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Foreword

What do eye movements tell us about the cognitive processes that underlie

visual perception? The present dissertation �Analysis and Models of Eye Move-

ments in Comparative Visual Search� by Marc Pomplun approaches this fascinat-

ing question for the situation of comparative visual search in two almost identical

images. Employing a modern eyetracker system in conjunction with computer-

generated images presented on a monitor, the author shows how many properties

of human gaze trajectories can be illuminated and how these insights can then

be used to derive quantitative computer models capturing concisely many of the

observed behaviors. As a �nal result, the author manages to integrate the data

from a remarkable number of di�erent experimental settings in a comprehensive,

three-layer model of visual search that reproduces a wide range of the experimen-

tal �ndings.

On the way towards this impressive result the author explains with great

diligence how the analysis of �xation durations, saccade distributions as well as

further statistical parameters of measured gaze trajectories can lead to intriguing

and multifaceted insights into the rôle of color-, shape-, depth- and structural

information for visual search processes, and he discusses the implications for visual

short term memory and for the concept of separate processing of information

about object location and identity.

This successful synthesis of experimental approaches and mathematical and

computer-based modeling, demonstrated in the fascinating �eld of visual cogni-

tion, makes the present work a highly recommendable and rewarding reading for

both the non-specialist as well as for the expert in the �eld.

in June 1998

Helge Ritter, Bielefeld, Boris Velichkowsky, Dresden
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Preface

My �rst encounter with comparative visual search took place rather early in my

scienti�c career: As a four-year-old, I was lea�ng through a TV journal. Suddenly

I stopped because I had noticed a strange kind of �gure. It presented two perfectly

identical pictures side by side. What on earth had been the reason for this peculiar

arrangement?

Fortunately, my assistant (who happened to be my mother) knew the answer

to this question. Disproving my initial impression of identity, she pointed out

several subtle di�erences between the two images. The �gure turned out to be

a type of puzzle called �original and fake� put into the journal for the sake of

entertainment. The reader's task was to detect all the di�erences between the

pictures. I started solving these puzzles with enthusiasm, not having even the

faintest idea, of course, that they would provide the basis for my doctoral thesis

some day.

Twenty years later, as an undergraduate student of Computer Science, I joined

the Neuroinformatics Group at the University of Bielefeld in order to do the re-

search for my master's thesis. Especially one of the various �toys� in this de-

partment fascinated me immediately, namely the eye tracker. I understood that

the measurement of eye movements yielded a wide range of information about a

person's perceptive and cognitive processes during task completion. So I began

implementing new software for this system and wrote my master's thesis about

the distribution of attention in ambiguous �gures (Pomplun, 1994; Pomplun, Rit-

ter & Velichkovsky, 1996).

Afterwards I got the generous o�er to stay with the Neuroinformatics Group

and the eye tracker as a research assistant in the Collaborative Research Center

360 �Situated Arti�cial Communicators�. As soon as I had accepted, I started

participating in the project meetings of section B4 (the eye tracker group) where

we made plans for future research. The structure of this project seemed to be

slightly �unfair� since it consisted of four managers plus myself as the only as-

sistant who had to manage the practical work. Fortunately, the project began to

extend, and in course of time I was accompanied by two colleagues.

Our interdisciplinary team of computer scientists, psycholinguists, and psy-

chologists proved to be rather creative and e�ective. In our discussions we came

across the idea to investigate the paradigm of comparative visual search (�original

and fake�) with the help of eye-movement recording. I translated our thoughts

into action and performed a series of experiments in order to analyze comparative

visual search under varying conditions. Based on the huge amount of interesting

results, I began trying to model gaze trajectories by programming computer simu-

lations. Both the adequate and the inadequate models provided additional insight

into the underlying mental processes.

Most of the experiments and models are described in this doctoral thesis

which is mainly addressed to scientists of related �elds, but also to interested

laymen with basic knowledge of psychology and mathematics. Thus motivated,

I have attempted to write a clearly understandable and stimulating text that
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contains pro�table information for everyone. I hope that all readers will enjoy this

expedition from the seemingly simple �TV journal� puzzle to the level-structured

information processing in our brains.

I would like to thank my supervisor Helge Ritter especially for his extensive

creative support and for allowing me freedom in my research. Moreover, I am

grateful to Boris M. Velichkovsky for his advice in the �eld of psychology and

his continuous long-distance cooperation between Dresden and Bielefeld. I wish

to express my thanks to my colleagues Elena Carbone, Hendrik Koesling, and

Lorenz �Max� Sichelschmidt (the latter being a manager and a colleague at the

same time) who helped me a lot and provided a pleasant working atmosphere. The

students who have been working in our eye-tracking group during the last three

years contributed to my experiments a lot by maintaining the computer hard-

ware, recruiting subjects, searching for literature, and doing many other helpful

things: Marcus Becker, Thomas Clermont (see Figure 7.1 on page 128), Kai Essig

(see Figure 1.5 on page 10), Peter Munsche, Karin Wagner, and Karl Hermann

Wieners. Furthermore, Dan Chen and Martin Herold supported me by proofread-

ing this thesis, making it readable as well as understandable. My special thanks

are due to Eyal Reingold and Dave Stampe for the development and hard- and

software support of the eye trackers used in my experiments. This work was made

possible by a grant from the German Science Foundation (DFG CRC 360/B4).

in May 1998

Marc Pomplun, Bielefeld
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Abstract

The manuscript in hand is concerned with the paradigm of comparative visual

search. A number of experiments were conducted in which subjects simultaneously

viewed two nearly identical images showing sets of simple geometrical objects.

Their task was to detect the only mismatch between these images which consisted

in either the color or the form of one of the objects. The analysis of eye movements

during task completion yielded diverse �ndings on the underlying perceptive and

cognitive processes and provided the basis for two di�erent models of the search

process.

Chapter 1 gives an introduction to eye-movement recording and visual search

in order to motivate the research work being described in this paper. The sti-

muli for the subsequent experiments are motivated and discussed in Chapter 2

and empirical pre-studies using these stimuli are conducted. Moreover, appro-

priate independent and dependent variables for the investigation of comparative

visual search are de�ned. In Chapter 3, the Basis Experiment and its results are

presented and discussed. These results provide a baseline for the subsequent ex-

periments which introduce various changes to the stimuli and the task. Chapters

4 and 5 focus on four distinct variants of the scenario which bring about addi-

tional results on the relationship between color and form processing as well as

the role of working memory. Chapter 6 describes an experiment using additional

line elements to create perceptual object groups with the aim of investigating

human strategies of grouping during comparative visual search. The transition

from two- to three-dimensional stimuli is accomplished in Chapter 7. With the

help of anaglyphs (�red-green pictures�), comparative search is studied in virtual

three-dimensional space.

Chapter 8 gives a �rst simple approach to an eye-movement model, namely a

�random-walk� simulation. The obvious drawbacks of this method motivate the

conduction of further experiments intending to collect baseline data for a more

plausible model. These studies, presented in Chapters 9 and 10, examine the hu-

man strategies of generating scanpaths and their dependence on various stimulus

parameters. Based on the results obtained, an enhanced simulation is developed

which is capable of satisfactorily explaining the empirical data (Chapter 11). Fi-

nally, Chapter 12 contains a summarizing discussion and an outlook on future

research motivated by the present work.
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Zusammenfassung

Die vorliegende Arbeit befaÿt sich mit dem Paradigma der vergleichenden vi-

suellen Suche. Hierzu wird eine Reihe von Experimenten durchgeführt, in de-

nen den Versuchspersonen zwei nahezu identische Bilder von Mengen einfacher

geometrischer Objekte dargeboten werden. Die Aufgabe der Versuchspersonen

besteht darin, den jeweils einzigen Unterschied zwischen den Bildern zu �nden,

der entweder in der Farbe oder der Form eines der Objekte liegt. Die Analyse

der Augenbewegungen während der Aufgabenlösung liefert vielfältige Erkenntnisse

über die zugrundeliegenden perzeptiven und kognitiven Prozesse und bildet den

Ausgangspunkt für zwei verschiedene Modellierungsansätze des Suchprozesses.

Das erste Kapitel bietet eine Einführung in die Augenbewegungsmessung und

die visuelle Suche, um darauf aufbauend die im folgenden dargestellten Studien

zu motivieren. Kapitel 2 erörtert die Auswahl geeigneter Stimuli und berichtet

die Ergebnisse von Vorstudien für die folgenden Experimente. Desweiteren wer-

den geeignete unabhängige und abhängige Variablen für die Untersuchung ver-

gleichender visueller Suche de�niert. In Kapitel 3 werden das Basisexperiment

und seine Ergebnisse dokumentiert und interpretiert. Diese Ergebnisse bilden die

Basis für die Auswertung der nachfolgenden Experimente, die veränderte Sti-

muli und Aufgaben einführen. Die Kapitel 4 und 5 behandeln vier verschiedene

Varianten des Szenarios, mit deren Hilfe zusätzliche Erkenntnisse über das Ver-

hältnis von Farb- und Formverarbeitung sowie die Rolle des Arbeitsgedächtnisses

gewonnen werden. Kapitel 6 beschreibt ein Experiment, in dem Objekte mittels

Linien gruppiert werden, um die menschlichen Gruppierungsstrategien während

des Suchvorgangs zu untersuchen. Den Übergang von zwei- zu dreidimensionalen

Stimuli liefert Kapitel 7. Mittels Anaglyphen (�Rot-Grün-Bildern�) wird die ver-

gleichende visuelle Suche im virtuell dreidimensionalen Raum untersucht.

Kapitel 8 beschäftigt sich mit einem ersten einfachen Modellierungsversuch,

einer �Random-Walk�-Simulation. Die klaren De�zite dieses ersten Ansatzes mo-

tivieren die Durchführung weiterer Experimente zur Gewinnung von Daten für ein

plausibleres Modell. Diese in Kapitel 9 und 10 dargestellten Studien untersuchen

die menschliche Vorgehensweise beim seriellen Erschlieÿen von Information in Ab-

hängigkeit von verschiedenartigen Stimulusparametern. Die daraus resultierende,

verbesserte Simulation, welche die empirischen Daten zufriedenstellend erklären

kann, wird in Kapitel 11 beschrieben. Das abschlieÿende Kapitel 12 liefert eine

zusammenfassende Diskussion und einen Ausblick auf die geplante Weiterführung

der hier vorgestellten Untersuchungen.
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Chapter 1

Introduction and Motivation

1.1 The Brain as a Computer

Our human brain is the most complex structure on earth. In all probability it has

emerged from an evolutionary process that has taken longer than a billion years.

At a certain stage in evolution the onset of abstract thinking and language led to

a cultural development of mankind which threw its genetic development into the

eclipse. Today we can state that our genetic evolution has practically reached a

deadlock and has been replaced with a cultural �explosion� especially with regard

to science and technology. Meanwhile, our scienti�c curiosity has brought about

a strange situation: The human brain wants to �nd out how it works itself.

There are several di�erent motives for this pursuit of knowledge, for example:

Philosophy: Are human beings �only� biological supercomputers? What is con-

sciousness and under which circumstances can it arise?

Psychology: How do individuals gather, store and share information about

themselves and their environment?

Medicine: Getting more information about the brain's functional structure will

result in more patients with brain injuries or abnormalities being cured.

Computer Science: What can we learn from the brain in order to improve our

�Arti�cial Intelligence� systems? The better we understand the way our

brain works, the better human-computer interfaces can be constructed.

These and other fundamental interests launched a novel research discipline

being called Cognitive Science. It resulted from the reasonable view that the

brain cannot be understood unless scientists of di�erent faculties overcome cross-

disciplinary barriers to work together in interdisciplinary teams. These teams may

comprise psychologists, computer scientists, physicists, mathematicians, linguists,

biologists, and physicians who try to combine their knowledge and abilities in

order to explore the brain's �mechanisms�.

What do cognitive scientists do? Which methods do they apply to learn about

the processes occuring in our brain? One of the best-established, �traditional�
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methods to investigate brain processes uses electrodes to study the neurons, i.e.

those nerve cells that constitute the functional part of the brain. Since neurons

communicate with each other by electric signals, electrodes can be used both to

stimulate neurons and to measure the neurons' activity. A large body of results

has been found with this technique. For example, David H. Hubel and Torsten N.

Wiesel, who won a Nobel prize later on, discovered basic properties of neurons in

the visual cortex (a brain area where visual information is analyzed) of cats and

rhesus monkeys (see Hubel & Wiesel, 1962). For obvious reasons, experiments

of this kind can exclusively be performed on animals. Therefore, higher cognitive

functions, in particular those related to language and to symbolic thought, cannot

be investigated with this method.

So if we want to perform research on humans instead of animals, what are the

possible methods? More recent experimental techniques are able to form images of

brain activity in a non-invasive manner. One such method is positron-emission-

tomography (PET). This method yields information about the spatial pattern

of brain activation in high resolution (about one millimeter). Unfortunately, the

temporal resolution is the range of one minute, which means that only regions of

activation can be determined, but not the activation dynamics.

A simpler approach uses a number of electrodes (ranging from 16 to 64) on the

subjects' scalp measuring their electroencephalogram (EEG), i.e. the oscillation

of electric potentials caused by the activity of neurons. This technique provides

high temporal resolution (better than one millisecond), but unsatisfactory spatial

accuracy. Conceivably, only the potentials in the brain's outermost layers can be

measured this way, and it is not clear to what extent these data interfere with

potentials in the inner brain regions.

More favorable is magnetoencephalography (MEG) which measures the mag-

netic signals of the brain using a large number of magnetic sensors that are ar-

ranged in a kind of �helmet� instead of being attached to the subject's scalp. This

method yields excellent data with regard to both spatial resolution (about one

millimeter) and temporal resolution (in the range of one millisecond). However,

only two third of the cortical currents are tangential to the skull and can thus be

detected by the sensors; one third of the currents remains invisible to the tech-

nique of MEG. Another drawback is that the necessary equipment is extremely

expensive.

Alternatively, there are various methods of indirect investigation of mental

processes. It may not be necessary to measure neural activities directly. What is

the idea behind this kind of methods?

Technically speaking, the brain is connected with the outside world by a large

number of diverse �interfaces�. Most parts of our body can be considered to be

either input, output, or bidirectional �interfaces� of our brain. In order to study

brain functions, a chosen �input device� can be stimulated and the corresponding

reaction of a suitable �output device� can be recorded. To put it in psychologically

adequate words, cognitive scientists measure parameters of subjects' behavior

in speci�c experimental situations. From the resulting parameters, they draw

conclusions about the underlying mental processes.
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In a typical psychological experiment, the subjects' eyes receive visual stim-

ulation and the subjects are instructed to press one of two possible buttons in

response to the stimulus. For instance, subjects are presented with a monitor

picture showing a set of items and they have to decide whether the picture con-

tains a speci�c target item. In such experiments, reaction time and error rate

can be measured as a function of item number and item distribution, yielding

information about the underlying perceptual processes.

Indirect methods are by far the most widely applied ones; since the early stages

they present a standard in cognitive psychology. The reasons for this dominance

are obvious: First, the application of indirect methods is cheaper and less demand-

ing in comparsion to direct ones. Second, the interpretation of directly measured

data is more di�cult. Correspondences between patterns of neural activity and

speci�c mental processes, especially with respect to high-level functions, are hard

to establish.

However, it must be stated that the information gained by standard indirect

methods � as in the example described above � is rather sparse: Reaction times

and error rates. This drawback motivates the choice of a di�erent human �output

device� to be observed. Remarkably, the perhaps most promising choice is the

same as that for the �input device�: our eyes.

1.2 Eyes as a Window into the Brain

Why use our eyes as indicators for mental processes? Our eyes are rather sophis-

ticated instruments. Let us compare them to the simpler compound eyes of a

�y which can be viewed as arrays of light receptors. They yield a roughly ho-

mogeneous spatial resolution that enables the �y to avoid ��ight accidents� and

to react to sudden threats from any direction. The �y does not need to visually

analyze the detailed structure of its surroundings. Its moderate powers of vision

combined with its well-developed sense of smell are su�cient for it to survive and

to reproduce.

In contrast, the evolution of mammals (and many other classes of animals)

took a di�erent direction. More powerful brains and �interfaces� emerged. This

brought about the drawback of a long developmental stage and thus slower re-

production. On the other hand, the enhanced capabilities of interaction with the

environment led to strong evolutionary advantages over other species. The new

prototype of eyes played an important part in the development of these capabil-

ities. Today, our human eyes are still based on this prototype.

