carbone, Sichelschmidt, Velich-
kovsky & Ritter, 2005). Several investigations were conducted by computer sci-
entists intending to “teach” artificial vision systems to behave like the human 
visual system. Some models of human eye movements in realistic scenes use 
spatial filters in order to determine the most salient points in an image – the ones 
that are most likely to attract fixations (Parkhurst, Law & Niebur, 2002). These 
filters may be sensitive to contour features like sharp angles (Kattner, 1994) or 
to local symmetries (Heidemann, Nattkemper, Menkhaus & Ritter, 1996; Locher 
& Nodine, 1987). Rao and Ballard (1995) proposed a model of parallel search 
employing time-dependent filters. The location of the first fixation in a search 
process is determined by a coarse analysis (low spatial frequencies) of the given 
scene, and the following fixations are based on analyses of increasingly higher 
spatial frequencies. Another approach (Rimey & Brown, 1991) uses a Hidden 
Markov Model that is capable of learning efficient eye-movement behavior. It 
optimizes its scan paths iteratively towards highest efficiency of gathering in-
formation in a given scene. The Area Activation Model proposed by Pomplun, 
Reingold and Shen (2003) computes the informativeness and therefore the acti-
vation value of every point in the display, with more highly activated positions 
being more likely to be fixated than less activated positions. The scan path is 
determined by the method of local minimization of scan path length: The item 
fixated next corresponds to the activation peak closest to the current gaze posi-
tion that has not been visited yet. Itti and Koch (2001) additionally emphasized 
the importance of the surrounding context for the saliency map and of top-down 
attentional processes. Recently, the saliency-based approach to visual attention 
has received some empirical support (Querhani, von Wartburg, Hügli & Müri, 
2004). 

To date, however, even the best attempts at computer vision are far from 
reaching the performance of the human visual system. One important reason for 
this fact might be that we do not completely understand the fundamental cogni-
tive mechanisms which guide our attention so efficiently during the exploration 
of a scene. It seems that the scenes used in the modeling studies mentioned 
above are perceptionally too complex to yield insight into these mechanisms. In 
real-world scenes, a viewer’s attention is guided by high-level factors, for in-
stance, by the functional or conceptual relationships between items or the rele-
vance of items to the viewer (Henderson & Hollingworth, 1999). It is almost 
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impossible to parameterize such high-level factors and to obtain quantitative, 
clearly interpretable results from this kind of experiments.  

Another problem is that neither the search or comparison tasks nor the view-
ing tasks described above are particularly well-suited to investigate scene in-
spection strategies. Gaze trajectories in these tasks yield only relatively coarse 
information about the exact structure of scan paths, i.e. the sequence of items 
that receive attention. This is because visual attention can be shifted without 
employing eye movements. During rapid processes of scanning, minute “covert” 
shifts of attention are likely to occur (for discussions, see Posner, 1980; Sal-
vucci, 2001; Wright & Ward, 1994). Therefore, gaze trajectories in search or 
viewing tasks do not indicate the whole sequence of attended items but – de-
pending on task complexity and item density – only a small subset of it.  

In order to obtain more comprehensive information about visual scan paths, 
we measured people’s eye movements in a simplified scanning scenario which 
we refer to as “visual tagging” (see Klein, 1988; Shore & Klein, 2000). In the 
visual tagging scenario, the participants viewed a random distribution of dots 
that were identical except that one of them – the starting dot – was conspicuous-
ly brighter than the others. The task was to look exactly once at each dot in the 
display, starting with the specified dot. This task is similar to the one used by 
Beckwith and Restle (1966), who asked people to count large sets of objects. By 
analyzing reaction times for different types of object configurations, Beckwith 
and Restle found that the participants grouped the objects into subsets in order to 
count them efficiently and to avoid mistakes. In our experiments, however, we 
eliminated any possible interference of a concurrent counting task with the scan-
ning process. Furthermore, we used eye tracking to measure the exact temporal 
sequence of dots attended to. 

On the one hand, the visual tagging task is rather artificial. In everyday life 
we are not used to strictly avoiding repeated attention to the same object, be-
cause the “cost” of a redundant eye movement is small (see Ballard, Hayhoe & 
Pelz, 1995). Although there is ample empirical evidence for an attentional 
mechanism called inhibition of return (Klein, 2000; Posner & Cohen, 1984; Tip-
per, Weaver, Jerreat & Burak, 1994), this mechanism alone is not sufficient to 
generate self-avoiding and complete scan paths as demanded by our task. There-
fore, people’s scan paths are likely to be influenced by cognitive processes oper-
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ating at a higher level than those being usually involved in natural situations, 
e.g., free exploration of surroundings. In particular, path planning processes are 
expected to take place, because people have to hold in memory which dots they 
have already visited during task completion (Beckwith & Restle, 1966; Melcher 
& Kowler, 2001).  

On the other hand, our task enabled us to investigate scan paths purely based 
on the stimulus geometry, i.e. on the locations of the dots. Neither item features 
nor relations between them (other than geometrical relations) biased the ob-
served strategies. Moreover, the demand of attending exactly once to each item 
brought about an enhanced comparability of scan paths taken on the same stimu-
lus. Restricting the analysis to those paths that met this demand made it easy to 
define a measure of similarity: The degree of similarity of a path A to another 
path B was calculated as the number of “jumps” (edges) between dots that ap-
pear in path A as well as in path B.  

Experiment 1 investigated geometrical regularities of scan paths with the aim 
of identifying possible mechanisms that control human tagging strategies in 
scene inspection. Several models of such mechanisms were developed and im-
plemented as computer simulations. The simulated scan paths were then com-
pared to the empirical ones in order to evaluate the plausibility of the proposed 
mechanisms. Another important question was whether there are preferred di-
rections of scan paths. In other words, does the rotation of the stimuli exert an 
influence on the scan paths?  