Figure 1.1 (left) shows a sectional view of the advanced eye conception, namely

the eyeball. Similar to the process taking place in a photo camera, light from the

outside world falls through a lens in such a way that it produces a sharp upside-

down projection on a light-sensitive surface. This surface, the so-called retina,

contains millions of photo receptors (light-sensitive neurons) that transform the

image on the retina into a pattern of neural activity. Before leaving the retina

through the optic nerve, this information is processed by more than a hundred
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Figure 1.1: Left: Scheme of the eyeball; right: Ocular muscles (taken from Sac-

cuzzo, 1987, and Schmidt, 1985)

di�erent types of neurons, resulting in a substantial data compression. The retinal

pre-processing is indispensible, because it would be extremely di�cult to connect

all receptors directly to the relevant brain areas. Furthermore, the compression

has to be performed anyway, since the capacity of the human brain is limited.

What is the advantage of this design in comparison with the compound eye?

There are two basic tricks our eyes use in order to provide high resolution and a

wide �eld of view at the same time:

Gradient of receptor density: The receptor cells are not homogeneously dis-

tributed over the retina. There is a region called fovea of high receptor

density and therefore high spatial resolution in the center of the retina.

Outside this area with a radius of about one degree of visual angle, the

density decreases exponentially with growing excentricity. This means that

we possess very detailed vision in the center of our visual �eld and only

coarse perception in the peripheral regions (Figure 1.2).

Eye movements: The eyeball can be quickly rotated by three antagonistic pairs

of muscles (see Figure 1.1, right side), reaching a maximum speed of about

700 degrees per second. This enables us to direct our fovea successively to

all regions in our �eld of view which we want to inspect in more detail after

their rudimentary extrafoveal perception.

The �y can perceive its complete surroundings in parallel, which enables its

straightforward brain to convert visual input into motor reactions extremely fast.

We all know that it is nearly impossible to catch a �y with our bare hands. In

the human brain, vision works in parallel as well, in order to examine things

more closely, to read written language, to recognize faces etc., however, we have

to direct our fovea to the relevant location. Thus, our high-level perception is a

serial process.
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Figure 1.2: Left: Photograph of the Holstentor with surroundings; right: Illustra-

tion of visual resolution while attention is being paid to the Holstentor

When looking at static scenes or pictures, our eye movements are never per-

formed continuously. In fact, the gaze position �jumps� between inspected lo-

cations. These quick jumps are called saccades and the motionless phases in

between are called �xations. Visual information can only be perceived during

�xations, which is bene�cial to the brain's job of constructing a stable image of

the surroundings.

Referring to the abovementioned idea of the eyes as being indicators for the

brain's performance, this means that �xation duration can be considered as a

measure of the e�ort of information processing. The longer our attention rests

at a certain location, the longer it presumably takes us to deal with the visual

information presented there. This relationship has been coined the �eye-mind�

hypothesis (Just & Carpenter, 1987). It is strongly supported by results from

reading research. The �xation duration of a subject reading written text clearly

depends on the length of the currently �xated word and its frequency in the

relevant language. Since �xation duration is not in�uenced by the characteristics

of the previously read word, the syntactic and semantic analysis of a word is

evidently performed during its �xation. It is plausible to assume that the eye-mind

hypothesis holds for other kinds of stimuli, e.g. pictures and video sequences, as

well.

Furthermore, saccade length reveals how thoroughly a certain region of the vi-

sual �eld is scanned. Short saccades indicate that the fovea is directed to positions

close to each other, signifying a �high resolution� scanning process. Long saccades

imply that the local scene is only roughly perceived or that its information con-

tent is low. Fixation duration and saccade length are the basic eye-movement

variables. Additionally, eye movements yield data about where and in which tem-

poral order a subject acquires visual information, i.e. eye movements reveal a

subject's distribution and dynamics of visual attention.

What is attention? Attention is de�ned as a state of focused awareness coincid-
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ing with the readiness to react to stimulation. Since we are not able to consciously

process the huge amount of input to our brain (e.g. visual, auditive, and tactile

input) at the same time, we have to select a part of it to enter our consciousness.

With regard to visual attention, this means that we always tend to look at those

regions in our �eld of view that we consider to be the most relevant for our current

interest. Consequently, our awareness of the other regions is reduced.

The relationship between visual attention and eye movements, however, is not

perfectly determined by this connection. As everybody knows, it is possible to

stare into space while thinking of something completely di�erent from the visual

scene, for example during daydreams. In this case, eye movements do not tell

anything about visual attention. If subjects have to solve a particular visual task,

however, they must direct their attention towards the stimuli on the display such

that gaze position and attention are correlated.

A di�erent aspect is that, during a �xation, we are able to focus our attention

on di�erent points, i.e. shifts of attention can occur independently of eye move-

ments. Since our highest visual acuity is located in the fovea, we are likely to

keep our attention within the foveal region and to employ eye movements if we

want to shift attention. Only if these shifts are su�ciently small or if there is not

enough time for extensive inspection, �covert� shifts of attention may occur even

during �xations.

Finally, another attentional variable cannot be derived from eye movements

directly, namely the size of visual focus. We are capable of using a wide focus

in order to survey a large area in our �eld of view at the cost of a detailed

perception. It is also possible for us to apply a narrow focus in order to examine

particular features more precisely and to ignore subtleties in the periphery (see

Figure 1.2, right picture). Nevertheless, the focus size can be estimated on the

basis of distribution of �xations and local stimulus features. If there are, for

example, only a few �xations spent on an area showing low complexity, we can

assume that a wide focus is applied. This idea demonstrates the general usefulness

of de�ning additional eye-movement variables (e.g. �local density of �xations�)

and appropriate stimulus variables (e.g. �local stimulus complexity�).

Obviously, eye movements can give considerably more insight into mental

processes than sheer manual responses. Serving as �a windows into the brain�,

eye movements have been studied in many di�erent �elds of research:

Reading research: While reading written text, a subject's eye movements tell

us the duration needed for processing a particular word. These data enable

scientists to draw conclusions about the structure of language information

stored in our brain.

Medical research: Eye-movement measurement can help physicians to diag-

nose certain diseases of the nervous system, e.g. schizophrenia or Parkin-

son's disease, because these diseases lead to characteristic distortions of

eye-movement parameters. Moreover, eye-movement analysis can provide

information about the state of a patient's healing process during his/her

therapy.
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Tra�c research: A car driver's eye movements tell scientists which factors dis-

tract the driver's attention and are thus likely to cause tra�c accidents.

The arrangement of instruments, for example, can be optimized with the

help of these investigations.

Consumer research: It is important for advertising agencies to test the visual

appeal of their commercial spots or brochures before launching a publicity

campaign. Subjects' eye movements can indicate which parts of the spot

or brochure attract most of the subjects' attention. In particular, it can

be investigated whether the name of the boosted product is shown in an

adequate position to be recognized.

As a matter of course, we have to pose the following question: How can eye

movements be measured? This will be the subject of the following section.

1.3 Tracking Eye Movements

When talking about the common phrase eye tracking, it should always be kept

in mind that the pure measurement (�tracking�) of the eyeball's movement is

not satisfactory for most research purposes. Understandably, scientists are rather

interested in a subject's gaze position measured in the coordinate system of the

presented two- or three-dimensional stimulus. This demand implies the determi-

nation of not only the subject's eyeball orientation, but also the subject's head

position and head orientation to facilitate the computation of gaze position. More-

over, temporal aspects of eye movements are important as well. This means that

gaze trajectories, i.e. spatio-temporal scanpaths, are the optimal data to be ob-

tained from eye-tracking experiments.

The pioneers of eye tracking avoided some of these di�culties by imposing a

severe restriction on the subject's freedom of action: The subject's head was being

�xed. In most cases this was accomplished by an individually made bite bar on

which the subject had to bite throughout the trial. Evidently, this experimental

setting did not provide completely natural conditions, but at least it did lead to

the �rst eye tracking results like e.g. those by the Russian psychologist Yarbus

(1967). He used a fairly unpleasant method: A tiny mirror was fastened on one

of the subject's eyeballs by a suction-cup. During the experiment, a narrow light

ray was directed towards this mirror and re�ected onto a photo-sensitive paper.

Eye movements induced shifts in the angle of re�ection and thus in the location

of the light spot on that paper. Thanks to the linear correlation between gaze

and light spot positions, the resulting pattern on the paper could be viewed

as the recorded gaze trajectory. Figure 1.3 shows an example stimulus and the

accordant experimental result. It clearly points out the most attended regions of

the picture, namely the eyes, the nose, and the mouth. However, it does not yield

any information about the temporal aspects of eye movements.

The tools for temporal analysis came with the development of digital cameras

and powerful computers for image processing. It was not only to the subjects'
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Figure 1.3: Stimulus and corresponding gaze trajectory in an early experiment

conducted by Yarbus (1967)

advantage that the eye was being observed by a remote camera instead of attach-

ing items to the eyeball now. What is more, the continuous computation of the

pupil position in the digital camera image made it possible to record the temporal

as well as the spatial course of eye movements. For small angles the correlation

between pupil and gaze position (on a screen) was approximately linear such that

the data could easily be superimposed onto the corresponding stimulus. Another

improvement compared to Yarbus' experiments was achieved by the digital form

of the data which enabled researchers to perform various quantitative analyses

of gaze trajectories. One big handicap, however, could not be eliminated: Head

movements were still forbidden.

A completely di�erent approach to eye tracking has to be mentioned as well,

namely the Purkinje method. Here, a laser beam is pointed to the subject's eye.

It is refracted and re�ected by the cornea and the lens (see Figure 1.1). The

resulting light pattern falls, for example, on an array of photo-sensitive electronic

receptors which facilitates a computer-based analysis. Although there is no linear

dependence, it is possible to calculate the gaze position from the light pattern.

Furthermore, the accomodation of the pupil can be derived from these data.

This information is especially interesting in the context of experiments using

three-dimensional stimuli, because it reveals the distance between the eye and

the object in focus. Nevertheless, the Purkinje method does not tolerate head

movements either.

There is no doubt that �xing the subject's head causes unnatural and un-

pleasant experimental conditions that are likely to blur the eye-movement data.

Besides, if we want to investigate issues like the interaction of eye movements and
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Figure 1.4: The author wearing the OMNITRACK1 head-set

speech production, head movements are absolutely inevitable. So how can this

serious problem be solved?

Recent advances in eye-tracking technology have indeed solved this problem.

The Neuroinformatics Group at the University of Bielefeld owns two modern

eye trackers that do not require the subject's head to be �xed. There are the

systems OMNITRACK1 and its successor SMI EyeLink which use basically the

same technique (for further details see Stampe, 1993). As shown in Figure 1.4, the

OMNITRACK1 system utilizes a head-set to be worn by the subject. Two small

digital infra-red cameras are fastened to this head-set, an eye camera pointing

at the subject's right eye and a head camera which �looks� roughly in the same

direction as the subject. The subject is placed in front of a computer monitor for

stimulus presentation.

Four infra-red LEDs (light emitting diodes) near the corners of the monitor

screen are essential for the �trick� of head movement compensation. The head

camera yields an infra-red image of the subject's �eld of view, and of course

the four LEDs cause the only four light spots in the otherwise black image. The

locations of these spots in the image and thus the relative position of the subject's

head with respect to the screen can e�ortlessly be calculated.

As in early eye tracking experiments using digital cameras (see above), the

pupil position is derived from the eye-camera image. Proceeding from the head
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Figure 1.5: SMI EyeLink: the binocular successor of OMNITRACK1

and pupil positions, a non-linear projection leads to the gaze position coordinates

on the screen. The parameters of this projection are gained from a calibration

procedure which has to be performed before the start of any experiment. In this

procedure a dot is shown sequentially at nine di�erent positions on the screen

and the subject has to track it visually. This comparably quick calibration leads

to a spatial accuracy which is more than su�cient for most purposes.

All technical data are documented in Section 2.1.1. At this point, it is only

important to state that the OMNITRACK1 system provides both natural condi-

tions (freedom of head movements) and high accuracy of measurement.

However, some of the system's features are not optimal. For a start, the head-

set is rather heavy and tends to slide on the subject's head, which is a potential

source of large errors in measurement. Moreover, only the gaze position of the

right eye is recorded, yielding only partial information about the subject's eye

movements. Finally, the system's relatively low temporal resolution and technical

problems concerning stimulus presentation and data access leave much to be

desired.

It has been possible to overcome these problems of OMNITRACK1 with the

development of the system SMI EyeLink, without any change in the mode of

operation. When looking at Figure 1.5, one feature of progress immediately strikes

the eye: Now there are two eye cameras, one for each eye, facilitating binocular



1.4 A �Classical� Paradigm: Visual Search 11

eye tracking. Furthermore, the head-set is lighter which reduces the probability

of shifts and brings about more pleasant conditions for the subject. Other major

technical problems have been solved as well (see Section 2.1.3).

Now we have seen that eye movements yield interesting information about

perceptive and cognitive processes in our brain and that we are able to measure

them with highly quali�ed devices. However, just measuring eye movements would

not provide any signi�cant results yet. The �rst thing we have to do is to choose a

research paradigm which is promising with regard to eye tracking. In particular,

we have to answer the following questions:

� Which type of stimuli is shown to the subjects?

� What is the subjects' task?

� Which hypotheses are to be tested?

� Which variables are investigated in order to test these hypotheses?

The only indisputable points are the use of visual stimuli and the measurement

of eye movement variables including those mentioned in the previous section. All

other aspects of experimental design are open to our choice, and that seems to

be a hard one. How can we �nd our way through the in�nitely many possibilities

that emerge in front of us?

A good strategy of orientation is to �nd an interesting standard paradigm and

to use it as a point of reference. When looking at the research literature on this

paradigm, we will come across open questions and unchecked hypotheses. Maybe

the introduction of slight changes to the paradigm and/or the use of enhanced

methods, e.g. eye tracking, will allow us to answer these questions and to extend

this �eld of research in a sensible way.

A standard paradigm based on visual stimuli is visual search. Does it consti-

tute a suitable basis for our eye-movement research?

1.4 A �Classical� Paradigm: Visual Search

The paradigm of visual search is a well-explored �eld of psychological investi-

gation. Surprisingly, the subject's task in most of the innumerable studies that

have been published so far is exactly the same. It consists in �nding out as fast

as possible whether a shown set of items includes an �odd one� that is di�erent

from the others in a certain way. The subjects have to report their decision by

pressing one of two buttons labeled �yes� and �no�. It is obvious that the only

variables that can be measured this way are reaction times and error rates. Nearly

all analyses refer exclusively to reaction times as indicators for mental processes.

What are the theories about visual search that have been developed on this

basis? As a starting point, there is a distinction between two fundamental types

of search processes:
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Figure 1.6: Stimuli for visual search. Left: Disjunctive search allowing parallel

processing; right: Conjunctive search requiring serial scanning

Parallel search: If the target item di�ers from all distractor items with respect

to only one dimension (disjunctive search) it �pops out�. Figure 1.6 (left)

presents an example with orientation being the relevant dimension. In this

case, the search process is very short, because in most cases we detect the

target immediately.

Serial search: The task becomes more challenging if the di�erences occur in

more than one dimension and the target item is speci�ed by a unique com-

bination of them (conjunctive search). As shown in Figure 1.6 (right), the

di�ering item is hard to detect at �rst sight, hence the display must be

scanned in a sequential fashion.

This parallel-serial dichotomy was proposed by the Feature Integration Theory

(Treisman & Gelade, 1980). The dichotomy is empirically based on reaction time

slopes: Whereas the time needed for disjunctive search is more or less indepen-

dent of the number of distractor items, the reaction time for conjunctive search

increases linearly with the item number in the display. The Feature Intergration

Theory assumes the existence of speci�c �feature maps� in the brain, enabling us

to detect di�erences in single dimensions even without attention being involved,

resulting in parallel search. In conjunctive search, however, attention is needed to

analyze local combinations of di�erent feature maps. Attention is inevitable for

detecting the dissimilar item. Since the focus of attention can cover only a part

of the display at a time, serial scanning has to be performed.

Several years later, these assumptions were questioned by other researchers

(Wolfe, Cave & Franzel, 1989). In their experiments, the authors found paral-

lel search for conjunctive color-form targets which could not be explained in

terms of the Feature Integration Theory. The precondition for parallel conjunc-

tive search was reported to be su�cient feature saliency. Strong color contrasts

both between di�erent items and between items and background may facilitate

parallel processing. Accordingly, reaction time slopes can be considered functions
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of feature saliency and they thus constitute a continuum rather than two distinct

groups. The authors proposed the hypothesis that parallel conjunctive search is

the �default� case which can be prevented by insu�cient feature saliency.

In the same work (Wolfe, Cave & Franzel, 1989), they pointed out that the

assumption of autonomous parallel and serial processes, as given by the Feature

Integration Theory, is unplausible. Why does the serial search process not ben-

e�t from the information gathered during the preceding parallel process? As a

consequence, they proposed the Guided Search Model. According to this model,

an initial parallel process can determine areas in a display that are likely to con-

tain the target item. This information is accessible for a subsequent serial search

process.

Although the idea of an initial, preattentive (i.e. without utilizing attention)

stage followed by a serial analysis is shared by most theories (Treisman, 1992),

they diverge in their explanation of how the parallel stage can support the sub-

sequent serial stage. Treisman & Sato (1990), for example, revised the Feature

Integration Theory, reacting to Wolfe, Cave & Franzel (1989). This new version

of the theory is rather similar to Guided Search, however, it assumes an inhibition

of unlikely target features instead of an activation of promising locations.

Other theories account for perceptual grouping as a relevant factor in visual

search. For instance, Pashler (1987) proposed that the display is scanned cluster

by cluster using parallel processing within the clusters and sequential shifts of

attention between the clusters. A re�ned theory (Duncan & Humphreys, 1989;

1992) proposed that the whole search process is controlled by the global similar-

ities between the items. Following this approach, visual search is not based on

single features but on subsets of items which are separated from each other by per-

ceptual grouping during preattentive processing. This assumption of multi-item

grouping is supported by a variety of experimental results. Humphreys, Quinlan

& Riddoch (1989), for example, presented subjects with T-shaped targets among

upside-down Ts serving as distractors. They found clearly higher search e�ciency

in the case of items forming a coherent global shape. Following their interpre-

tation, if subsets of items can be perceptually combined to form a well-known

structure, subjects are able to process them as a whole. Hence, the perceptual

units of visual search are groups of items instead of single items, which facilitates

target detection. In the theories accounting for perceptual grouping, features are

considered as a result of mental processes rather than as a precondition for them,

as supposed by other theories. Obviously, the dichotomy between disjunctive and

conjunctive search loses its relevance when viewed from this perspective.

Current research focuses on the transition between di�erent stages of process-

ing (e.g. Grossberg, Mingolla & Ross, 1994). How do the stimulus parameters

control the time course of search patterns applied by subjects? Here, it is im-

portant to ask whether the measurement of reaction times is su�cient to answer

questions on this level.

As mentioned before, reaction times and error rates give only restricted insight

into the perceptive and cognitive processes that are involved in visual search. We

must be aware of the fact that conclusions about these processes are based on
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the assumption of additive latency components (Meyer, Osman, Irwin & Yantis,

1988). Only a strictly sequential cognitive structure of task completion would jus-

tify inference from reaction times. However, the models of visual search mentioned

above propose parallel processes as well. Should this be considered a contradiction

in terms?

Without doubt, the measurement of absolute reaction times can only provide

rough information about mental processes participating in visual search. There-

fore, most studies are based on the analysis of reaction time slopes rather than

on absolute reaction times. As discussed in the context of the parallel-serial di-

chotomy in visual search, these slopes can indicate basic di�erences in processing

depending on the characteristics of the stimuli. The slopes also serve as refer-

ence data for formal models of visual search (Grossberg, Mingolla & Ross, 1994;

Humphreys & Müller, 1993). On the other hand, it is obvious that information

about hybrid processes is not accessible by investigating reaction times only.

Referring to our initial question, is eye tracking an appropriate methodological

extension which could prove able to overcome these restrictions? In fact, the

analysis of eye movements during visual search has been successfully conducted,

resulting in di�erent models of gaze trajectories (e.g. Rao & Ballard, 1995; Wolfe,

1994). The completion of standard visual search tasks, however, does not require

subjects to apply complex scanpaths. For instance, disjunctive search within an

area of several degrees of visual angle is likely to be solved without any eye

movements at all. If no or only a few eye movements are necessary for target

detection, it is obvious that the recording of eye movements does not constitute

a substantial improvement over traditional methods.

Consequently, it seems reasonable to use a more complex task for our investi-

gations. It should make the subjects employ eye movements which yield insightful

information about the perceptive and cognitive processes going on during task

completion. The increased complexity of mental activities should not be prob-

lematic, since the information content and detailedness of the data obtained are

immensely enhanced due to the additional eye tracking. In the light of these con-

siderations, more intricate tasks can even considered to be advantageous, because

they promise to yield more insight into the interactions between di�erent mental

processes.

Apart from the validity of available data (construct validity), another mat-

ter of general importance should be taken into account, namely the problem of

ecological validity. The human brain has not been evolutionarily designed for solv-

ing abstract tasks in laboratory experiments, but rather for interacting with its

natural environment. Hence, we have to make the subjects' situation in our ex-

periments ecologically adequate or valid, because otherwise the results would be

as arti�cial as the experimental conditions.

As to the subjects' task, the standard visual search paradigm corresponds

to the everyday situation of looking for a well-known item. During task com-

pletion, the subjects have to remember the relevant features of the target item

as well as information about the actual scene, especially the distinction between

inspected and not yet inspected items. Unfortunately, this class of tasks is not an
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ideal background for the investigation of working memory in visual perception,

because the target item and thus the respective memory content are constant

during the search process. In most experiments the target item does not even

vary systematically between the trials. Therefore, standard experiments in vi-

sual search do not provide insight into processes of memorization, but only into

processes of retrieval and comparison.

Concerning stimulus materials, almost all experiments in visual search utilize

displays of simple, abstract, and well-de�ned items. They enable the researchers

to explicitly control the dimensions to be investigated (e.g. color or form) and to

obtain clearly interpretable results.

To sum up, standard tasks of visual search are not perfectly suited for eye-

movement research. They do not involve many eye movements and they are not

designed to yield information about an important cognitive component, namely

working memory. Therefore, we have to introduce appropriate changes to the

paradigm of visual search. A promising variant of visual search in this respect is

presented in the following section.

1.5 Extending the Classical Paradigm: Compar-

ative Visual Search

What does �comparative visual search� mean? Surprisingly, this search task is

rather famous, but not among scientists so far. It often appears in magazines

and is known as �original and fake�. Two almost identical pictures are presented

to the reader, and the task consists in �nding several subtle di�erences between

them which were introduced on purpose.

Comparative visual search is closely related to picture matching (e.g.

Humphrey & Lupker, 1993). In a typical picture matching experiment, subjects

are presented with pairs of pictures, which can occur either simultaneously or

sequentially. The subjects' task is to indicate whether the pictures show the same

item. A well-known result from many picture-matching studies is that �yes� an-

swers are faster with identical views of an object than with di�erent views (Kel-

ter, Grötzbach, Freiheit, Höhle, Wutzig & Diesch, 1984; Klatzky & Stoy, 1974).

Moreover, it was established that response times are a sinusoid function of the

di�erence in the angle between the two presented items, which is known as mental

rotation (Rock, Wheeler & Tudor, 1989; Shepard & Cooper, 1982). Finally, there

are speci�c objects having �canonical views� such as frontal or pro�le view, which

are particularly easy to process (Cooper, Biederman & Hummel, 1992; Palmer,

Rosch & Chase, 1981).

The scenario used by Bruce & Morgan (1975) can be considered a �rst step

from picture matching towards comparative visual search. The authors presented

subjects with left-right mirror symmetric or horizontally translated line patterns,

some of which contained small symmetry violations. The subjects' task was to

manually report whether the symmetry was complete or not. Both the subjects'
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Figure 1.7: Typical �original and fake� task: Find the two local mismatches be-

tween the left and the right image.

reaction times and error rates were higher with mirror symmetry than with repe-

tition. The advantage of mirror symmetry decreased with the enlargement of the

horizontal distance of the violation from the center of the stimulus, since the two

mismatching locations were farther apart from each other. Thus, the advantage

of mirror symmetry exposed an eccentricity e�ect.

The task of comparative visual search is more complex than those used in

picture-matching studies including the work of Bruce & Morgan (1975). Loosely

speaking, comparative visual search combines visual search and picture matching.

Figure 1.7 shows an example stimulus for comparative visual search. Two local

di�erences are to be detected.

The completion of this relatively simple example task does not take much

e�ort: From the left to the right image, a sphere in the upper left corner turns

into a cube and the color of the girl's turned-up sleeve gets considerably darker.

During task completion, we notice that a number of di�erent mental processes

are necessarily involved in our actions. Locally, memorization and comparison

have to be performed. In one of the pictures, a local set of items or structures is

memorized �rst. After ��lling up� our working memory this way, we proceed to

the corresponding region in the other picture and compare the information given

there with the content of our memory in order to detect potential mismatches.

Globally, we have to search the whole picture, and this cannot be done e�ciently

unless strategy planning is carried out. No area within the image should be missed
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or visited more than once.

Obviously, many eye movements have to be performed during task completion.

They indicate shifts of attention within and between the hemi�elds, telling us

where and in which order subjects process information. The investigation of the

resulting gaze trajectories by means of eye tracking is clearly more attractive than

in standard visual search tasks.

What can be stated about the ecological validity of comparative visual search?

The situation is substantially di�erent from standard visual search. In compar-

ative visual search, the setting is equivalent to real-world circumstances being

caused by a discrepancy between an actual state and a target state. If we want to

construct an aeroplane model from single pieces on the basis of a drawing showing

the completed plane, for instance, we have to continuously compare (and adjust)

the actual real-world situation to the target state. Here, processes of memoriza-

tion and comparison of local information can be observed, leading to a deeper

understanding of the role of working memory during the e�cient completion of

complex tasks. While ecological relevance is taken care of in both visual search

and in comparative visual search tasks, the comparative variant clearly provides

a more profound insight into the interaction of di�erent factors, especially with

regard to working memory. By the analysis of eye movements we can obtain in-

formation about basic parameters of working memory, e.g. capacity and access

time, and how these parameters control the subjects' strategies of solving the

task.

As to stimulus materials, the situation is similar to the one encountered in

standard visual search. Although stimuli showing realistic scenes like the example

in Figure 1.7 are preferable with regard to ecological validity, they are not ade-

quate for basic studies of comparative visual search because they involve factors

operating on a high semantic level. For instance, we all know a wide variety of

faces, buildings, streets etc. and thus have certain concepts of how to perceive

them. This knowledge in�uences our eye-movement patterns as well as our ca-

pability of mismatch detection. Experiments with ambiguous pictures (Pomplun,

Ritter & Velichkovsky, 1996), for example, showed that the distribution of at-

tention depends not only on the geometrical structure of the inspected stimulus,

but also on its semantic interpretation by the subjects. Evidently, factors cannot

conveniently be parametrized on this level and hence they are not accessible to

quantitative analysis.

The discussion above shows that there is a kind of trade-o� between ecologi-

cal validity and experimental control, for both standard and comparative visual

search. At least for our initial investigations it seems useful to emphasize experi-

mental control at the cost of ecological adequacy. Based on the results obtained,

further research with more realistic scenes will be carried out to overcome this

shortcoming.

All in all, what are the most important aspects to be investigated? With the

help of eye tracking, the comparison scenario allows us to study several important

questions:
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� Which information-related features in�uence visual search?

� How are these re�ected in the spatial and temporal aspects of the search

path?

� What can we infer about memory and recognition processes?

� Is it possible to build a model capable of generating statistically similar

search paths?

This last point is especially relevant because the integration of empirical �nd-

ings into a model is a well-suited way to test their consistency and validity. If

a computer simulation of eye movements, incorporating this model, produces

scanpaths that resemble the empirical ones, the consistency and validity of the

underlying results and interpretations are strongly supported. This topic will be

thoroughly discussed in Chapters 8 and 11.

First of all, the following Chapter 2 is dedicated to the preparation of empirical

research based on comparative visual search. Its technical realization as well as

the selection of appropriate stimuli for experiments of comparative visual search

are described. Furthermore, the basic characteristics of the stimuli with regard to

human perception are investigated, resulting in important baseline data for the

subsequent experiments.



Chapter 2

Methodological Preliminaries

2.1 Technical Equipment

What are the technical facilities for our research? As mentioned in the previous

chapter, we currently use two eye trackers in our group, namely the monocu-

lar OMNITRACK1 device and its successor, the binocular SMI EyeLink system.

Since the EyeLink system did not become available before 1997, the �rst exper-

iments of comparative visual search were conducted using the OMNITRACK1

device.

2.1.1 The Basic OMNITRACK1 System

Basically, the OMNITRACK1 apparatus uses a single computer (486/DX2-66)

called �Operator PC� for eye tracking as well as for stimulus presentation. It is

connected with three external devices:

Head-set with infra-red eye and head cameras: The eye camera yields

digital images of the subject's right eye, while the head camera observes

the four infra-red LEDs at the corners of the monitor screen in front of

the subject. These camera data are processed by ISCAN RK-416PC pupil-

tracking boards in the Operator PC which are capable of detecting the

pupil and LED positions respectively in the pictures using simple image-

processing algorithms. Based on these coordinates, special software running

on the Operator PC calculates the subject's gaze position on the screen.

Furthermore, saccades and �xations are detected (see Stampe, 1993).

Computer monitor for the subject: All stimuli are presented to the subject

on a 17� ViewSonic 7 monitor, including those for the calibration procedure.

This calibration procedure, which has to be performed before the start of

every experiment, demands the subject to look at a dot that is sequen-

tially presented at nine di�erent positions on the screen. The calibration

procedure yields required reference data for the subsequent computation of

gaze positions. During experiments, a video-data switch makes it possible



20 Methodological Preliminaries

to display stimuli from either the video card of the Operator PC or from an

external device, for example a video recorder. Between trials (or any other

parts of experiments) a quick re-calibration featuring only one target dot

can be applied in order to compensate for shifts of the head-set.

Computer monitor for the operator: The operator is watching a separate

17� ViewSonic 7 monitor in order to supervise the experiment. This monitor

is also controlled by the Operator PC. Experiments can be programmed

in a special command language which includes commands for calibration,

image presentation, timing, data formatting, message output etc. There is

also a set of commands to display messages for the operator on his/her

monitor, like for example: �Press <Enter> to start next trial�. During eye-

movement recording, the operator monitor shows the same scene as the

subject monitor plus a moving gaze cursor indicating the subject's current

gaze position. This enables the operator to get a visual impression of the

eye movements before their statistical analysis and to decide whether a

re-calibration is necessary due to low accuracy of measurement.

Although this con�guration is perfect for psychological standard research, the

command language for programming experiments turns out to be too limited for

advanced purposes. For example, only static bitmap images can be shown, and it

is impossible to present computer-controlled dynamic stimuli or stimuli created

on-line from data �les. In order to conduct experiments of comparative visual

search in a sensible way, the eye-tracker system had to be extended.

2.1.2 The Extended OMNITRACK1 System

Some of the system's limitations are eliminated by the integration of a second

computer into the system which generates and displays the stimuli for compar-

ative visual search. Thanks to the video data switch, the presentation of video

signals from an additional computer (�Subject PC�) is no problem at all. The

calibration procedure and the control of experiments is still performed by the

Operator PC, but during eye-movement recording, the video card of the Subject

PC is in charge of the subject monitor.

However, the main problem consists in the synchronization of the Subject

PC with the Operator PC. The data recording has still to be carried out by

the Operator PC, whereas the possibly dynamic stimuli are produced by the

Subject PC. Therefore, the Subject PC has to �know� when the eye-movement

recording begins in order to start presenting the dynamic scene. If there is no

synchronization between the PCs, the correlation between the recorded data and

the state of the shown stimuli is unclear.

Unfortunately, the eye-tracker software is not designed for communication

with other computers, and since no source code is provided, it is not possible to

add any software interfaces. Hence, we had to extended the system in a slightly

peculiar way, as shown in Figure 2.1.
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Figure 2.1: Scheme of the extended OMNITRACK1 system

As mentioned above, the OMNITRACK1 command language allows us to

present messages on the operator monitor. In the new con�guration, this facility

is used to send data to the Subject PC. It works as follows: Immediately before

the start of any data-recording trial, �signal �ashes� are displayed at eight certain

positions near a corner of the operator screen. At each position, either a white

block or the black screen background can be shown. A set of eight photo diodes

receives this eight-bit information which is sent to the parallel port of the Subject

PC via a speci�c interface. Thus, synchronization and even data transmission can

be achieved.

Of course, this method does not work without delay. The blocks are not dis-

played before the electron beam of the monitor has reached their position, which

it does 60 times per second. Furthermore, the signal is received by the Subject

PC using the parallel-port interrupt which leads to further delay. These factors

cause a total temporal uncertainty of �50 ms. Obviously, the new arrangement is

far from being optimal, but nevertheless it fundamentally increases the capabili-

ties of OMNITRACK1. At least for the experiments presented in this work, the

temporal �jitter� does not have any negative e�ect on the experimental data.

The advantages of this system compared to early technologies are undeniable,

though: The subject's head is free with permitted deviation from the straight-

ahead position up to 15
o
and the �eld of view is practically unrestricted (80

o
in

the horizontal dimension and 60
o
in the vertical). Moreover, experiments can be

run under natural illumination conditions.
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The average absolute maximal precision of the gaze-position measurement lies

within the range from 0.7o to 0:9o. By using a new calibration interface based on

parametrized arti�cial neural networks, the precision of measurement is improved

to 0:4o. This makes it possible to recruit even subjects wearing spectacles (see

Pomplun, Velichkovsky & Ritter, 1994). The system's temporal resolution is 16.7

ms due to the camera frequency of 60 Hz. In order to detect a �xation, the system

needs to analyze �ve successive frames, which means that �xations shorter than

83 ms cannot be registrated. Unfortunately, the result of an experiment consists

only in a data �le listing all �xations, their spatial and temporal positions, their

durations, and the pupil size while �xating. No online-access to eye-movement

data or analysis of gaze positions instead of detected �xations is possible. As far

as these aspects are concerned, the advanced SMI EyeLink system o�ers relief.