Experiment 2 went one step further towards a more naturalistic setting: While 
the participants’ task remained the same as in Experiment 1, the displayed items 
were given different color and form attributes. Beckwith and Restle (1966) 
showed that the distribution of color and form attributes influenced the time 
needed for counting a set of objects, with color having a substantially stronger 
effect than form. With the help of eye movement tracking, Experiment 2 directly 
investigated the influence of color and form on empirical scan paths. Moreover, 
the most successful models of Experiment 1 were refined in such a way as to 
account for this additional influence.  
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2. Experiment 1: Geometrical Factors 
 
2.1. Method 
 
Participants. Twelve students from different faculties of the University of 
Bielefeld took part in Experiment 1 in return for payment. All of them had nor-
mal or corrected-to-normal vision; none of them was color-blind or had pupil 
anomalies. 

Apparatus. Stimuli were presented on a 17'' ViewSonic 7 monitor. The par-
ticipants' eye movements were measured with the OMNITRACK 1 system (see 
Stampe, 1993). The system uses two video cameras as inputs of information 
about the position of the head relative to the environment and the position of the 
pupil relative to the head. This technique allows the participants to move their 
head from the straight-ahead position up to 15° in all directions, and therefore 
provides natural viewing conditions. Gaze positions are recorded at a frequency 
of 60 Hz. Fixations are calculated using a speed threshold in a 5-cycle time win-
dow, which means that only fixations with a duration of at least 83 ms are de-
tected. The absolute spatial precision of the gaze-position measurement ranges 
from 0.7° to 1°. By using a calibration interface based on artificial neural net-
works (Parametrized Self-Organizing Maps), we improved the system's preci-
sion to approximately 0.5° (see Pomplun, Velichkovsky & Ritter, 1994). 

Stimuli. Participants were presented with displays showing 30 dots (diameter 
of 0.5°) randomly distributed within a square area (18° per side) on a black 
background. The dots were of the same color (blue), with a designated starting 
dot being clearly brighter than the others (for a stimulus sample, see Figure 1, 
left). Five different dot configurations were randomly generated. In order to in-
vestigate directional effects on the scan paths, for instance top-to-bottom or left-
to-right strategies corresponding to the viewers’ direction of reading, each con-
figuration was shown in four different orientations (rotated by 0°, 90°, 180°, and 
270°). This resulted in a set of 20 stimuli used in Experiment 1. 

Procedure. A written instruction informed the participants about their task. 
They had to look at each dot in the display once, beginning with the starting dot. 
Participants were told not to miss any dots or to look at any of them more than 
once. Furthermore, participants had to attend to each dot for at least half a sec-
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ond to make sure that they actually performed a saccade rather than a covert 
shift of attention towards the dot. After task completion the participants were to 
press a mouse button. The experiment started with two practice trials followed 
by the eye tracker calibration procedure and the 20 recording trials in random 
order. Each trial was preceded by a short calibration for drift correction, using a 
single target at the center of the screen.  
 
2.2. Results 
 
The recorded gaze trajectories were converted to item-based scan paths. In other 
words, the temporal order of attended dots had to be reconstructed, because our 
analysis was intended to refer to these rather than to fixation points. It turned out 
that this could not be done automatically. The occurrence of additional fixations 
(conceivably used by the participants to get their bearings), imprecise saccades 
as well as errors in measurement required human post-processing. Consequently, 
an assistant – who was naive as to the purpose of the study – did the allocation 
of fixations to dots manually, on the basis of the individual trajectories with se-
quentially numbered fixations superimposed on the stimuli. As a result of this 
semi-interpretative analysis, only 139 of the 240 converted paths (57.9%) were 
found to be consistent with the task, i.e., they visited each dot exactly once. The 
further analyses were restricted to these paths.  
 

 
 
Figure 1. Sample stimulus (left) and corresponding visualized results (right). 
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Figure 1 presents a visualization of accumulated data (right panel) for a sample 
stimulus (left panel). Thicker lines between dots indicate transitions (edges) used 
by a larger number of participants. The lines are bisected due to the two possible 
directions to move along these edges. Each half refers to those transitions that 
started at the dot next to it. Halves representing fewer than three transitions are 
not displayed for the sake of clarity. Figure 1 illustrates that in the absence of 
any conspicuous order (as in the upper left part of the sample stimulus) there is 
high variability of chosen edges across participants, whereas the linearly ar-
ranged dots (such as those on the right and at the bottom of the sample stimulus) 
were almost always scanned in the same order. 

In addition, the quantitative analysis of the data allowed us to investigate the 
effect of rotating the stimuli: Were there directional influences on the scan paths, 
for example according to the viewers' reading direction? This was analyzed by 
comparing similarities (as defined above) between the scan paths of different 
participants. If the scan paths for the same stimuli shown in the same orientation 
were more similar to each other than the ones for different orientations of the 
same stimuli, this would indicate that the rotation exerted an effect. In fact, the 
average similarity value for the same orientation was 19.43 edges per path, while 
the value between different orientations was 19.42, constituting no significant 
difference, t < 1. Consequently, it was justified not to assume any directional 
influence. So we averaged the data for each of the five original stimuli over its 
four different orientations for all subsequent analyses. 
 
2.3. Modeling Tagging Strategies 
 
We developed and evaluated five different models of tagging behavior. Since the 
empirical data showed no significant dependence on the orientation of the stim-
uli, none of the models developed below include this factor. In order to obtain 
baseline data for the evaluation of the models, we calculated a composite path 
with maximal similarity to the observed paths (“optimum fit”) for each stimulus. 
An iterative algorithm determined this path within the huge set of all possible 
acceptable paths, regardless of whether the path actually appeared in any one 
participant’s data. The average similarity of optimum fit paths to empirical paths 
turned out to be 21.89, which exceeded the similarity of empirical ones to each 
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other (19.43, cf. above). The calculation of optimum fit paths also shows that no 
simulation can produce paths of higher similarity to the empirical data than 
21.89, which is considerably lower than the perfect similarity (identity) value 29 
(all acceptable paths consist of 29 edges). This discrepancy demonstrates the 
high intrinsic variability of scan paths. 