2.1.3 The SMI EyeLink System

The SMI EyeLink can be viewed as the successor to OMNITRACK1. Accordingly,

the drawbacks of OMNITRACK1 have been eliminated as far as possible:

� The standard EyeLink system includes both an Operator PC and a Subject

PC. They are connected with each other by an Ethernet-link that does not

only achieve synchronization, but also allows eye-movement data and other

information to be transferred.

� The gaze position data are already available to the Subject PC about 6 ms

after their registration. In contrast to OMNITRACK1, these data can now

be used on-line even from self-written C or C++ programs to control the

display. This allows us to display stimuli that are contingent on the gaze

trajectory. Nevertheless, a simple command language for programming the

experiments can be used instead.

� The temporal resolution is improved to 250 Hz. Every four milliseconds,

actual gaze positions are accessible to the users who can decide if they want

to detect saccades and �xations with the help of individual software or to

use a built-in detection algorithm.

� Binocular eye tracking is feasible due to the introduction of a second eye

camera. In spite of that, the weight of the head-set has decreased to 600 g

which is a reduction of about 50% in comparison to OMNITRACK1. This

is appreciated by the subjects, and what is more, its lower inertia makes

head-set shifts and thus loss of data accuracy less probable.

Figure 2.2 demonstrates that the arrangement of the EyeLink system strongly

resembles the extended version of OMNITRACK1, the interface between the PCs

and the software �exibility have been substantially improved, though. The hard-

ware has been upgraded as well: The Operator PC is a Pentium 133 using a 17�

ViewSonic 7 operator monitor, and the Subject PC contains a Pentium 166 and
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Figure 2.2: Scheme of the SMI EyeLink system

displays stimuli on a 20� Trinitron subject monitor. With respect to the sub-

ject's �eld of view and the spatial accuracy of measurement, no changes were

introduced.

2.2 Designing Stimuli for Comparative Visual

Search

As shown in the previous section, the technical equipment enables us to implement

C programs which generate individual stimuli for each subject and provide thus an

excellent statistical basis for the analysis of gaze trajectories. The most important

point to be clari�ed, then, is how to de�ne the appearance of the stimuli. The

following two sections concentrate on this topic.

The choice of stimuli is closely connected with the de�nition of independent

and dependent variables. Which combination of stimuli, tasks, and methods of

analysis is most promising to yield interesting information about comparative

visual search? Appropriate de�nitions of variables are developed in Section 2.4.

2.2.1 Choice of Elementary Stimulus Items

When exploring a new paradigm, such as comparative visual search, it is usually

a good strategy to �rst focus on a restricted set of stimulus dimensions. Con-
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sequently, we eliminated high-level factors in order to achieve explicit control

of image parameters and their statistical distribution. Following the majority of

studies in visual search, we decided to focus on three dimensions, namely color,

form, and location. Instead of realistic items we introduced random distributions

of simple geometrical items (squares, triangles, and circles) in three di�erent col-

ors (green, blue, and yellow). In every stimulus, exactly one mismatch was present

which consisted in either the color or the form of one of the items.

The main advantages of this design are obvious: No high-level information, i.e.

semantic content, interferes with the basic task of comparative search, and the

stimuli are completely determined by a small set of quantitative parameters, i.e.

the color, form, and location of items and the position and dimension (color or

form) of the mismatch. Since there are identical numbers of di�erent colors and

forms, comparative analyses between these two dimensions can be performed. We

can investigate, for instance, di�erences between the detection of color mismatches

and the detection of form mismatches, or we can study distinct in�uences of color

and form information on the subjects' eye-movement patterns.

The item forms were dimensioned in such a way that their subjective size

appeared identical. For this purpose, a pre-test with �ve subjects was conducted.

Each subject was successively shown six di�erent scenes, each of them presenting

a square, a circle, and a triangle in random positions. In each scene, the subjects

had to adjust the size of the circle and the triangle in such a way that they

appeared to have the same size as the square. The results showed that circles were

adjusted to cover almost the same average area (221 pixels) as did the squares

(225 pixels), while the triangles were adjusted to cover a substantially smaller

area (187 pixels). Obviously, the less �compact� shape of triangles seems to make

them look �bigger� than both squares and circles covering the same number of

pixels. Since the subjective item size is a more adequate cognitive variable than

is the number of covered pixels, we decided to use the empirically adjusted item

sizes for our experiments.

For technical reasons, the choice of colors was restricted. The OMNITRACK1

system requires all stimuli to be converted into video format, because the imple-

mented Subject PC replaces the system's video recorder (see Section 2.1.1). The

resulting monitor output presents a slight fuzziness caused by high values in the

red component of the video data. Therefore, the boundaries of red items exhibit

a noticeably stronger blur than, for instance, blue items. Since the distinctness of

speci�c boundaries is an important factor for object recognition, we decided to

exclude the color red from the stimuli. Instead, the colors green, blue, and yellow

were chosen.

An important requirement for the elementary items is that all possible pair-

ings of colors and forms should appear equiluminant. While the colors' hue and

saturation were set to adequate values (fully saturated green, blue, and yellow),

their brightness could be adjusted to meet the requirement of equiluminance. The

optimal brightness value for each pairing cannot be determined mathematically

since the subjective perception of item intensity might be di�erent from physical

quantities. It might also depend on the form of an item and on perceptual inter-
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Figure 2.3: Simultaneous presentation of all possible pairings of colors and forms

in a task requiring the adjustment of their brightness

actions between its color and its form. In order to account for these subjective

factors, we conducted a pre-test investigating the subjects' perception of item

luminance.

In this study, subjects were presented with arrangements of di�erent items as

shown in Figure 2.3. The nine possible pairings of colors and forms were shown as a

3�3 array with the brightness of each array item chosen randomly from the range

between 50% and 100%. Both their hue and saturation, however, were identical

within the color groups. The subjects could adjust the initially randomly chosen

brightness values with the keyboard. The task for each subject was to adjust the

individual brightness of each object in such a way that they perceived all of them

as equiluminant.

This task was repeated six times for each subject, using a di�erent random

initialization of brightness values in each trial. Five subjects participated in this

study, resulting in a total of 30 brightness values obtained for each combination

of color and form.

Since there was no �reference luminance� given to the subjects, the absolute

values strongly varied between subjects and trials. The relative values, however,

exhibited almost the same signi�cant pattern for all subjects: The brightness

of green items was consistently adjusted about 8% higher than the brightness

of yellow items, and the brightness of blue items was consistently chosen about

14% higher than the brightness of yellow items. No signi�cant di�erences were

found between distinct forms. Finally, there was no evidence for the hypothesized

interaction between color and form.

The brightness of the elementary items for comparative visual search was

adapted to these results. This was the �nal step in the �design� of appropriate

items.

Before starting the experiments of comparative visual search, it is important

to establish the perceptual features of the chosen items with regard to standard

visual search. Undoubtedly, this knowledge is helpful for both the interpretation

of �ndings and the construction of models in comparative visual search. With this

aim in view, the following section is concerned with the investigation of possible

�pop-out� e�ects among the chosen items.
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2.2.2 Do the Chosen Features �Pop Out�?

In Section 1.4, we discussed the di�erences between parallel and serial search. If a

target item di�ers from all distractor items along a speci�c dimension, it possibly

�pops out� from the background. Such �pop-out� e�ect is characterized by the

reaction time which is independent of the number of distractors and indicating

that we are able to perform parallel search on the items. In contrast, reaction

time slopes indicate serial search. It was stated that there is a continuum of

search processes rather than a parallel-serial dichotomy.

This characterization of search e�ciency might be relevant for comparative

visual search as well. During task completion, local areas of the display are com-

pared to each other. If, for example, such an area in the left hemi�eld contains

only yellow items, while the corresponding area in the right hemi�eld shows yel-

low items plus the blue target item, it might be possible that �local pop-out�

takes place.

It is important for us to know whether parallel detection of color or form

attributes is possible in principle. If color targets, for example, can be detected

in parallel, whereas form targets require serial processing, we expect comparative

search for color mismatches to proceed faster than search for form mismatches,

at least if subjects know the dimension of the mismatch.

Moreover, the absolute di�erence in reaction time between color and form

targets in standard visual search should be re�ected in the results of comparative

visual search as well: At least the latency before the subjects' manual response

should exhibit a corresponding dependence on the relevant dimension. Finally, it

is important to know whether reaction time and error rate vary with individual

colors, forms, and speci�c target-distractor combinations. If there are striking

di�erences in the detectability of target-distractor combinations, for example,

subjects are likely to adapt their distribution of attention to this situation. They

might pay more attention to those stimulus regions that are more �di�cult� in

this respect, impairing the analysis of eye movements as a function of the stimulus

structure.

To investigate these issues, we �rst conducted a standard visual search exper-

iment using the chosen items. In the experiment, subjects were shown random

distributions of these items. In each trial, all items had the same color and form

except for a possibly appearing target item that di�ered from them in either its

color or in its form. The subjects had to press the left button on a computer

mouse if a target was shown, and to press the right button otherwise. They were

to react �as quickly and as precisely as possible�.

The experimental design incorporated �ve di�erent independent variables:

Target presentation: In half the trials, a target was presented, in the other

trials, it was not. It was important to integrate this factor into the design,

because the presentation of targets in every trial or most of the trials would

lead to �mechanical� manual reactions by the subjects.

Knowledge of the relevant dimension: The experiment was divided into
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three phases which came in random order and which were announced to

the subjects: A color phase presenting a possible color di�erence between

target and distractors, a form phase presenting a possible form di�erence,

and a color-or-form phase randomly presenting either a possible color or a

possible form di�erence. As can clearly be seen, both the color and form

phases provide knowledge of the relevant dimension, whereas the color-or-

form phase does not.

Dimension of the target-distractor di�erence: As mentioned above, the

di�erence between target and distractors could be either in color or in form.

The other dimension presented an identical value for all items which was

randomly chosen.

Number of items: The displays could consist of three di�erent numbers of

items: 10, 20, or 30. As a matter of fact, their order of occurrence was

randomized. The display size, however, remained constant (square-shaped

with a lateral extent of about six degrees of visual angle), which allowed us

to interpret the resulting reaction time slopes in the context of the distinc-

tion between serial and parallel search.

Target-distractor combination: If we de�ne non-target stimuli as presenting

targets of the same color and form as the distractors, there are nine possible

target-distractor combinations for color and form each. The di�erentiation

between these enables us to �gure out e�ects of individual features (color

and form) and their combination.

The de�nition of these variables led to 144 di�erent types of stimuli, i.e. 144 cells

in the experimental design. For each type, �ve correct reactions per subject were

obtained, while incorrect judgements were disregarded in the analysis. Following

the tradition of visual search, the dependent variables were chosen as reaction time

and error rate. Seven subjects were tested; all of them were able to distinguish

between colors.

As to the results, a �ve-factorial analysis was calculated for both reaction time

and error rate. On average, an error rate of 1.75% was found which is rather a low

value. The error rate did not depend signi�cantly on any of the �ve independent

variables.

Reaction time, however, presented a signi�cant dependence on the dimension

of the target-distractor di�erence (F (1; 6) = 29:91; p = 0:002). It was shorter for

color di�erences (601.59 ms) than for form di�erences (700.43 ms). The number

of items in the display did not exert a signi�cant e�ect on reaction time. As shown

in Figure 2.4, neither color search nor form search induced reaction time slopes,

indicating strong �pop-out� e�ects for both dimensions. As in every bar chart in

this work, the errorbars indicate the respective standard error.

Furthermore, the knowledge of the relevant dimension signi�cantly in�uenced

reaction time (F (1; 6) = 10:69; p = 0:017). Reaction time was shorter when sub-

jects knew the relevant dimension (621.85 ms) than when they did not (680.17
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Figure 2.4: Reaction time as a function of the number of displayed items

ms). Also, this variable presented a signi�cant interaction with the dimension

of the target-distractor di�erence (F (1; 6) = 11:66; p = 0:014). As illustrated in

Figure 2.5 (left), the knowledge of the relevant dimension (speci�c search) facili-

tated color search more strongly (553.20 ms versus 649.99 ms) than form search

(690.50 ms versus 710.35 ms). This �nding suggests a fundamental asymmetry

between the processing of color and the processing of form. It motivates a closer

investigation in the context of comparative visual search (cf. Chapter 4).

Target presentation exhibited a reliable e�ect on reaction time as well

(F (1; 6) = 10:04; p = 0:019). The presentation of a target led to shorter reac-

tion time (621.30 ms) than did the non-target situation (680.72 ms). Moreover, a

signi�cant interaction with the dimension of the target-distractor di�erence was

established (F (1; 6) = 7:79; p = 0:032). Figure 2.5 (right) shows that this in-

teraction corresponds to the previous one: Color search bene�ts more strongly

from the presentation of a target item (561.66 ms versus 641.52 ms) than does

form search (680.94 ms versus 719.91 ms). At least a part of this e�ect can be

attributed to the faster reaction to color targets than to form targets even if the

relevant dimension is unknown (see above). If no target is shown, the situation of

unspeci�c search leads to completely identical stimuli for color and form search

and thus to identical reaction times. Since half the trials provide unspeci�c search,

the reaction time di�erence in the �no target� condition diminishes.

Do individual color or form combinations exert speci�c e�ects on reaction

time? Figure 2.6 shows the reaction times for di�erent feature combinations be-

tween target and distractors with regard to the relevant dimension. The light

columns indicate reaction time for the target-distractor combination speci�ed at

the bottom of the respective column, while the dark columns refer to the inverse
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Figure 2.5: Interactions of the relevant dimension (color or form) with speci�ca-

tion or target presentation respectively

situation, e.g. a green target and yellow distractors for the leftmost dark column.

Only those trials with target presentation are taken into account.

With regard to color combinations, a signi�cant in�uence on reaction time

was found (F (5; 30) = 6:23; p < 0:001). The combinations yellow-green and

green-yellow induced signi�cantly longer reaction times than all other combi-

nations except for blue-green. Form combinations revealed a reliable e�ect as

well (F (5; 30) = 5:36; p = 0:001). The combination square-triangle led to reli-

ably longer reaction time than the other combinations apart from the inverse

combination triangle-square. The combination triangle-square, in turn, caused

signi�cantly longer reaction time than both square-circle and triangle-circle.

With regard to the �no target� condition, do the item features still a�ect

reaction time? No such in�uence was found in the case of color search (see Figure

2.7). Although the mean value for blue items was lower than for both yellow

and green ones, this di�erence did not reach signi�cance. Form search, however,

showed a signi�cant e�ect (F (5; 30) = 3:05; p = 0:024). Stimuli consisting of

triangles led to signi�cantly longer reaction time than those consisting of squares

or circles. Some of the subjects reported distributions of triangles to constitute

especially �complex� structures which impair the detection of a possible target.

All in all, the contrasts between yellow and green as well as between squares

and triangles exhibit a tendency towards longer reaction time in comparison to

other contrasts in the respective dimension. Non-target displays consisting of tri-

angles induce longer reaction time than others. These relatively small di�erences

are compatible with our demand for ecological validity. They are unlikely to exert

an in�uence on the subjects' gaze trajectories which could decrease the validity
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Figure 2.6: Reaction time for di�erent combinations of target-distractor features

of results. Perfectly equal detectability of di�erent items is neither ecologically

adequate nor strictly required for experimental control.

As mentioned in Section 1.5, comparative visual search can be considered a

composition of visual search and picture matching. Since we have investigated

the properties of the chosen items with regard to visual search now, it is near at

hand to take a look at picture matching as well.

2.2.3 Picture Matching and Retinal Eccentricity

A task of picture matching, using the introduced items, was performed in our

group. In his experiment, Marcus Becker combined a serial same-di�erent task

with the investigation of the in�uence by retinal eccentricity.

As discussed in Section 1.2, visual attention can be shifted without employing

eye movements. A divergence between the foveal gaze position and the attended

region of the visual �eld, however, leads to reduced visual acuity with regard

to the attended information. Therefore, shifts of attention are usually accompa-

nied by eye movements in order to provide optimal visual acuity. During rapid

processes of scanning like in comparative visual search, small �covert� shifts of

attention might occur within �xations. These covert shifts have been investigated

in numerous studies. Typically, in these studies subjects are asked to constantly

�xate a marker displayed in the center of the screen. They are presented with

target items appearing at di�erent positions on the screen for variable durations.