Serving as a second baseline, the similarity of completely randomly gener-
ated scan paths to the empirical paths was computed, yielding a value of as low 
as 1.75. A sample optimum fit path as well as sample paths computed by the 
models are given in Figure 2, referring to the sample stimulus in Figure 1. The 
five models that were evaluated are described below. 
 

 
 
Figure 2. Scan paths generated by the different models, plus the optimum fit path, for 

the sample stimulus shown in Figure 1. 
 
The “Greedy” Heuristic. One model that suggests itself for analysis is based on 
what can be termed the “Greedy” heuristic. Among all dots that still need to be 
visited, the Greedy algorithm always jumps to the one that is geometrically 
nearest to the current “gaze” position. Although it produces plausible, locally 



10 Marc Pomplun, Elena Carbone, Hendrik Koesling, Lorenz Sichelschmidt, 
 Helge Ritter 
 
 
optimized sections of scan paths, the Greedy strategy has one drawback: On its 
way through the stimulus, it leaves aside items of high eccentricity. As a conse-
quence, these items have to be “collected” later, which leads to unnaturally long 
saccades at the end of the scan path. The lack of memory constitutes a funda-
mental difference from empirically observed strategies. Nevertheless, even this 
simple model achieves a similarity value of 17.36, indicating that its strategy of 
always choosing the nearest item, that is, the local minimization of scan paths, is 
already tremendously better than a purely random strategy. 

The “Traveling Salesman” Algorithm. The shortcoming of the Greedy 
heuristic motivates the implementation of a “Traveling Salesman Strategy” 
(TSS) algorithm. The Traveling Salesman Problem is a basic paradigm in com-
puter science: A salesman who has to successively visit a certain number of 
places wants to save time and energy, so his problem is to find the shortest path 
connecting all the places. In the present context, this means that the TSS Model 
algorithmically minimizes the overall length of its scan paths rather than just the 
length of the next jump. However, unlike standard TSS, the paths of this algo-
rithm do not return to the starting dot. In the current formulation, only the choice 
of the first dot is constrained. The results show that this simulation gets much 
closer to the actual human strategies than the Greedy heuristic: The similarity 
value is 20.87, which is fairly close to the optimum fit value of 21.89. This find-
ing suggests that not only the local optimization of scan paths – as operational-
ized in the Greedy algorithm – plays an important role in human scan path selec-
tion, but also their global optimization. 

The Clustering Model. The fact that the TSS Model has yielded the best re-
sult so far motivates the investigation of a refined variant of it. Consequently, we 
built a “Clustering Model” that is based on the assumption that human scan 
paths are generated by clusterwise processing of items (cf. Beckwith & Restle, 
1966). The model divides the process of scan-path computation into two steps. 
In the first step, the configuration of items is divided into clusters. A clustering 
algorithm maximizes the between-cluster distances and minimizes the within-
cluster distances with the help of a cost function. We set the parameters of this 
iterative procedure in such a way that it generates clusters that may have either 
compact or linear shape. Five to seven clusters with four to seven items each are 
calculated, which is perceptually plausible (see Atkinson, Campbell & Francis, 
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1976; Miller, 1956). The second step consists in a TSS algorithm calculating 
local scan paths of minimal length connecting the dots within each cluster, as 
well as a global scan path of minimal length connecting all clusters. Afterwards, 
the within-cluster scan paths are linked together in the sequence specified by the 
between-cluster scan path. Thus, this model processes all dots within a cluster 
before proceeding to the next one, thereby operating like a hierarchical TSS al-
gorithm. A similarity analysis showed that the Clustering Model selects paths 
slightly more similar to the empirically observed ones (21.12) than does the TSS 
Model. This may suggest that clustering is a component of human scanning 
strategies. 

The Self-Organizing Map Approach. When simulating cognitive processes 
we should also consider neural network approaches, as their functional structure 
is biologically motivated. An appropriate neural paradigm is provided by Koho-
nen's self-organizing maps (SOMs), which are capable of projecting a high-
dimensional data space onto a lower-dimensional one (see Kohonen, 1990; 
Ritter, Martinetz & Schulten, 1992). SOMs are networks of simulated neurons, 
usually a one-dimensional chain or a two-dimensional layer. They learn in an 
unsupervised way to partition a given feature or input space into disjoint classes 
or areas and to represent their class by a typical feature vector. The feature space 
is a region of a classical vector space, where each vector (v1, v2, …, vn)T shows n 
different features or input signals. These vectors are presented to the network in 
random order, and a neuron fires if its stored feature, that is, its position vector, 
is the best approximation to the active input position to the network. Thus we 
create a map – the neural network – in which each mapped point – each neuron – 
represents a region of input patterns. If we also ensure that the topology of the 
input space is preserved, i.e., that neighboring feature vectors are mapped to 
neighboring neurons, or neighboring neurons stand for similar features, we get a 
low-dimensional structure representing a possibly high-dimensional input. This 
is done by iterating the following steps: 

Choose a random input vector v from feature space. 
Select a neuron j with | v - wj | ≤ | v - wi |, ∀ i ≠ j, i.e., the neuron with the 
best representation wj of v; this is called the winner. 
Change all neuron weights wi towards the input vector v, with an adaptive 
step size hij that is a decay function of the network distance between neuron i 
and the winner j. Here, ε is an additional global adaptive step size parameter: 
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wi
new = wi

old + ε ⋅ hij ⋅ (v - wj), ε ∈ [0, 1]. 
 
The change of neuron weights adjusts wi

old towards a better representation vector 
and the smooth distribution of change around the winner produces the desired 
topology preservation. In our case, we are only interested in a mapping from 
discrete 2D points onto a linear chain representing fixation order. Hence, the 
feature space is only the discrete set of dot positions in R2, one of them labeled 
as starting dot. Since the chain must begin at the starting dot, the first neuron is 
defined to be the winner if the starting dot is presented, irrespective of the actual 
feature-vector difference. In order to make sure that all dots are represented by 
neurons after the learning process, the network contains a number of additional 
nodes. Now, the probability to skip a dot is very low, but more than one neuron 
may become mapped to the same position. This must be resolved by a post-
processing step to extract the simulated scan path from the chain of neurons. The 
paths generated by this model look quite natural at first sight. Their similarity to 
the human ones, however, is substantially lower (19.45) than the results obtained 
by the TSS-based models. 

The Receptive Field Simulation. Another biologically motivated approach 
in our set of models uses neurons with a particular type of receptive fields. In a 
neural network, natural or artificial, the term receptive field stands for the region 
of input space that affects a particular neuron (see, e.g., Hubel & Wiesel, 1962; 
Lennie, Trevarthen, van Essen & Wässle, 1990). Furthermore, the influence of 
stimuli in this region is not necessarily homogeneous, but dependent on vari-
ables such as the distance of the input vector from the center of the region. There 
may also be excitatory and inhibitory subregions, where a stimulus will respec-
tively increase or decrease the activation of the neuron. 

In our model, the receptive fields consist of an inhibitory axis and two later-
ally located, excitatory areas of circular shape (see Figure 3). We use 100,000 
receptive fields that are randomly distributed across the input space. Their sizes 
vary randomly between 80% and 120% of the size of the relevant input space, 
i.e. the whole area in which dots are presented. There are eight possible orienta-
tions which are randomly assigned to the receptive fields. It is obvious from this 
description that the receptive fields are closely packed and overlap each other.  
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Figure 3. Illustration of the simulated receptive fields. The planar input space is repre-

sented by the dimensions x and y. Positive values of input weight signify ex-
citatory connections, negative values signify inhibitory connections. 

 
The activation of a neuron is highest if no dot is in the inhibitory region of the 
neuron’s receptive field and as many dots as possible are in the lateral excitatory 
regions. The neuron with the highest activation (the winner neuron) thus indi-
cates the most pronounced linear gap between two laterally located accumula-
tions of dots. Therefore, the inhibitory axis of this neuron’s receptive field can 
be considered to indicate the perceptually most plausible bisection of the stimu-
lus. 

This first bisection separates the set of dots into two subsets. Each subset 
serves as the input to a new group of neurons with smaller receptive fields, cal-
culating further bisections. This procedure is repeated until none of the sections 
contains more than four dots, since the number four is a plausible minimum es-
timate of the number of dots that can be perceived at the same time (see Atkin-
son, Campbell & Francis, 1976; Miller, 1956). In Figure 4 (left), the model's 
hierarchical partitioning of the sample stimulus previously shown in Figures 1 
and 2 is presented. The bisections are visualized by straight lines with numbers 
indicating their level in the hierarchy. The calculation of this structure – a binary 
tree – is our attempt to simulate a viewer’s perceptual processing of the visual 
scene.  
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Figure 4. The model’s hierarchical bisections (left) and the resulting scan path (right) 

for the sample stimulus shown in Figure 1. 
 

Finally, the scan path is derived by a TSS algorithm calculating the shortest scan 
path that begins at the starting dot. In the present context, however, it is not the 
geometrical distance that is minimized, but a linear combination of the geomet-
rical distance and the tree distance between the dots. The tree distance between 
two dots A and B is the minimum number of edges in a path connecting the sub-
sets A and B in the tree structure. If we choose the coefficients of the linear 
combination in such a way that the tree distance is more relevant than the geo-
metrical distance, the model generates the scan path shown in Figure 4 (right 
panel). It strictly follows the hierarchical tree structure, which leads to geometri-
cal deviations.  

As long as the model's linear coefficients are chosen such that the tree dis-
tance exerts a significant effect, neither the appearance of the simulated scan 
paths nor their calculated similarity to the empirical paths is convincing. When 
balancing the weights of the tree distances and the geometrical distances, we 
obtained scan paths with a similarity to the human paths of 18.73. The receptive 
field approach, at least in this rather simple form, does not seem to yield more 
plausible scan paths than does the TSS Model. This suggests that hierarchical 
partitioning does not seem to be an important perceptual mechanism underlying 
human visual tagging behavior. 
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Figure 5. Similarity between the paths generated by the different models and the empiri-
cal scan paths, shown in ascending order, plus the optimum fit value 
 
Model Comparison. Figure 5 displays a summary of the accuracies with which 
the various models simulate human scanning patterns, and it compares them to 
the optimum fit value. A one-way analysis of variance (ANOVA) was conducted 
on these data, excluding the optimum fit value, which was a global value that did 
not vary across individuals. The ANOVA revealed a significant main effect 
showing differences between the similarity values, F(4;44) = 32.34, p < 0.001. 
Pairwise t-tests with Bonferroni-adjusted probability values were conducted to 
examine these differences more closely. All of the models reached significantly 
higher similarity than the Greedy heuristic, all t(11) > 3.62, p < 0.005. The Re-
ceptive Fields Model did not significantly differ in results from the SOM Model. 
These two models, in turn, were outperformed by both the TSS Model and the 
Clustering Model, all t(11) > 4.84, p < 0.01. Finally, the TSS Model did not sig-
nificantly differ from the Clustering Model, t(11) < 1. 
 