Their task is to press a speci�c button corresponding to the type of target, i.e.

they have to recognize the type of target without moving their gaze position away

from the marker. Experiments of this kind are well-suited for the investigation
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Figure 2.7: Reaction time depending on distractor features in trials without target

presentation

of the nature of attentional shifts, since the time needed to direct attention to

speci�c locations can be estimated (for a review, see e.g. Posner, 1980; Wright &

Ward, 1994). There is evidence for these shifts to have an approximately constant

maximum velocity. According to the �ndings of Tsal (1983), this velocity is about

one degree of visual angle per eight milliseconds. However, these results must be

viewed with discretion, because they are based on rather rough measurements.

With regard to our intended research, it would be interesting to know the

�costs� of covert attentional shifts needed for the identi�cation of the elementary

items. This knowledge would enable us to estimate the amount of covert shifts

being applied during comparative visual search, which is important for both the

interpretation of eye-movement patterns and the construction of computational

models. The results of Becker's experiment provide some information in this re-

spect.

In his experiment, subjects were presented with an item of random color and

form in the center of the screen. The possible colors and forms were identical to

those chosen for comparative visual search. After one second, the presented item

was replaced by a white dot which served as a marker. Subjects were to �xate

on this point all the time, while a second item was shown either above, below,

to the left of, or to the right of the marker. Corresponding to the experiment of

visual search, subjects had to press the left button on a computer mouse if the

two items di�ered in the relevant dimension (which was known), and to press the

right button otherwise. Three di�erent independent variables were systematically

varied:

Relevant dimension: The relevant dimension was either color or form. Subjects
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Figure 2.8: Error rate depending on retinal eccentricity

always knew this dimension in advance.

Retinal eccentricity: The retinal eccentricity of the second item was randomly

varied among four levels: 0.5 degrees (as a baseline), 5.5 degrees, 10.5 de-

grees, and 15.5 degrees of visual angle (the size of the fovea is about 1 degree

of visual angle). It should be noted that eccentricities of 10.5 degrees and

especially 15.5 degrees are unlikely to occur in our scenario of comparative

visual search.

Direction of the shift: As mentioned above, there were four possible, random-

ized directions of shifts between the two items: Up, down, left, right.

Each of the ten participating subjects made ten judgements for each of the

possible combinations, resulting in a total of 320 trials per subject. The empiri-

cal error rates and reaction times were entered into a three-factorial analysis of

variance.

Retinal eccentricity revealed a signi�cant e�ect on error rate (F (3; 27) =

4:58; p = 0:010). Error rate was signi�cantly higher for retinal eccentricity of

15.5 degrees (14.38%) in comparison to all other eccentricities (2.97% for 0.5

degrees, 3.60% for 5.5 degrees, and 4.23% for 10.5 degrees); no other contrasts

reached signi�cance. These data are shown in Figure 2.8. Neither of the factors

relevant dimension and direction of the shift exerted a signi�cant e�ect on the

error rate.

The analysis of reaction time led to a similar pattern of results. The main

e�ect of retinal eccentricity reached signi�cance (F (3; 27) = 11:10; p < 0:001).

An eccentricity of 15.5 degrees induced longer reaction time (819.1 ms) than the
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Figure 2.9: Reaction time as a function of the second item's retinal eccentricity

other levels (775.0 ms for 0.5 degrees, 752.8 ms for 5.5 degrees, and 768.4 ms

for 10.5 degrees). The other contrasts remained below signi�cance. Although the

diagram shown in Figure 2.9 seems to suggest that the comparison of colors can be

accomplished faster than the comparison of forms, this di�erence is not reliable.

Finally, the direction of the shift was not signi�cant either.

These results indicate that shifts of attention with an amplitude of 5.5 degrees

or 10.5 degrees of visual angle do not induce noticeable �costs� of reaction time

or error rate. Only the condition of 15.5 degrees reveals a signi�cant e�ect. This

value of retinal eccentricity, however, is not relevant for our intended experiments

(see above). If subjects employed attentional shifts of this amplitude they would

not need to move their eyes at all during search, which is absolutely implausible.

We must take into account, however, that the situation in comparative visual

search is more complex than in the experiment described here. During compar-

ative search, the information of other items shown in the display interferes with

the currently relevant information. Therefore, stimulus areas presenting accumu-

lations of objects can be expected to induce stronger e�ects of retinal eccentricity

than those measured in Becker's experiment. This point is supported by numerous

studies in visual search (e.g. Mackworth, 1976). Nevertheless, the results suggest

that shifts of attention are very e�cient in our scenario. It is reasonable to assume

that subjects apply many covert shifts of attention in addition to eye movements

in order to reach optimal search e�ciency. This �nding constitutes an important

baseline for the interpretation and modelling of results.

The error rates and reaction times for individual feature combinations were an-

alyzed as well. A speci�c combination of colors, namely yellow and green, turned

out to induce substantially higher error rates than other combinations in situ-
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ations of high retinal eccentricity (15.5 degrees). As mentioned before, possible

retinal eccentricities during comparative visual search are clearly lower, hence

this �nding is irrelevant for the judgement on our choice of item colors.

All in all, the chosen items have proven to be well-suited for the intended

research. The encountered di�erences between individual colors and forms are

unlikely to interfere with experimental control. Furthermore, the basic properties

of the items with regard to visual search and picture matching have been deter-

mined, resulting in valuable baseline data. These data will be referred to in the

context of comparative visual search.

Logically, the next step consists in the composition of these elementary items

to stimulus pictures. The following section explains how appropriate distributions

of items can be achieved.

2.3 Algorithmic Generation of Item Distribu-

tions

Wishing to avoid the in�uence of any a-priori structural information, we might be

tempted to use a simple random distribution for stimulus locations and features.

Such simple choice, however, has several problems and therefore needs speci�c

re�nements:

� Items may overlap and thus constitute new, �hybrid� forms which are likely

to induce distinct recognition processes and to violate the simple parametric

structure of the stimuli. Hence, there has to be a minimum distance of 20

pixels between neighboring items. Apart from this constraint, items are to

be placed homogeneously randomly within a rectangle of 260�400 pixels in

each hemi�eld.

� It may happen that in some stimuli speci�c colors or forms are strongly

overrepresented. Inhomogeneous sets of items can lead to deviating search

strategies, biasing the experimental results. Hence, we demand that each of

the three colors and the three forms must be equally represented, i.e. there

have to be 10 triangles, 10 blue items etc. No speci�c combinations of color

and form may appear more frequently than others.

� A homogeneous random function is unlikely to yield large regions of same

colors or forms within a stimulus. The occurrence of such regions, however,

is an important precondition for investigating the e�ects of item unifor-

mity versus item variety on eye movements. Thus, we should use a random

function that tends to create regions of same attributes more likely than a

homogeneous random distribution would do.

Obviously, the �rst two points can easily be achieved, whereas the third one

requires the mathematical de�nition of color and form segregation respectively and

an algorithm being capable of generating color and form distributions according
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to these two parameters. In order to make the generation of stimuli transparent

and replicable for other scientists, a detailed mathematical description is given in

the following.

As a starting point, we give a formalized description of the stimulus patterns:

A pattern is a set of N items (objects)

o
(n) =

0
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the item's form (1 = square, 2 = triangle, 3 = circle), and o
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c

is the item's color

(1 = blue, 2 = green, 3 = yellow). In our experiments, every pattern consists of

two almost identical parts and in the following these two hemi�elds are described

separately, so N = 30.

Now the variable form segregation �f is introduced. It can be de�ned as the
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and the mean distance �
df;id between those with identical forms:

�f =
�
df;dif

�
df;id

(2.2)

�
df;dif =

P
N

n1=1

P
N

n2=n1+1;o
(n1)

f
6=o

(n2)

f

d(n1; n2)

P
N

n1=1

P
N

n2=n1+1;o
(n1)

f
6=o

(n2)

f

1
(2.3)

�
df;id =

P
N

n1=1

P
N

n2=n1+1;o
(n1)

f
=o

(n2)

f

d(n1; n2)

P
N

n1=1

P
N

n2=n1+1;o
(n1)

f
=o

(n2)

f

1
(2.4)

d(n1; n2) =

q
(o

(n1)
x � o

(n2)
x )2 + (o

(n1)
y � o

(n2)
y )2 (2.5)

For example, �f = 2 means that, on average, items of di�erent forms are twice

as distant from each other than items of the same form. In our setting of 30

items and three di�erent forms this would correspond to a strongly segregated

distribution containing large uniform areas. �f = 1 means that there is no e�ect

of segregation at all. Fig. 2.10 illustrates the correspondence between �f and the

distribution of forms at three di�erent levels.

Analogously, we de�ne the parameter �c of color segregation. An iterative

algorithm for generating color and form distributions to given parameters of form

segregation �f and color segregation �c can easily be implemented. Starting at a

random distribution, this algorithm randomly selects pairs of items and exchanges

their colors or forms if this exchange shifts the distribution's segregation levels
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Figure 2.10: Examples of item distributions at a form segregation �f of (a) 1.0,

(b) 1.3, and (c) 1.8.

towards the given parameters. The algorithm terminates as soon as the di�erence

between the actual and the desired �f and �s falls below a certain threshold.

In our experiment we used this algorithm to compute the stimuli. For each

scene, �f and �s were set to random values ranging from 1.0 to 1.3. Figure

2.11 presents an example for the resulting type of �abstract� stimuli. The right

hemi�eld is a copy of the left one which is horizontally shifted by 360 pixels. A

form mismatch is integrated into this stimulus: One of the squares in the left

hemi�eld is replaced by a triangle in the right hemi�eld. For technical reasons,

in the following chapters the search pictures will not be shown in their original

colors, but as items of di�erent grey levels on a white background.

Stimuli of this kind will be used in our experiments of comparative visual

search. These stimuli can be considered as the �abstract variant� of typical

original-and-fake pictures (see Figure 1.7). All high-level semantic information

has been eliminated for the sake of experimental control.

Speaking of experimental control, we must de�ne adequate independent and

dependent variables in order to make use of the excellent experimental conditions

provided by the stimuli. The fact that the stimuli are determined by a set of

quantitative parameters should ideally lead to quantitative results with regard

to the in�uence of stimulus parameters on eye-movement parameters. Therefore,

we need suitable mathematical de�nitions of variables for the analysis of eye-

movement data.

2.4 Analysis of Empirical Data

2.4.1 How to De�ne Appropriate Independent Variables

It is reasonable to assume that only local information in the vicinity of the gaze

position is processed during comparative visual search. Although there might be
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Figure 2.11: Example of a randomly generated stimulus picture

an initial parallel phase of stimulus inspection as in standard visual search, target

detection itself cannot be accomplished in parallel. Thus, we can assume gaze

trajectories to be controlled by local stimulus features. This assumption motivates

the application of a small set of local stimulus parameters as independent variables

in order to melt down the high dimensionality of the search pictures into their

essential features.

This is realized by de�ning continuous scalar functions on the two-dimensional

picture plane that yield local values for a certain parameter. Altogether, three

functions of this kind have to be de�ned for every point p = (px; py)
T on the

screen:

Item density %(p): This function tells us how closely items are packed at the

location p. The value of %(p) increases with the concentration of items at

this point, regardless of their color or form.

Color entropy Sc(p): Color entropy is a measure of local color �disorder�. If

items of all three colors are equally represented in the range of p, the func-

tion Sc(p) will reach its maximum value. For example, if there are only

green items around p without exception, Sc(p) will yield a value near its

absolute minimum. It is important that this function has to be de�ned in

such a way that it is completely uncorrelated with item density.

Form entropy Sf (p): This function is the equivalent to color entropy with re-

spect to the items' forms. We demand that form entropy is neither correlated

with item density nor with color entropy.
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The following two subsections give precise mathematical de�nitions of the local

parameter functions we used in evaluating our eye-movement data.

Item Density

How do we get a smooth continuous density function from a distribution of dis-

crete items as de�ned in Appendix A? A suitable solution to this problem is to

de�ne a weight function w(n;p) which yields a value for the in�uence of item

o
(n) on the item density at a reference point p = (px; py)

T . Obviously, this in-

�uence has to decrease with growing distance between the item and point p. An

appropriate choice of w(:; :) is a Gaussian function applied at that distance:

w(n;p) = exp
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y
� py)

2

2�2

!
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The standardization coe�cient does not appear in this equation, because the

standard deviation � remains constant throughout the evaluation. The choice

of � cannot be perfectly accomplished since there is no invariant �focus size� in

human vision. We decided to use a value of 25 pixels on the screen or one degree of

visual angle respectively, corresponding to the size of the idealized human fovea.

To calculate the local item density %(p), the weight functions for all items are

summed up as follows:

%(p) =
NX
n=1

w(n;p) (2.7)

How plausible are the results yielded by this density function? Fig. 2.12

demonstrates its e�ect on the right hemi�eld of the example picture previously

shown in the introduction (Figure 2.11). By comparing the underlying item dis-

tribution with its density �landscape�, a clear and plausible correspondence can

be seen. For example, the item accumulation in the upper left corner of the pic-

ture causes the highest density �hill�. Naturally, the picture's left hemi�eld would

show an identical landscape, because its items are located at the same positions.

%(p) ranges approximately between 10�3 and 3:9, but less than 1% of its values

exceed 3:0.

Form and Color Entropy

Is it possible to de�ne a measure of entropy in a similar way as for density? Here,

we not only have to take into account the location of items, but their identity

as well. This can be achieved by calculating separate densities %1(p), %2(p), and
%3(p) for the presence of squares, triangles, and circles respectively:

%i(p) =
NX

n=1;o
(n)
f

=i

w
�(n;p) ; i = 1; 2; 3 (2.8)
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Figure 2.12: Item density %(p) in the example picture's right hemi�eld

Then, form entropy Sf(p) can be computed in analogy to the information entropy

of a probability distribution:

Sf(p) = �

3X
i=1

%i(p)

%�(p)
ln

%i(p)

%�(p)
; where %

�(p) =
NX

n=1

w
�(n;p) (2.9)

If we used the function w(�; �) from Equation (2.6) as w�(�; �), Sf(p) would yield

the aspired values of form entropy, but also exhibit the undesirable feature of

being correlated with the local item density %
�(p). This is caused by the fact

that in regions of low item density there are large areas being dominated by the

in�uence of a single item and thus presenting low entropy.

Obviously, a di�erent choice of w�(�; �) is required, implying some standard-

ization to compensate for item density. We could vary the standard deviation �

of the Gaussian weight function (2.6), in such a way that %�(p) is constant for all
p. In other words, the implemented �human focus� would expand at lower and

narrow at higher local density, a plausible solution.

However, simply adjusting � would create an e�ect of overcompensation in

the peripheral areas. In a region of low density, for example, � would increase

or, from another point of view, � would remain constant and the distances be-

tween all items and p would shrink by the same factor. Although this induces a

standardized item density in the proximity of p, there is now a disproportionate

high in�uence of the approached peripheral items. In a tendency, a signi�cant

in�uence of more items leads to higher entropy values and thus to a correlation

between entropy and density.
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A possible solution is found by varying the distances between the items and

p by the same o�set �d instead of the same factor. Occuring distances lower

than zero are rounded to zero. Using an o�set ensures a peripheral item in�uence

which is independent of %(p). The resulting equation reads as follows:

w
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@
�
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The o�set �d has to be chosen in such a way that

NX
n=1

w
�(n;p) = cs = const ; (2.11)

which can easily be achieved by an iterative procedure. In all experiments we set

cs = 3:0.

Figure 2.13: Form entropy Sf(p) in the example picture's right hemi�eld

Fig. 2.13 shows a graph of the resulting function Sf (p), again referring to

the right hemi�eld of the example picture in Figure 2.11. Once more, we �nd

a plausible correspondence between the parameter function and the underlying

picture. The group of four triangles at the right side induces a steep �valley� of

form entropy, and the mixed accumulation of di�erent forms in the upper left

corner causes the highest plateau.

Color entropy Sc(p) can be de�ned analogously. Entropy values range from

10�3 to ln 3 � 1:1, where values below 0:3 have a frequency of less than 3%.
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2.4.2 Measurement of Dependent Variables

What are the dependent variables in our experiment that yield most information

about important features of search and comparison processes? Altogether, we

found four basic and �ve derived variables that carry essential information. In the

following, the methods of measuring these variables are described in full detail

in order to make the partially complicated analysis of the gaze-position data

transparent.

Motivated by the subjects' eye-movement patterns observed in pre-tests, a

distinction between two successive phases in comparative search was introduced:

During a �rst phase, termed search and comparison, subjects are likely to per-

form a quick scan in order to e�ciently locate the mismatch. On encountering a

�suspicious� region, a second phase, detection and veri�cation, is initiated. The

transition from the �rst to the second phase is de�ned to occur when the following

two conditions are met: (a) the subject's gaze position gets closer than 50 pixels

(i.e. two degrees of visual angle) to any of the target items and (b) a manual

reaction is registered within the next two seconds. The two phases are analyzed

separately in order to properly distinguish search and comparison from cognitive

processes involved in the ascertaining of a mismatch.