 



16 Marc Pomplun, Elena Carbone, Hendrik Koesling, Lorenz Sichelschmidt, 
 Helge Ritter 
 
 
2.4. Discussion 
 
Basically, the results of Experiment 1 show that the simple TSS Model and 
Clustering Model yield better scan paths than the neural models, and that even 
the simple Greedy algorithm is not far behind. This finding should not be inter-
preted as evidence for a general incapability of neural models to explain scan-
path mechanisms. The neural models tested in Experiment 1 were of a very 
primitive nature. Multi-layered networks might be able to generate scan paths 
more similar to the empirically observed ones. Moreover, discretion is advisable 
in the interpretation of these data, since they are based on only five different dot 
configurations. Nevertheless, from the results above we can conclude that it is 
difficult to generate better simulations of human scan paths than those created by 
the simple TSS-based models. Thus the minimization of scan-path length seems 
to be a basic principle in human scanning strategies. 

Another important result of Experiment 1 is the independence of scan paths 
from rotations of the stimuli. In other words, the order in which a viewer scans a 
set of dots does not seem to change when the display is rotated by 90, 180, or 
270 degrees. It is well-known from visual search experiments (e.g. Zelinsky, 
1996; Pomplun, 1998) that viewers prefer to scan a display according to their 
reading direction, if they are allowed to freely choose the starting point. How-
ever, this was not observed in the present study. A possible reason is that the 
specified starting point induced rotation-invariant scanning strategies.  
 
 
3. Experiment 2: Color and Form Attributes 
 
The objective of Experiment 2 was to investigate the influence of color and form 
attributes on scan paths. Participants were presented with distributions of geo-
metrical objects (squares, triangles, and circles) in different colors (yellow, blue, 
and green). We might expect color and form to influence the structure of chosen 
scan paths, because viewers are likely to take advantage of the additional struc-
tural information. As their main concern is to remember which of the items they 
have already visited, the introduction of color and form features might allow 
them to use perceptual groups of identical attributes as scan-path units which 
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need less effort to remember than do single items. This assumption is supported 
by the results of Beckwith & Restle’s (1966) counting task. They found shorter 
reaction times when object colors were clustered, i.e. different colors were spa-
tially segregated. They also found an analogous – but weaker – effect for cluster-
ing the objects by form. To examine potential corresponding effects on scan-
path structure, the stimuli in Experiment 2 had three different levels of color and 
form clustering.  

If humans make use of the color or form information, these effects should be 
integrated into the models. It is plausible to assume that the attributes lead to a 
reduction in scan-path variability, which could enable the models to yield better 
results than in Experiment 1. Here we took advantage of the findings of Experi-
ment 1: Since the paths generated by the TSS and Clustering Models were most 
similar to the empirical data, we focused on the adaptation of these two ap-
proaches to the stimuli used in Experiment 2. In order to make the two experi-
ments easier to compare, the design and procedure of Experiment 2 corre-
sponded to Experiment 1. Based on the results of Experiment 1, however, we 
did not further investigate the effect of stimulus rotation. In addition, the intro-
duction of color and form attributes required to change the way of indicating the 
starting item. In Experiment 2, we used a dynamic cue, namely a flashing red 
circle around the starting item, appearing for a short period after stimulus onset. 
This method of marking the starting item did not alter its color or form attrib-
utes. The participants' task was the same as in Experiment 1, namely to look 
once, and only once, at each item. 
 
3.1. Method 
 
Participants. Twenty new participants from different faculties of the University 
of Bielefeld took part in Experiment 2 in return for payment. They had normal 
or corrected-to-normal vision; none was color-blind or had pupil anomalies.  

Apparatus. The apparatus was the same as in Experiment 1. 
Stimuli. The stimuli consisted of 30 simple geometrical items (diameter of 

about 0.7°) of three different colors (fully saturated blue, green, and yellow) and 
three different forms (triangle, square, and circle) on a black background. Their 
spatial distribution was randomly generated within a display of 18° by 18° with 
a minimum distance of 1.5° between the centers of neighboring items in order to 
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avoid item overlap or contiguity (see Figure 6). In each stimulus array, there 
were a balanced number of items with each color and form. The distribution of 
colors and forms was not always homogeneously random, as they were clustered 
to varying degrees in most trials. To explain the clustering algorithm, a formal-
ized description of the stimulus patterns is necessary: A pattern is a set of N 
items (objects) 
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Now the variable color clustering αc is introduced. It is defined as the ratio 
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For example, a value αc = 2 would mean that, on average, items of different col-
ors are twice as distant from each other than items of the same color. In our set-
ting of 30 items and three different colors this would correspond to a strongly 
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segregated distribution containing large single-colored areas. αc = 1 would mean 
that there is no clustering at all. We define the parameter form clustering αf 
analogously. 

Figure 6 illustrates the correspondence between αc, αf, and the distribution of 
colors and forms in four different sample stimuli. While the panels (a) to (c) dis-
play stimuli with increasing color clustering and no form clustering, panel (d) 
shows a stimulus with high color and high form clustering. These examples 
demonstrate an important feature of αc and αf for the present experiment: Color 
and form clustering can be varied independently from each other. Even in an 
array with both high color and form clustering, the separate concentrations of 
colors and forms usually do not correspond. 
 

 
 
Figure 6. Examples of item distributions with different levels of color/form clustering: 

(a) no color and form clustering (1.0/1.0), (b) weak color and no form cluster-
ing (1.3/1.0), (c) strong color and no form clustering (1.7/1.0), and (d) strong 
color and form clustering (1.7/1.7). Circles indicate the starting items. 
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An iterative algorithm for generating color and form distributions with given 
parameters of color clustering αc and form clustering αc can easily be imple-
mented. Starting with a random distribution, this algorithm randomly selects 
pairs of items and exchanges their color or form attributes, if this exchange shifts 
the distribution’s clustering levels towards the given parameters. The algorithm 
terminates as soon as the difference between the actual and the desired αc and αf 
falls below a certain threshold, which was set to 0.05 in the present study. 

Three different levels of color and form clustering were used, namely “no 
clustering” (1.0), “weak clustering” (1.3), and “strong clustering” (1.7). Exam-
ples of stimuli at these levels can be seen in Figure 6. The nine possible combi-
nations of different levels of color and form clustering constituted the stimulus 
categories of Experiment 2. Five stimuli of each category were used, leading to a 
total of 45 different stimuli. For two seconds after stimulus onset, a flashing red 
circle was shown around one of the items, signifying the starting item which was 
always the same across individuals for each given stimulus.  

Procedure. The procedure was the same as in Experiment 1, except that 45 
trials were conducted in random order. 
 
3.2. Results 
 
As in Experiment 1, an assistant converted the recorded fixations into scan paths 
connecting the items in the display. The assistant was only shown the locations 
of the items, but not their color or form attributes. Just like in Experiment 1, the 
superimposed visualization of the participant’s fixations and their temporal order 
allowed the assistant to mark the individual scan path item by item. The propor-
tion of acceptable paths was 93.3%, which was substantially higher than in Ex-
periment 1 (57.9%). Apparently, the additional color and form information 
helped the participants not to “get lost” during task completion. The individual 
features of the items seemed to facilitate reliable memorization and recognition. 
The incorrect paths were approximately equally distributed among the nine cate-
gories of stimuli, and so were excluded from the analysis. 

For a qualitative analysis, we can inspect the calculated scan paths of maxi-
mal similarity to the empirical ones (optimum fit). The upper row of Figure 7 
presents these paths for an unclustered, a strongly color-clustered, and a strongly 
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form-clustered stimulus. There is no obvious evidence for the influence of color 
or form attributes on the viewers’ strategy. Although there are some longer sec-
tions of scan paths exclusively visiting items of the same color or form, these 
items are always located closely together. This qualitative finding suggests that 
the location of items remains the most important factor to determine the struc-
ture of scan paths.  
 

 
 
Figure 7. Scan paths generated by participants (optimum fit paths), the TSS Model, and 

the Color TSS Model. Circles indicate the starting items. 
 
The quantitative investigation of the effects of color and form required a meas-
ure of color and form clustering within the empirically observed scan paths. An 
appropriate choice seemed to be the mean runlength with regard to these dimen-
sions. In the present context, a run is defined as a sequence of items of the same 
color or form within a scan path. The runlengths ranged from one to ten, as there 
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were always exactly ten items of each color and form in each stimulus array. In 
order to calculate a mean runlength across multiple paths, we employed a 
weighted mean to equally account for every single transition between items. 
Since longer runs comprise more transitions, we weighted each run with its 
runlength. 

However, it is important to verify whether this measure indeed reflects the in-
fluence of item attributes rather than the geometrical structure of the stimulus. 
Even a participant who completely ignores color and form would generate 
longer runs with increasing strength of clustering in the stimulus. This is due to 
the fact that, according to the results of Experiment 1, viewers seem to prefer 
short scan paths, so neighboring items are disproportionately likely to be 
scanned successively. Clustering moves items with the same features closer to-
gether and thus increases the average color and form runlengths in empirical 
scan paths.  

Fortunately, there is a “color and form blind” model, which yields paths of 
high similarity to the empirical ones, namely the TSS Model. We applied the 
TSS Model to each stimulus used in Experiment 2 to generate baseline predic-
tions about the color and form runlengths in that stimulus. In a comparative 
analysis of observed scan paths, we then divided all color and form runlengths 
by the TSS-predicted runlengths, thereby obtaining relative runlengths. Rather 
than absolute runlengths, relative runlengths reveal the influence of item attrib-
utes on an individual’s scan path. Relative color runlength 1, for instance, would 
indicate no difference to the TSS Model and thus no influence of color attributes 
on empirical scan paths. Longer relative runlengths would indicate increasing 
influence. 

Figure 8 shows the participants’ relative color and form runlengths at the 
three levels of color and form clustering respectively. A two-way ANOVA re-
vealed significant main effects of the two factors dimension (color vs. form), 
F(1; 19) = 9.97, p < 0.01, and strength of clustering (no vs. weak vs. strong clus-
tering), F(2; 38) = 4.77, p < 0.05. There was also a significant interaction be-
tween the two factors, F(2; 38) = 5.81, p < 0.01, which was due to the fact that 
clustering had a significant effect on relative color runlength, F(2; 38) = 5.56, 
p < 0.01, but not on relative form runlength, F(2; 38) = 2.36, p > 0.1. For the 
color dimension, pairwise t-tests with Bonferroni-adjusted probabilities revealed 
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a significant difference between no clustering (1.092) and strong clustering 
(1.213), t(19) = 3.94, p < 0.005. The differences to the weak clustering condition 
(1.131), however, were not significant, both t(19) < 1.67, p > 0.3. Finally, the 
overall relative color runlength (1.145) differed reliably from the value 1, 
t(19) = 3.41, p < 0.005, whereas overall relative form runlength (0.999) did not, 
t < 1. 
 

 
 
Figure 8. Mean relative color and form runlengths as functions of the strength of color 

and form clustering respectively. 
 
Taken together, these findings suggest that viewers use color information to 
guide their scan paths, because the color runlength in their scan paths is longer 
than predicted by the TSS Model. This effect of color guidance increases with 
the strength of color clustering in the stimuli. The participants' form runlengths, 
however, do not exceed the predicted ones and do not depend on form clustering 
in the stimuli. Hence, we assume that viewers do not use form information when 
performing the task. 
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3.3. Refinement of Scan Path Models 
 
The results of Experiment 1 motivated the adaptation of both the TSS Model and 
the Clustering Model to stimuli containing items with color and form attributes. 
Since the Clustering Model can be viewed as a refinement of the TSS Model, we 
started with adjusting the TSS Model. The first question was how we could bias 
the TSS algorithm to react to color in the same way as the average viewer does. 
Basically, the model should still calculate scan paths of minimal length, but in 
doing so, it should weight the purely geometrical distances by the color (in)con-
gruence (color distance) between the neighboring items. Such a weighting is 
achieved by multiplying the distance between two items of different colors by a 
constant factor – the color weight – and leaving the distance between items of 
the same color identical to their geometrical distance.  