Variables marked by an asterisk are not measured during the �rst second after

a stimulus is presented, in order not to let the subject's �phase of orientation�

in�uence the results. A plus mark indicates a variable being measured separately

for the search and for the veri�cation phase.

Reaction time (RT): This is the total search time measured from the presen-

tation of the stimulus to the subject's manual reaction.

Number of �xations per picture+ (NF): This is the total number of �xations

per search process, accounting for �xations in both hemi�elds.

Duration of �xation�+ (FD): Duration of �xation is simply the value in mil-

liseconds registrated by the eye tracker for each �xation. Its temporal reso-

lution is 16.7 ms with regard to the OMNITRACK1 system and 4 ms with

regard to the EyeLink system.

Saccade length�+ (SL): Saccade length is measured as the distance in pixels

between two successive �xations in the same hemi�eld. If the dependence

of SL on local stimulus parameters is investigated, this local parameter

is measured and analyzed separately at the saccade's starting or landing

point respectively. This method turned out to yield more valid and detailed

information than the analysis of the arithmetic mean of these values or of

the parameter integral along the saccade.

Number of successive �xations within the same hemi�eld�+ (FW):

This is the number of successive �xations produced by a subject without

changing into the other hemi�eld. How should a local parameter that

corresponds to a series of �xations be measured? Using the arithmetic
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mean of the parameters measured at each �xation point would result in

a bias, because the number of �xations that enter into the calculation

is not constant. With a growing number of �xations the probability for

the arithmetic mean to yield extremely high or low values decreases.

Consequently, an analysis of FW as a function of any local parameter

would be superimposed by a Gaussian distribution if performed in the

way described above. Another method of determining the parameter value

could be to measure the local parameter at the center of the �xations in

question. However, the fact that subjects prefer to �xate areas with item

density above average causes a problem: The more �xations are to be

accounted for, the more likely their center is to be in a region of medium

density. Accordingly, an analysis of this kind would yield an arti�cial

negative correlation between FW and local item density. A simple solution

is found by evaluating just the local parameters of the �rst �xation that

occurs after a saccade between the hemi�elds. In other words, we pose the

following question: How many successive �xations occur within the same

hemi�eld if the �rst one is located in an area with speci�c local parameter

values?

Probability of missing the target (PM): If the subject's gaze position suc-

cessively enters both target areas (radius = 50 pixels) with only one saccade

between visiting each area, a target passage is counted. If, 1.5 seconds later,

the gaze-position has left the target area again and the subject does not

press the button within the following 2 seconds, a missing of the target is

counted. It is possible (and almost certain) that another target passage is

registrated during the same search process. FW is the quotient of the target

missing and the target passage counter.

Additional search time (AT): AT is the amount of time that is �wasted� by

missing the target. It is measured from the start of the �rst target passage

of a trial to its �nal one. This means that if the target is not missed at all,

AT has the value 0.

Area coverage per �xation� (AC): During a single search process, the subject

produces a �xation pattern on the stimulus picture. The average area in

the picture covered by one �xation is the desired value, but we need an

appropriate method of determining it.

Fig. 2.14 shows an outline of such a �xation pattern with a marked �xation f

in its center. The area covered by this �xation can be de�ned by introducing

four quadrants with the origin f . These quadrants are rotated by an angle of

45o with respect to the screen coordinate system, because saccade directions

were found to tend to both the horizontal and to the vertical axis. Now four

distances d1; : : : ; d4 between f and the nearest neighboring �xation in each

quadrant are measured and their arithmetic mean � is taken. In the case

of no �xation in one or more quadrants, � is calculated regarding only the
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Figure 2.14: Fixation point f and distances d1; : : : ; d4 to its nearest neighboring

�xation in each quadrant

remaining distances. We de�ne the area AC covered by f as

AC = �(
�

2
)2 (2.12)

Only �xations in the same hemi�eld as f are considered, and, naturally,

only search processes with more than one �xation per hemi�eld are evalu-

ated. Fixations registrated later than 7 seconds after the presentation of the

stimuli are not evaluated in order to avoid an overlapping of two or more

successive passages of the search process through the same region.

Speed of processing� (SP): Due to the observation that in almost all cases

subjects scan the display from the top to the bottom or vice versa, SP ac-

counts only for the vertical component (y-component) of eye movements. It

is de�ned as the distance between the y-coordinate ystart of the �rst �xation

and the y-coordinate yend of the last �xation within the measuring range

divided by the di�erence in time between the starts of these two �xations

(tend� tstart). Consequently, it is measured in pixels per second. Figure 2.15

illustrates the determination of the measuring range. The �rst �xation to

be recorded at least one second after stimulus onset is always taken as the

starting point of the measuring range (ystart, tstart). The following �xations

are successively processed; their y-distance to ystart is calculated and the

current maximum y-distance derived. As soon as any y-distance is shorter

than the maximun y-distance by more than 50 pixels (caused by yreturn

in the example), the algorithm stops. If the veri�cation phase is initiated

(see above) the algorithm stops as well. The �xation corresponding to the

maximum y-distance is taken as the end point of the measuring range (yend,

tend). This de�nition of SP accounts only for the �rst, straight part of a gaze

trajectory, which is an appropriate standardization providing comparability

between trials, subjects, and experiments relatively independently of both

the starting points of scanpaths and of the probability of missing the target.
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Figure 2.15: Measurement of SP in a gaze trajectory (left side). The diagram

(right side) shows the vertical component of the gaze position as a function of

the time after stimulus onset.

2.5 Summary

In this chapter, we have established the basic scenario for comparative visual

search. We chose three simple geometrical forms (square, triangle, and circle) and

three fully saturated colors (blue, green, and yellow) for the elementary items. In a

pre-test, the size of these items was adjusted in such a way that they appeared to

have identical size. While the hue of the items' colors was determined by technical

restrictions, their brightness was empirically adjusted for equiluminance between

all items.

In a visual search experiment, both the colors and the forms proved their

capability to create strong �pop-out� e�ects. Furthermore, the results of the study

revealed color targets to be detected faster than form targets. If subjects were told

the relevant dimension (color or form) in advance, their average reaction time was

shorter than without this knowledge. These �ndings are particularly interesting,

because we can expect to observe corresponding e�ects in comparative search.

Another study investigated the in�uence of retinal eccentricity on the recog-

nition of item features. The results suggest that even eccentricities of ten degrees

of visual angle do not severely impair recognition, since neither reaction time nor

error rate increases signi�cantly. Therefore, we should expect a large proportion

of covert shifts of attention during comparative visual search which are � as a

matter of course � invisible to eye-movement analysis.

We decided on two � except for the mismatch � identical random distribu-

tions of these items to constitute the stimuli for comparative visual search. Three

constraints are applied to the random function: First, there has to be a mini-

mum distance between neighboring items; second, the items' colors and forms

have to be counterbalanced within the stimuli; and third, there is a tendency to-

wards the creation of uniform areas for the investigation of homogeneous versus
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heterogeneous local item con�gurations.

The independent variables to be investigated were chosen as local item density,

local color entropy, and local form entropy. While density measures the accumula-

tion of objects at a speci�c location, entropy is a measure for the local �disorder�,

i.e. the heterogeneity of the respective feature in a region of the stimulus. Depen-

dent variables are basic eye-movement variables like �xation duration and saccade

length, but also additional variables that were speci�cally derived for comparative

visual search, e.g. speed of processing.

Thus, we have prepared the �ground� for our research. The following Chapter

3 will describe the �rst experiment conducted on this basis.
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Chapter 3

Experiment A: The Basis

Scenario

3.1 Variables and Hypotheses

At this point, all necessary �tools� for our research are prepared: First, we have

de�ned suitable stimuli for comparative visual search and tested the basic prop-

erties of elementary items. Second, we have developed promising methods, i.e.

independent and dependent variables, for the analysis of empirical data. So, what

is the best plan for the conduction of experiments?

First of all, the basis scenario, as de�ned in the previous chapter, has to be

thoroughly investigated. All possible e�ects of the independent variables on the

dependent ones have to be tested in order to establish basic �ndings about mental

processes and their interaction during comparative visual search. These �ndings,

in turn, are likely to motivate the examination of further, possibly more speci�c

aspects.

As a consequence, the stimuli and/or the task will be modi�ed in order to

provide a basis for the investigation of emerging questions. Since the results of

further experiments raise further questions, an �explorative iteration� of experi-

ments can be conducted. Proceeding this way, the understanding of comparative

visual search can be extended in a �exible and sensible manner.

At a certain stage of knowledge gained about this paradigm, we should start

to develop computational eye-movement models incorporating this knowledge.

Starting with a sophisticated model, however, is probably an inappropriate strat-

egy, because the detection of essential mistakes in complex approaches can be

di�cult. Instead, it might be useful to start with a very simple model. The com-

parison of scanpaths generated by this model with empirical gaze trajectories

could indicate the requirements for a more adequate model.

A plausible model, yielding scanpaths that resemble the empirical ones, can

substantially support the results of our research. The integration of empirical

research and computer simulation is a powerful approach to form an extensive

understanding of complex processes. Therefore, the development of computational
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models constitutes the �nal part of this work.

A central issue of our �rst, basic investigations of comparative visual search is

the following question: How does comparative search proceed? Since the number

of items in each hemi�eld is relatively large, comparative search must proceed in

several steps. Accordingly, saccades within one hemi�eld should be distinguishable

from longer saccades between hemi�elds. The oculomotor parameters should, to

some extent, depend on the local structure of the display, in particular on the

attributes that hold for the �xation point in question. As a matter of course,

the global gaze trajectories should be in�uenced by the global structure of the

stimulus.

Let us consider three basic strategies that subjects might apply. These global

strategies are extreme in that they are not likely to be found in their genuine

form; however, they may serve to illustrate the range of possibilities and provide

three useful points of reference for a discussion.

3.1.1 The Travelling Salesman Strategy

A �rst strategy could be termed the �travelling salesman� strategy. Its name

is derived from the travelling salesman problem (TSP), which is a well-known

paradigm in computer science: Starting from his home, a salesman has to visit

a number of certain cities before he can return. Of course he wants to save time

and energy, so he tries to �nd the shortest round-trip that is possible. If subjects

use an analogous strategy for their scanpaths, they would be expected to prefer

object-to-object paths of minimal length.

In comparative search, however, the situation is di�erent from the standard

TSP: First, subjects do not need to return to the starting point after having

scanned all the items in the display. Second, the task of comparing corresponding

items in�uences the subjects' strategy. Due to the limited capacity of working

memory it is not possible to �rst memorize all information given in one of the

hemi�elds and then compare it to the other hemi�eld. Instead, subjects have to

switch between the hemi�elds during the search process and thus to deviate from

the �optimal� scanpath in terms of the TSP. Hence, there is a �trade-o�� between

memory usage and scanpath minimization. Let us assume � for the bene�t of a

simple model � that subjects memorize only one item at a time. What could we

expect their scanpaths to look like?

After memorizing the �rst item in any of the two hemi�elds (A), it is compared

to its counterpart in the other hemi�eld (B). In order to minimize the length of

their scanpaths, subjects are likely to memorize the next item in hemi�eld B

rather than to switch back to hemi�eld A and memorize the next item there.

This means that after the memorization of the �rst item, subjects are likely to

process successively two items in the same hemi�eld: The item stored before is

veri�ed and a new one is stored.

While the search process is likely to start at the top of the display, the problem

for the viewers is to �nd the optimal scanpath � the one that touches every item

pair with as short saccades as possible. On the assumption that two �xations fall
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to each item pair, the average number of �xations as well as �xation duration

should be constant, and there should always be two successive �xations within

the same hemi�eld. However, if �xations cover more than one item, the travelling

salesman strategy would become indistiguishable from the strategies below.

3.1.2 The Searchlight Strategy

Another strategy could be to scan the display in a �searchlight manner�: Given

a foveal area which is �xed in size, each �xation would cover a certain subregion

of the display. While the size of the area covered with each �xation would be

constant, the number of items covered would depend on the density of the items in

that particular subregion. Thus, topology now determines which particular items

are processed during any �xation. If the size of the area covered with each �xation

were decreased, the searchlight strategy would eventually turn into the travelling

salesman strategy; on the other hand, if the size of the area were considered

variable, the searchlight strategy would become indiscriminable from clustering,

a further candidate strategy discussed below. Anyway, the viewpoint here is a

spatial one � to scan the display with a minimal number of �xations so that every

item up to the target item is visited at least once (and, at best, only once), while

keeping saccades as short as possible. Similarly as for the travelling salesman

strategy, two successive �xations per �visit� of one of the hemi�elds would be

expected. With the searchlight strategy, the spatial distribution of items in the

display should be an important determinant of �xation duration and saccade

length; one would expect longer �xations on subareas with a high item density,

which is also where saccades should be preferentially aimed at.

3.1.3 The Clustering Strategy

A third strategy could be to proceed cluster by cluster: With each �xation, sub-

jects might process a certain number of items. These items would be assumed to

be the maximal subset of items next to the �xation point which can be processed

below a speci�c �e�ort threshold�. It is plausible to assume such a threshold,

because working memory and visual attention limit the subjects' capacity of pro-

cessing. How should the e�ort of processing and its threshold be de�ned? We can

consider at least three extreme cases:

(1) De�nition by number: A cluster consists of the k items closest to the �xation

point.

(2) De�nition by distance: A cluster consists of all items within a circle of radius

r around the �xation point.

(3) De�nition by item attributes: A cluster consists of those items that have

the same color and form as the one next to the �xation point.
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While de�nition (1) accounts for the limited capacity of working memory, it

ignores the items' features, i.e. items of the same color or form could be pro-

cessed with the same e�ort as items of mixed colors and forms, which is rather

implausible. Furthermore, the distances between the items are not considered; for

example, two items with a distance of 15 degrees of visual angle between them

could be processed as e�ciently as two items with a distance of 2 degrees between

them. De�nition (2) is more adequate with respect to visual attention, however, it

does not consider any parameters of working memory. This de�nition would turn

the clustering strategy into the searchlight strategy. Finally, de�nition (3) takes

into account an in�uence of item features on processing e�ort. It is completely

inadequate, however, in its representation of memory capacity: Any number of

items could be memorized at the same time.

Since none of the above criteria is su�cient by itself to de�ne a plausible

threshold for the e�ort of processing, it seems reasonable to combine the criteria:

The e�ort should increase with the number of items, with their eccentricity, and

with the entropy of their attributes. If the local item features enable the use of a

large cluster, one or more within-hemi�eld saccades may be employed during its

memorization and comparison.

With such a clustering strategy, one would expect the average number of

�xations to be less and �xation duration to be longer than with the travelling

salesman strategy; to some extent, �xation behavior should depend on the infor-

mation content, or entropy, of the items in a cluster. Saccades should be relatively

short since the majority of saccades can occur within hemi�elds. Again, in or-

der to avoid unnecessary saccades, subjects are supposed to perform successively

veri�cation and memorization of clusters within the same hemi�eld.

3.1.4 Strategy Issues

A common viewpoint to characterize the three candidate strategies would be

in terms of the minimization of a cost function. While the travelling salesman

strategy can be viewed as an attempt to optimize search by keeping the overall

length of the scan path to a minimum, the searchlight strategy can be taken as

an attempt to optimize search by minimizing the total number of �xations in

an exhaustive scan of the relevant subregions while keeping constant the area

covered with each �xation. In contrast, the clustering strategy can be viewed as

an attempt to optimally exploit the capacity of working memory. This is achieved

by grouping the items in such a way that memorizing clusters can proceed with

as little e�ort as possible. In face of the limited processing capacity, the objective

behind the clustering strategy is to subdivide the items into as few clusters as

necessary which comprise as many items as possible that are maximally alike. So,

for one, the economical principles featured in the three strategies are di�erent.

Another di�erence lies in the segmentation of the set of items to be compared.

First of all, the strategies di�er in the amount of information processed with

each �xation. The number of items covered per �xation is one for the travelling

salesman strategy. In contrast, both the searchlight strategy and the clustering
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strategy maintain that with each �xation a variable number of items is processed.

According to the searchlight strategy, that number is determined by the item

density at the �xation point since the size of the area covered is thought to be

�xed. According to the clustering strategy, however, the number is determined

within the limits of �xed-capacity working memory by some capacity oriented

variables such as the variance, or entropy, of items in terms of location, color,

and form.