Obviously, the algorithm’s behavior will then strongly depend on the color 
weight. A color weight of 1 would lead to a standard TSS algorithm, which 
would not be influenced by color information at all. In contrast, a color weight 
of, say, 1000 would make the algorithm use a minimum of transitions between 
different colors. Regardless of the arrangement of items, the algorithm would 
first visit all items of the starting item’s color A, then inspect all items of color 
B, and finally those of color C. Within the color groups it would behave like a 
conventional traveling salesman algorithm, taking the shortest passages possible. 
By adjusting the color weight it is possible to control the influence of colors and 
hence the average color runlength produced by the TSS algorithm. Since the 
goal is to adapt the TSS Model to the empirical data, i.e. to produce the same 
runlengths as generated by the participants, the color weight needs to be adjusted 
for the best match. 

What is the response of the TSS algorithm to increasing the color weight? As 
might be expected, it reveals a tendency towards the avoidance of transitions 
between items of different colors, because these transitions increase the overall 
length of the scan path above proportion. Figure 9 shows color runlength as a 
function of the color weight ranging from 1.0 to 1.5. The mean runlengths are 
displayed separately for each of the three levels of color clustering in the stimuli. 
Additionally, the empirically obtained runlengths for these levels are shown as 
horizontal lines. 
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Figure 9. Color runlength generated by the TSS Model as a function of the strength of 

color clustering and the introduced color weight. Horizontal lines indicate em-
pirical runlengths. 

 
We find the TSS runlengths to increase approximately linearly with increasing 
color weight. Higher levels of clustering lead to steeper runlength slopes. Inter-
estingly, there is no single value of the color weight to yield the best-matching 
runlengths for all levels of clustering. For each level, the intersection between 
the runlength curve of the TSS Model and the participants’ runlength occurs at a 
different color weight. These are the values 1.11 for the no clustering condition, 
1.23 for weak clustering, and 1.33 for strong clustering. Loosely speaking, the 
viewers seem to apply higher color weights with increasing color clustering in 
the display. 
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In light of these data, we must consider if the introduction of color weights, 
as described above, is an adequate method of modeling the observed color ef-
fects. Since the model needs different color weights depending on the strength of 
color clustering, we have to pose the question whether this approach is really 
plausible. An alternative idea would be to assign color weights for sequences of 
transitions rather than for single transitions. Starting with the value 1.0, the color 
weight for a whole group of successive transitions within the same color would 
decrease linearly with the number of items in that group. This arrangement 
would make the choice of longer color runs increasingly attractive to the TSS 
algorithm. However, testing this approach yielded a result that was in some re-
spects inverse to the previous one: For increasing levels of color clustering, the 
alternative method needed decreasing weights for long color runs in order to 
produce scan paths of good similarity to the empirical ones. 

To solve this problem, we could try to combine the two approaches or to use 
more complex functions to determine the relevant distances between items. A 
basic rule of modeling is, however, to use as few freely adjustable parameters as 
possible. The more of these parameters are integrated into a model, the easier it 
is for the model to fit any data, which weakens the reliability of conclusions 
drawn from the model’s performance. Therefore, we kept our desired model, 
which we named the Color TSS Model, as simple as possible by extending our 
initial approach. Figure 9 suggests a linear dependence of the required color 
weight on the strength of color clustering. Recall that the three levels of color 
clustering correspond respectively to the values 1.0, 1.3, and 1.7 on the cluster 
measure αc, with a maximum deviation of 0.05. We determined the parameters 
of the linear function to yield runlengths most similar to the empirical ones: 
 

color weight = 0.264 αc + 0.799 
 
Three sample paths generated by the resulting Color TSS Model are shown in 
the lower row of Figure 7. In fact, some subtle differences to the TSS paths 
(middle row) can be found indicating that the new model better corresponds to 
the empirically observed strategies (upper row). A similarity analysis showed 
that the scan paths generated by the Color TSS Model were indeed more similar 
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to the observed patterns (similarity value 19.51) than those produced by the un-
adjusted TSS Model (19.18). 

Finally, we adapted the Clustering Model of Experiment 1 to the stimuli of 
Experiment 2. This was achieved analogously to the adaptation of the TSS 
Model. We implemented the stimulus-dependent color weight for both the first 
step (calculation of clusters) and the second step (cluster-based TSS) performed 
by the Clustering Model. The same functional relationship between color weight 
and color clustering in the stimulus which was calculated for the Color TSS 
Model led to optimal runlength values for the Clustering Model as well. The 
improvement of the Clustering Model achieved by its adjustment to color attrib-
utes turned out to be considerably smaller than for the TSS Model. We measured 
the similarity to the empirical scan paths in Experiment 2 for both the unadjusted 
Clustering Model and the new Color Clustering Model. While the Color Cluster-
ing Model produced results slightly more similar to the empirical paths (19.03) 
than those generated by the original Clustering Model (18.95), it could neither 
compete with the TSS Model nor with the Color TSS Model. 

Figure 10 shows a survey of similarities between the models’ paths and the 
empirical ones, in ascending order. Additionally, the values for the Greedy 
Model (17.25) and the optimum fit (20.65) are presented. A one-way analysis of 
variance showed a significant main effect, i.e. differences between the five mod-
els, F(4; 76) = 65.74, p < 0.001. Pairwise t-tests with Bonferroni-adjusted prob-
abilities revealed that, as in Experiment 1, the Greedy heuristic yielded a signifi-
cantly lower value than all other models, all t(19) > 9.43, p < 0.001. While there 
were no reliable differences between the Clustering Model, the Color Clustering 
Model, and the TSS Model, the Color TSS Model produced a significantly 
higher value than all its competitors, all t(19) > 3.50, p < 0.024.  
 
 
4. General Discussion 
 
Experiment 1 provided us with some fundamental insights into visual scanning 
strategies. First, the results suggest that the present scanning task does not in-
duce any preferred direction for scanning, e.g. top to bottom or left to right. The 
reason might be that using a random distribution of items and a specified starting 
point makes this kind of schematic strategy rather inefficient. Second, the five 
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scan-path models differ substantially in their abilities to reproduce empirical 
scan paths. The TSS Model and the closely related Clustering Model yield 
clearly better results than their competitors, showing that the minimization of 
overall scan-path length might be an important determinant of human gaze tra-
jectories. This does not imply that artificial neural networks are unable to gener-
ate human-like scan paths. Further research is necessary to determine adequate 
structures of neural networks for modeling human scanning behavior. 
 

 
 
Figure 10. Similarity between the empirical scan paths of Experiment 2 and those 

yielded by the different models, plus the optimum fit path 
 
Experiment 2 confirmed the results of Experiment 1. Moreover, it yielded in-
formation about the influence of color and form attributes on empirical scan 
paths. While viewers seem to ignore the forms of the items, they use the colors 
of the items in the scanning process, as demonstrated by disproportionately long 
color runs in their scan paths. The influence of color grows with increasing 
strength of color clustering in the stimulus. This color guidance is possibly em-
ployed to reduce memory load for generating self-avoiding scan paths. It re-
quires less effort to keep in memory the clusters already visited and the items 
visited within the current cluster than to keep in memory the visited area of the 
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display on the basis of single items, especially if suitably large clusters are avail-
able. The perceptual grouping by form, however, does not seem to be strong 
enough to significantly influence the viewers' scanning strategies. 

These results are in line with those obtained by Beckwith & Restle (1966), 
who found that clustering items by color or form reduced the time needed to 
count them, with color having a substantially stronger effect than form. Our 
findings are also compatible with eye-movement studies investigating saccadic 
selectivity in visual search tasks (e.g. Shen, Reingold, Pomplun & Williams, 
2003; Williams & Reingold, 2001). Distractor items that are identical to the tar-
get in any dimension attract more fixations than others. Again, this effect is dis-
proportionately large for the color dimension. 

Conclusions concerning differences across dimensions, however, may not 
generalize beyond the set of items used in the experiment. In Experiment 2, 
other item sets, e.g. bars in different orientations, might have led to form-biased 
scan paths. Reducing the discriminability between colors would at some point 
have eliminated the influence of color on the scan paths. From the present data 
we can only confidently conclude that fully saturated colors affect scanning 
strategies, whereas regular geometrical forms do not. 

Disproving our assumption, the effect of color on scan paths did not reduce 
their variability. The optimum fit value was actually lower in Experiment 2 
(20.65) than in Experiment 1 (21.89), indicating higher differences between in-
dividual paths in Experiment 2 than in Experiment 1. This is probably due to the 
fact that, in Experiment 2, the effect of color varies considerably between indi-
viduals, which increases the range of applied strategies. The large standard error 
for relative color runlengths (see Figure 8) illustrates these individual differ-
ences. 

Based on the empirically obtained color effect, the TSS and Clustering Mod-
els have been adapted to colored items. When using a weight for transitions be-
tween items of different colors to achieve this adaptation, this weight has to in-
crease linearly with the strength of color clustering in the stimuli. Loosely 
speaking, the effect of color attributes on empirical scan paths seems to vary 
linearly with the amount of color clustering in the stimulus. We found the adap-
tation of the TSS Model – the Color TSS Model – to be a small but clear im-
provement over the standard TSS Model. The Color TSS Model is also superior 
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to the Clustering Model and its refined variant, the Color Clustering Model, and 
hence can be considered the “winner” of our competition. 

Neither Experiment 1 nor Experiment 2 showed a significant difference in 
performance between the “color-blind” TSS and Clustering Models. Only the 
adaptation to colored items was achieved more effectively for the TSS Model. 
This does not mean that human viewers do not apply clustering strategies. In 
fact, the winning Color TSS Model performs clustering itself, since it fits its 
scan paths to the color clusters given in the stimulus. While this method of clus-
tering could to some extent be adapted to human strategies, this could not be 
done with the more complex and less flexible algorithm used by the Clustering 
Model. 

Altogether, the difficulties encountered in surpassing the plain TSS Model 
indicate that the geometrical optimization of scan paths, i.e., the minimization of 
their length, is the main common principle of human scanning strategies under 
the given task, even when additional color and form information is provided. 
Further research is needed to verify the applicability of the findings to real-world 
situations. For this purpose, stimuli could be photographs of real-world scenes – 
such as the breakfast scenes used by Rao and Ballard (1995) – and the task could 
be to memorize the scene, to detect a certain item, or to give a comprehensive 
verbal description (Clark & Krych, 2004; de Ruijter, Rossignol, Voorpijl, Cun-
ningham & Levelt, 2003). Will scan-path minimization still be the dominant fac-
tor to determine the scan-path structure? Will the scanning strategies be influ-
enced by the distribution of color and form attributes, by figural or functional 
interpretation, or by pragmatic considerations?  

Answering these questions will be an important step towards understanding 
the principles our visual system employs when creating gaze trajectories. More 
generally, it will contribute to our understanding of human cognition in situated 
communication, where higher-level factors, visuolinguistic processes, and com-
municative goals, strategies, and routines are to be taken into account (Garrod, 
Pickering & McElree, 2005; Rickheit, 2005). In this context, the present work 
can be viewed both as an intermediate step of import in the ongoing investiga-
tion of human cognition, and as a starting point for a promising line of research. 
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