In addition, there are qualitative di�erences. In order to keep the length of

the scanpath to a minimum, it would su�ce to roughly analyze the spatial lay-

out of the items to determine their location. Thus, information about the spatial

location of the items is necessary and su�cient for optimization of the scanpath

in accordance with the travelling salesman strategy. Employing the searchlight

strategy, however, is somewhat more exacting. The searchlight strategy presup-

poses that subregions have been coarsely analyzed as to the density of items, in

order to �xate subregions with many items by preference and to avoid �xating

empty ones. Thus, the information necessary and su�cient for the searchlight

strategy is spatial location plus local density. An even more comprehensive anal-

ysis is necessary to license the clustering strategy. A cluster can be de�ned as a

group of items that is similar with respect to dimensions such as location, color,

or form. It follows that various feature dimensions of the items must be analyzed

in conjunction in order to achieve perceptual grouping. The clustering strategy

must take into account not only where the items are located and how far they

are apart (density) but also whether or not neighboring items are alike in color

or form (entropy). This raises the question to what extent we have to consider

also the costs for performing the cost minimization itself.

From the above considerations it follows that the travelling salesman strategy

could be characterized by the occurrence of approximately as many �xations

as there are items in each hemi�eld: On average, a mismatch can be detected

after scanning 50% of the item pairs (disregarding any extra �xations due to

detection failures or ascertaining). In contrast, both the searchlight strategy and

the clustering strategy should take fewer �xations since more than one item can

be processed with each �xation. A summary is given in the �rst row of Table 3.1.

Predictions can also be made for �xation duration. In the case of the travelling

salesman strategy, the duration of �xations should be constant. In the case of the

searchlight strategy, �xation duration should depend on spatial location, that is,

on item density. In the case of the clustering strategy, item density should also

take an e�ect; in addition, however, variance in item features like color or form

(entropy) will be taken into account. Since it only makes sense to talk of variance

when a �xation covers more than one item, we expect an interaction e�ect of item

density and entropy. The second row of Table 3.1 provides a summary of these

expectations.

Also, saccades should be relatively long when assuming a travelling salesman

strategy as compared to either a searchlight or a clustering strategy. More speci�-

cally, saccade length should be a function of the spatial layout of the display, that

is, of the local density of the items, for any of the three candidate strategies. Be-
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Table 3.1: Hypotheses about expected values and factors for the candidate strate-

gies (by dependent variables)

Variable �Travelling

Salesman�

�Searchlight� �Clustering�

Number of

�xations

= n (items per

hemi�eld)

< n < n

Fixation

duration

constant f(density) f(density, entropy)

Saccade

length

f(density) f(density) f(density, entropy)

Successive

�xations

=2 =2 >2; f(density, entropy)

sides, for the clustering strategy, saccade length could be a�ected by interactions:

as a cue to clustering, similarity in location (item density) may be diminished by

variance in item features (entropy). These expectations are summarized in the

third row of Table 3.1.

Finally, the number of �xations that occur in succession before changing to the

other hemi�eld should be higher with a clustering strategy than with any of the

other search strategies. This is because, if the local parameters (low entropy and

density) allow the subjects to process large clusters, the information gathered

during several consecutive �xations might be accumulated in working memory

before proceeding to comparison. In addition, the factors that determine �xation

duration should also determine the number of successive �xations within the same

hemi�eld with a clustering strategy. A summary is given in the last row of Table

3.1.

How should the above hypotheses be tested in this �rst study? Technically

speaking, the design of the study was a factorial with repeated measures on

all independent variables. Independent variables were type of mismatch (color

versus form) and three local stimulus parameters � as de�ned in Section 2.4.1

� for each �xation point registered: Item density %(p), color entropy Sc(p), and

form entropy Sf(p) at the point p in question. An important feature of these

local parameters is that they are completely uncorrelated, that is, the local item

density in a particular area does not in�uence the probability of �nding high or

low color entropy or high or low form entropy respectively, at the same location.

Dependent variables fall into two categories. Basic dependent variables were

measures which are commonly obtained in eye-movement based visual search

studies: Reaction time (RT), number of �xations (NF), �xation duration (FD),

and saccade length (SL). Derived dependent variables were tailored for the speci�c
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purpose of this study; they included measures that might prove essential for the

understanding of comparative search: Number of successive �xations within the

same hemi�eld (FW), probability of missing the target (PM), additional search

time (AT), area coverage per �xation (AC), and speed of processing (SP). For

details concerning the calculation of dependent variables see Section 2.4.2.

3.2 Method

3.2.1 Subjects

The subjects (N = 16) were students of various �elds at the University of Biele-

feld. Each subject was paid 7 DM for the participation. All subjects had normal

or corrected-to-normal vision, none had pupil anomalies and all were able to

distinguish between colors.

3.2.2 Materials

The stimulus pictures were presented on a computer screen with a spatial resolu-

tion of 640�480 pixels. The pictures showed patterns of simple geometrical items

on a black background. The items appeared in three di�erent forms (triangles,

squares, and circles) and three di�erent colors (fully saturated blue, green, and

yellow), as explained in Section 2.2. The size of the items was about 0.7 degrees

of visual angle in diameter. The item locations were randomly generated, but

avoiding item contiguity as well as item overlap. The random distribution was

chosen such that it slightly tended to create regions of similar items in order to

make it possible to study eye movements in homogeneous versus heterogeneous

item distributions (cf. Section 2.3).

Each stimulus picture consisted of two hemi�elds with 30 items each. The

items in each hemi�eld were equally balanced for form and color. The hemi�elds

were translationally identical in the form, the color, and the spatial distribution

of the 30 items � with one exception: There was always a single item that di�ered

from its �twin� in the other hemi�eld, either in color or in form.

3.2.3 Apparatus

Eye movements during comparative visual search were measured with the OM-

NITRACK 1 system (see Section 2.1.1). Subjects were seated about 60 cm away

from a 17� color monitor. Prior to experimentation, a calibration procedure was

to be performed by making the subject �xate speci�ed points on the screen.

3.2.4 Procedure

Subjects were tested individually. Their task was to �nd the only di�erence be-

tween the two hemi�elds of each picture. Subjects were to press a mouse key
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placed in front of them as soon as they had detected the mismatch. Each subject

viewed 50 pictures. After every tenth picture, the eye tracker was recalibrated in

order to compensate for the possible sliding of the head-set due to head move-

ments by the subjects. The stimulus pictures were newly generated for every

subject so that none of the patterns occurred twice. Subjects knew that the crit-

ical mismatch would be either in form or in color, they did not know, however,

when to expect what kind of mismatch. In fact, 25 of the 50 trials contained a

di�erence in form and 25 contained a di�erence in color.

3.3 Results and Discussion

Figure 3.1: Example picture of Figure 2.11 with the plotted visual scanpath cho-

sen by one of the subjects. Fixations are numbered; circle size signi�es �xation

duration.

The data recorded during the search and comparison phase were subjected to

analyses of variance. The repeated measures analyses were performed using con-

servative adjustment of degrees of freedom. Level cutpoints for density and en-

tropy were set at the lower and upper third (low versus medium versus high).

The density range was split up at the values 1.0 and 2.0, whereas the entropy

scale had cutpoints at 0.6 and 0.85. The global variables RT and NF could only

be related to the factor �type of mismatch�; they were thus entered into a one-

factorial analysis of variance each. Each of the variables FD, SL, FW, and AC was

entered into a four-factorial analysis of variance (type of mismatch, item density,

color entropy, and form entropy). The results showed that the factor �type of
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mismatch� had no signi�cant e�ect on any of these variables, which is not sur-

prising because the subjects did not know the type of di�erence before detecting

it. Therefore, data were collapsed over �type of mismatch�. It was thus possible

to reduce the proportion of missing data to a value of about 1%.

The e�ect of phases of processing on NF, FD, SL, and FW was tested by

performing one-factorial analyses of variance, because the amount of data from

the detection and veri�cation phase was not su�cient to include any other factors.

Additionally, the data from the detection and veri�cation phase were entered into

an analysis of variance with the factor �type of mismatch�. The analysis of PM

needed a special design which is explained below.

3.3.1 Basic Dependent Variables

Reaction Time

On average, subjects needed 10 950 ms to process a picture. A histogram of reac-

tion times in the experiment is shown in Figure 3.2; the most remarkable feature

is a plateau of short reaction times between three and ten seconds. Di�erences

in color were detected faster (9 903 ms) than di�erences in form (11 997 ms)

(F (1; 15) = 8:66; p = 0:010). Since RT is a global measure, it is not possible

to test for e�ects of local parameters. Also, the distinction between search and

comparison on the one hand and detection and veri�cation on the other does not

make sense here because the latter phase is de�ned on the basis of overall reaction

time.
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Figure 3.3: Histogram of �xation durations

Number of Fixations

Averaged over all subjects and all types of di�erence, subjects needed 39.6 �x-

ations to �nish a trial. Processing of a picture that had the di�erence in color

generally took fewer �xations (35.7) than processing of a picture with the di�er-

ence in form (43.6) (F (1; 15) = 9:07; p = 0:009). Similar to RT, NF cannot be

related to any local stimulus parameters.

Unlike RT, NF was split up into �xations during the search and compari-

son phase (NFs) and �xations during the detection and veri�cation phase (NFv).

Search and comparison required an average of 35.2 �xations. When the di�er-

ence was in color, subjects managed with fewer �xations (31.3) than when the

di�erence was in form (39.1) (F (1; 15) = 8:39; p = 0:011). In contrast, detec-

tion and veri�cation required 4.5 �xations, regardless of the type of di�erence

(F (1; 15) = 0:07; p = 0:788).

Fixation Duration

In comparative visual search, �xations had a mean duration (FD) of 207.2 ms.

The average in the search and comparison phase (FDs) was 197.3 ms; the average

in the detection and veri�cation phase (FDv) was 286.0 ms which is signi�cantly

longer (F (1; 15) = 32:45; p < 0:001). Fig. 3.3 shows a combined histogram of FDs

and FDv.

Since long lasting �xations are generally taken to indicate extraordinary cog-

nitive load, we have calculated the proportion of �xations in excess of 500 ms

(�long �xations�). Overall, one in 113 �xations was a long one; the propor-

tion of long �xations, however, was about 15 times higher in the detection and
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Figure 3.4: Mean �xation duration as a function of local item density at the

�xation point

veri�cation phase (11.4%) than in the search and comparison phase (0.75%)

(F (1; 15) = 33:05; p < 0:001).
FD is a measure that lends itself to be related to local parameters of the

display. The analysis showed that FD was in fact a function of item density

(F (2; 30) = 8:77; p = 0:001); no other e�ects were signi�cant. FD is plotted

against %(p) in Figure 3.4. The subjects' �xations in high density regions (213.6

ms) were larger than those in medium density regions (197.4 ms) (F (1; 15) =
14:52; p = 0:002) and those in low density regions (191.9 ms) (F (1; 15) = 9:88; p =
0:007).

Saccade Length

The histogram of saccade lengths (SL), given in Figure 3.5, suggests to distin-

guish between two types of saccades: saccades linking �xations within the same

hemi�eld (about 10 to 150 pixels long) and saccades passing the boundary be-

tween hemi�elds (about 250 to 450 pixels long). In the analysis below, only the

�rst type of saccades is taken into account in order to reconstruct the way in

which subjects have subdivided the set of items to be compared.

The mean length of saccades across all subjects was 55.7 pixels. On average,

saccades during search and comparison (SLs) spanned 56.8 pixels while saccades

during detection and veri�cation (SLv) were shorter, namely 40.8 pixels in length

(F (1; 15) = 42:12; p < 0:001).
SL can also be related to local display parameters. However, the fact that

saccades � unlike �xations � have a linear spatial extension constitutes a problem:

Where should the local parameters of a saccade be measured? Striving for detailed
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Figure 3.5: Histogram of saccade lengths

information, we decided to perform two analyses of variance based on (a) the

starting points of the saccades and (b) the end points of the saccades respectively

as a reference.

Analysis (a) revealed two signi�cant e�ects. For one, SL depended on local

item density at the starting points (F (2; 30) = 35:79; p < 0:001). In medium

density regions, saccades were longer (58.9 pixels) than in high density regions

(48.8 pixels) (F (1; 15) = 53:69; p < 0:001); even longer saccades (64.1 pixels) were
to be found in low density regions (F (1; 15) = 10:06; p = 0:006). For another, SL
showed a signi�cant e�ect of form entropy (F (2; 30) = 6:40; p = 0:005). Saccades
starting in regions of low form entropy (59.3 pixels) and medium form entropy

(57.6 pixels) were longer than those starting in regions of high form entropy (54.8

pixels) (F (1; 15) = 10:87; p = 0:005 and F (1; 15) = 1:52; p = 0:004 respectively).

The e�ect of color entropy showed the same tendency as form entropy, but did

not reach signi�cance (F (2; 30) = 2:99; p = 0:065).

Analysis (b) revealed an in�uence of local item density on SL (F (2; 30) =
72:31; p < 0:001): Saccades ending in medium density regions were longer (54.9

pixels) than those ending in high density regions (46.4 pixels) (F (1; 15) =
58:59; p < 0:001). Even longer saccades (72.3 pixels) were those ending in low

density regions (F (1; 15) = 52:91; p < 0:001). However, analysis (b) did not re-

veal any signi�cant e�ects of color or form entropy. Figure 3.6 illustrates SL as a

function of local item density, whereas Figure 3.7 shows SL as a function of local

color and form entropy respectively.
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Figure 3.6: Mean saccade length as a function of local item density at its starting

point (analysis a) and at its target point (analysis b)

An Intermediate Summary

In view of the complex results obtained so far, a brief intermediate summary

seems to be useful. First of all, the type of di�erence to be detected made a

di�erence in reaction time and the number of �xations. Generally, color mis-

matches were detected more easily, i.e. faster and with fewer �xations, than form

mismatches. Also, the number of �xations clearly exceeded the expected values

even for the case of a TSP strategy. Even when considering only the search and

comparison phase, subjects took more �xations than there were items in each

hemi�eld. This observation can be interpreted that people occasionally failed to

detect a mismatch at �rst sight, so that parts of the display had to be scanned

twice.

As to local parameters, both �xation duration and saccade length were af-

fected by item density. The observation that �xations took longer in high density

regions is not compatible with a travelling salesman strategy. It is, however, in

line with the predictions derived from the searchlight strategy: Provided that the

focal area is relatively constant in size, �xations in high density regions cover a

relatively large number of items; representing these should take longer. It is in

line with the clustering strategy as well: In high density regions more items can

be memorized or compared per �xation: Accordingly, such �xations should be

longer.

The fact that saccades were shorter in high density regions agrees with the

predictions of all three strategies since the distance to the next suitable �xation

point � be it the next item on the �salesman's� path, in a neighboring area of

�xed size, or in the neighboring cluster � should be rather short. The observed
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Figure 3.7: Mean saccade length as a function of color entropy (left) or form

entropy (right) at its starting point (analysis a) and at its target point (analysis

b)

e�ect of form and � as a tendency � color entropy at the starting point of a

saccade indicates that the number of items processed at a time also depends on

their content of information. Conceivably, processing the items in uniform areas

is hardly demanding so that subjects tend to focus on areas of higher entropy

within the same hemi�eld of the display.

All in all, there is no support for the �strong� version of the travelling salesman

strategy; there is some evidence in favor of the searchlight strategy and, in par-

ticular, the clustering strategy. At any rate, local item density as well as entropy

are to be taken into account as determinants of �xation behavior in comparative

visual search.

3.3.2 Derived Dependent Variables

Successive Fixations within Hemi�elds

Eye-movement measurement does not only allow to distinguish search and com-

parison from detection and veri�cation, but it also enables researchers to recon-

struct the scanpaths that lead to the detection of mismatches in comparative

search. By separating saccades that occur within the same hemi�eld from those

that occur between hemi�elds, it is possible to itemize the individual steps in the

course of comparison as well as to identify the currently attended items. Con-

secutive saccades within the same hemi�eld link those �xations which pertain to

the items to be compared in that particular step. Thus, the number of successive

�xations within the same hemi�eld (FW) is of particular relevance for a detailed
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Figure 3.8: Mean number of successive �xations within the same hemi�eld as a

function of the local item density at the �rst �xation point

investigation of the strategies that people follow in comparative search.

On average, subjects needed 2.45 �xations before shifting over to the other

hemi�eld. The analysis of variance showed that subjects switched between hemi-

�elds more readily after encountering a mismatch (F (1; 15) = 93:29; p < 0:001):
The number of successive �xations within one hemi�eld during search and com-

parison (FWs) was 2.57, while the corresponding value for the detection and

veri�cation phase (FWv) was 1.91.

FW proved to depend on local item density (F (2; 30) = 13:99; p < 0:001):
When items were far away from each other, so that the �rst in a series of �xations

would cover only a few of them, people took more �xations (2.58) before shifting

to the other hemi�eld than when the �rst �xation landed in a region of medium

density (2.45) (F (1; 15) = 12:80; p = 0:003). Even fewer �xations (2.30) were

found after touching a high density region (F (1; 15) = 6:34; p = 0:024). The
in�uence of item density on FW is plotted in Figure 3.8.

Also, FW was a�ected by form entropy (F (2; 30) = 3:46; p = 0:045): The more
the items in the vicinity of the �xation point varied in form, the more �xations

people needed before shifting to the other hemi�eld (FW at low Sf (p) = 2.39; FW

at high Sf(p) = 2.51) (F (1; 15) = 13:62; p = 0:002). In contrast, color entropy

had no signi�cant e�ect on FW. No interactions between the factors were found.

Figure 3.9 illustrates FW as a function of the local entropy values.

Probability of Missing the Target

As mentioned in connection with RT and NF, subjects did not always detect the

mismatch when �rst �xating both target items or their vicinity. This was the case
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Figure 3.9: Mean number of successive �xations within the same hemi�eld as a

function of local color or form entropy at the �rst �xation point

in 12.9% of all trials. Complementarily to this probability of missing the target

(PM), the probability of detecting the mismatch was about 87.1% once each of

the target regions was �xated (maximum distance between gaze position and

target: 50 pixels) with only one saccade from one hemi�eld to the other between

�xating the �rst and the second one.

Which factors in�uence PM? We checked four factors: Local item density, local

color entropy, local form entropy, and type of mismatch (color or form). Each local

factor was divided into two levels (�low� versus �high�), the cutpoint set at its

arithmetic mean value at the center of each target item. Splitting up each factor

into three levels � as in the analyses described above � was not feasible because

of the low number of available data. The entropy cutpoint was set at 0.85, the

density cutpoint at 1.5.

The four-factorial analysis of variance revealed that subjects failed to detect

the mismatch more often when the di�erence was in form (15.6%) than when

the di�erence was in color (10.2%), but this e�ect did not reach signi�cance

(F (1; 15) = 3:57; p = 0:078). Local item density, however, had a signi�cant e�ect

on PM (F (1; 15) = 9:52; p = 0:008). High item density increased the rate of miss-

ing the target (15.3%) compared to low item density (10.5%). Furthermore, the

analysis revealed an e�ect of local form entropy: Targets were more frequently

missed (14.6%) at high form entropy in the target area than at low form en-

tropy (11.2%) (F (1; 15) = 6:91; p = 0:019). No other e�ects or interactions were

found. This means that form �disorder� around the target items led to a higher

probability of missing the mismatch, regardless of whether it was in color or in

form.
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Additional Search Time

With regard to color targets, the additional search time (AT) reached a value of

1248 ms, while it was 2855 ms for form targets. This e�ect reached signi�cance

(F (1; 15) = 9:26; p = 0:008). Accordingly, subjects �wasted� less time by missing

color mismatches than by missing form mismatches, which is compatible with the

results of PM.

Area Coverage per Fixation

This derived variable provides a measure of the average area covered by one

�xation (AC). It is de�ned as a circular area with a diameter calculated on the

basis of the average distance to four neighboring �xation points. AC may serve

as a rough estimate of the e�ciency subjects exhibit in scanning the display.

In the experiment, AC had a grand mean of 2858 pixels. The analysis of

variance yielded main e�ects of all �local� factors: item density (F(2;30) =

46.63; p < 0:001), color entropy (F (2; 30) = 7:33; p = 0:003), and form en-

tropy (F (2; 30) = 6:64; p = 0:004). As to item density, AC was large (3516

pixels) in low density areas, but smaller (2751 pixels) in medium density areas

(F (1; 15) = 44:99; p < 0:001). An even smaller AC was observed in regions of high

density (2309 pixels) (F (1; 15) = 14:87; p < 0:002). As to color entropy, AC was

signi�cantly larger (3137 pixels) for �xations with low Sc(p) than for �xations

with high Sc(p) values (2597 pixels) (F (1; 15) = 12:73; p = 0:003). Moreover,

�xations in medium Sc(p) turned out to cover more area (2841 pixels) than those

in high Sc(p) regions (F (1; 15) = 6:02; p = 0:027). Finally, with regard to form

entropy, AC was larger (3072 pixels) when Sf(p) was low but smaller (2633 pix-

els) when Sf(p) was high (F (1; 15) = 8:87; p = 0:009). In addition, AC reached

a higher value at medium form entropy (2870 pixels) compared to high form en-

tropy (F (1; 15) = 8:51; p = 0:011). As illustrated in Figures 3.10 and 3.11, which

show AC as a function of density and of entropy respectively, the area covered

per �xation decreased with growing local complexity of the display.

Speed of Processing

Speed of processing (SP) is a global measure � as RT and AT � that cannot be

related to local stimulus features. Therefore, we can only obtain two SP values,

namely one for color mismatches (45.59 pixels/s) and another for form mismatches

(45.30 pixels/s). The di�erence between these two values does not reach signi�-

cance. This is plausible since SP is de�ned in such a way that it is independent

of PM (see Section 2.4.2).

Summary

Derived dependent variables shed more light on the strategies that people employ

in comparative visual search. First, local parameters once again proved to be

signi�cant determinants of �xation behavior: Item density and entropy played a
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Figure 3.10: Mean covered area per �xation as a function of the local item density

at the �xation point

role for the number of consecutive �xations within one hemi�eld, for the average

area covered per �xation, as well as for the probability of missing the target.

Second, people's actual gaze trajectories can be reconstructed more precisely if

taking into consideration the conditions under which saccades between hemi�elds

occur. In fact, the number of consecutive �xations within hemi�elds was generally

larger when proceeding from a low density region than when proceeding from

a high density region. This observation may suggest again that people prefer

�xating complex regions over �xating less complex ones. However, the number

of consecutive �xations increased with growing local form entropy. This �nding

can be explained by the fact that the scanning of a high form entropy region

requires foveal processing and thus a large number of �xations. Moreover, these

observations suggest that color entropy and form entropy in�uence processing in

di�erent ways. Also, the e�ects of density, color entropy, and form entropy on the

average area coverage per �xation demonstrate that people, in determining their

eye movements in comparative search, take into account economical principles.

They tend to optimize working memory load so as to manage with the least

number of �xations in a trial.

The varying probabilities of missing the target again can be taken as indicat-

ing that color mismatches can be detected more readily than form mismatches.

Moreover, high form entropy turns out to increase the probability of missing the

target, whereas color entropy has no signi�cant e�ect. The dependence of PM on

the type of mismatch is re�ected in a corresponding di�erence in the additional

search time. These �ndings might give rise to a more thorough investigation of

the strategies in comparative search for color in contrast to comparative search
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Figure 3.11: Mean covered area per �xation as a function of the local entropy

values at the �xation point

for form.

3.4 General Discussion

The experiment reported in this chapter raises two questions:

� Which new insights about the process of visual search does eye-movement

measurement yield?

� What does the comparative visual search paradigm tell us about the cog-

nitive system?

If the experiment had restricted itself to the standard method of analyzing sub-

jects' reaction times we would have found that detecting a di�erence in color is

about two seconds faster than detecting a di�erence in form. Without analyz-

ing subjects' eye movements, however, we hardly would have been able to �gure

out the reason for this. Eye-movement measurement has rendered it possible to

split up the process of comparative search into two successive phases � a �rst

phase labeled search and comparison, and a second one labeled detection and

veri�cation.

The two phases di�er signi�cantly with respect to eye-movement characteris-

tics. First of all, the average �xation duration is longer in the second phase. In

particular, the proportion of �xations in excess of 500 ms, to be considered as a

measure of the subjects' mental e�ort, is increased by a factor of 15. This suggests

that during the second phase, people concentrate on identifying and processing
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the mismatching items rather than quickly scanning the hemi�elds in search of a

di�erence as they do during the �rst phase. Moreover, average saccade lengths are

shorter in the second phase, indicating that the subjects' attention is now focused

on a single �suspicious� item or region. This conjecture is corroborated by the

observation that during phase two there are fewer successive �xations within the

same hemi�eld than there are in phase one.

As for reaction time, we have found that mismatches in color are processed

faster than mismatches in form. Since subjects did not know in advance whether

the mismatch to be detected was in color or in form this di�erence appears to

be somewhat striking. Yet there is a plausible answer to this. Subjects appear to

�miss� di�erences in form more often than di�erences in color. A miss, in this

context, means a failure to detect the mismatch when scanning the vicinity of

the target and to continue with search and comparison. The eye-movement data

are well in line with this consideration: The probability of detecting the target

was 89.8% with respect to color mismatches and 84.4% with respect to form

mismatches. In fact, we found that on average subjects �wasted� only 1248 ms

because of missing color mismatches, but 2855 ms by missing form mismatches.

This e�ect is likely to be the main reason for the di�erence in reaction time. The

remaining discrepancy of about 400 ms may be explained by the assumption of

di�erent durations of the veri�cation phase. This assumption is supported by the

results of the pre-test with regard to standard visual search (see Section 2.2.2):

Subjects exhibited signi�cantly longer reaction time for the detection of form

targets than for the detection of color targets.

To sum up, it may be said that the analysis of eye-movement behavior with

respect to the type of mismatch (color versus form) has yielded considerable

insight into the cognitive process of comparative visual search. We have found that

di�erences in form take more processing time than di�erences in color, and we

can attribute this mainly to the fact that subjects fail to detect form mismatches

more likely than they fail to detect color mismatches. We are, however, interested

in a more detailed investigation of comparative search, focusing on how viewers'

eye movements are determined by local display characteristics, namely by local

item density, local color entropy, and local form entropy.

The average length of saccades has proven to be inversely proportional to

local item density. This is intuitively plausible because people tend to direct their

saccades at items; in low density subregions, items are located relatively far from

each other which makes people produce relatively long saccades. The fact that

the length of a saccade is codetermined by the degree of form entropy and � as

a tendency � color entropy in its starting point, is also in line with the idea that

processing economy is a highly important principle in comparative search. With

respect to its end point, the length of a saccade depends on local item density

but not on any of the entropy values. This result can be explained by retinal

eccentricity: The end point of a saccade is determined before its realization; since

the end point is usually located in a subject's parafoveal region, only the local

density can coarsely be estimated in advance but the entropy cannot.
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These �ndings extend the conclusions reached by other researchers who have

presented evidence that saccade length changes along with changes in the po-

sition of the target as well as in the degree of overall visual heterogeneity (e.g.

O'Regan, 1989; Jacobs, 1991): Though processing economy is a fundamental as-

pect in visual search, it is not a central, �xed capacity mechanism which limits

performance but rather a �exible one. The course of visual search is controlled by

a mechanism that is capable of adapting to local parameters of the display. While

this account holds for both the standard search paradigm and for comparative

search, there is one crucial di�erence: Using grid-like displays that did not vary in

item density, the studies mentioned above have shown that the parameters con-

trolling saccade length apply to the spatial layout and to overall form entropy.

The present experiment, however, using randomly generated displays that did

vary in local item density, shows saccade length to be primarily determined by

the spatial distribution of the items, regardless of any other features. This pat-

tern of results suggests that it might be useful to distinguish between parameters

related to spatial location (�where?�) and parameters related to item features

(�what?�).

Another basic dependent variable, �xation duration, exhibited a strong depen-

dence on local item density. The average duration of �xations increases linearly

by about 50% along with local item density values. Fixation duration does in no

way depend on local color or form entropy.

Again, this observation goes beyond the results of previous research. Although

the relationship between �xation duration and the spatial layout of the items to

be processed has been studied before, even to the extent that global density mea-

sures, such as average distance, predict �xation duration less exactly than does

minimum item distance (cf. Jacobs, 1991; Nodine, Kungel, Toto & Krupinsky,

1992), the present study goes beyond averaged quantities and provides insight

into the dynamic nature of this relationship: In the course of search, �xation du-

ration is determined on the �y, depending on the local spatial parameters of the

display. Conceivably, the time spent on a �xation varies along with the number

of items covered by it. This implies, however, that the speci�c features of the

items are not necessarily computed before proceeding to the next �xation. On

the one hand, this �nding suggests that subjects, for reasons of e�ciency, do not

memorize and compare the items one by one but in chunks (the size of which

probably varies). On the other hand, in determining relevant item con�gurations,

subjects appear to merely localize the items � regardless of their color or their

form � by chunks, gathering only coarse information required for memorization

or comparison respectively.

Thus, the basic dependent variables, saccade length and �xation duration,

mainly yield information about low-level processes involved in comparative visual

search, in particular about the perception of item clusters and their comparison by

means of working memory. In order to consider higher level processes controlling

eye-movement behavior, such as the planning of search paths and strategies in

the utilization of memory, we have to turn to the derived dependent variables in

the present experiment.
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The number of successive �xations within the same hemi�eld has been shown

to decrease when local item density increases. This observation can be attributed

to economical principles in the usage of capacity-limited working memory. People

appear to be able to process more items per �xation in high density subregions

than in low density subregions. Accordingly, they need fewer �xations to ��ll up�

their working memory when searching high density areas. So the factor which is

best suited to model the amount of information processed in each �xation is item

density, a local parameter which merely re�ects the spatial location of the items

to be scanned.

In addition, however, eye movements in comparative search are co-determined

by item entropy, a local parameter which presupposes that the identity of the

items has been established, that is, that their features have been identi�ed and

the appropriate color and form values have been computed. As to the number

of successive �xations within the same hemi�eld, form entropy, but not color

entropy, has an e�ect. This pattern of results does not only suggest that people,

when gathering information from one hemi�eld, analyze the items thoroughly

with regard to particular features, but also that the processing of color and form

follows di�erent principles � a point already made in the discussion of the di�erent

number of �misses� of color and form mismatches.

The in�uence of local entropy on search and comparison becomes more trans-

parent when considering the area covered per �xation. Not unlike the notion of

�grain size� � operationally de�ned via the minimum distance between neighbor-

ing items (cf. Jacobs, 1991) �, this measure gives an impression of the human

visual span or �focus size� during the solution of the search task. The area cov-

ered per �xation is inversely related to local item density, color and form entropy.

While the strong dependence of area coverage on item density can plausibly be

explained along the same lines as saccade length, the in�uence of both color and

form entropy signi�es that the search strategy depends on the establishment of

the identity of the items. The more complex a particular region of the display

is with respect to color and form of its items, the more �xations are required to

gather a su�cient amount of information for detecting a mismatch.

Altogether, the perceptual and cognitive processes involved in comparative

visual search can be viewed in terms of the working of two hypothesized subsys-

tems in visual perception (cf. Velichkovsky, 1982; Bridgeman, van der Heijden

& Velichkovsky, 1994): A fast system that serves the purpose of localizing items

(�where?�) and another, somewhat slower system for identifying items by their

features (�what?�). The �where?� system might be taken to control search tac-

tics; operating rather fast, it might guide short-term processes such as the main-

tenance of working memory and the chunking of items into clusters. In contrast,

the �what?� system might be taken to control the overall search strategy; being

somewhat slower than the �where?� system, it might guide mid- or long-term

processes such as the planning of scanpaths and the extraction and memorization

of speci�c item features for comparison.

The distinction between �where?� and �what?� systems in visual search cor-

responds to pertinent neurobehavioral evidence. Trevarthen (1968), for instance,
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argued that spatial vision and the perception of items are based on anatomically

separate cortical mechanisms. One of these is ambient; it is applied to localize

events over a wide �eld. The other is focal; it serves to obtain detailed vision

with a restricted scope and is associated with the occurrence of small saccades.

In a similar vein, Mishkin, Ungerleider & Macko (1983) distinguish two separate

multisynaptic cortical pathways in primates: One specialized for �spatial� vision,

another specialized for �object� vision.

The distinction between �where?� and �what?� systems also corresponds to

current models of visual search which emphasize the role of perceptual grouping

(e.g. Duncan & Humphreys, 1992; Humphreys & Müller, 1993). The claim that

preattentive processing involves a reorganization of the set of stimulus items on

the basis of global similarities which eventually leads to disjoint clusters is close

in spirit to the above conception of the functioning of the �where?� system: The

most obvious measure of global similarity is spatial distance, so that the resulting

clusters are disjoint with respect to the localization of the items. Likewise, the

claim that processing between clusters is sequential in nature and thus compar-

atively slow largely matches the way the �what?� system is supposed to work:

Comparison of speci�c features proceeds by clusters; it requires that both the

features of the items in that particular cluster and the clusters already processed

be kept in mind.

The �ndings from the experiment have several implications. First, they pose

a number of interesting research questions. How does the distinction between

�where?� and �what?� relate to the levels of processing notion in Cognitive Sci-

ence? How exactly do the subsystems interact in the course of visual search?

Will the �what?� subsystem have to be subdivided into �what color?� and �what

form?�? What about the e�ects of color or form entropy if subjects know in

advance what kind of mismatch (color or form) they are to detect? How is ocu-

lomotor behavior a�ected by the detection of a mismatch? Proceeding from the

basis experiment, questions like these will be addressed in the experiments re-

ported subsequently in this work.

Second, the �ndings provide at least a rough outline of the cognitive pro-

cesses involved in comparative search. The study indicates that comparative vi-

sual search proceeds in a �perpendicular fashion�, much as pictured in the ex-

ample scanpath in Fig. 3.1. The scanpaths frequently start in the upper part of

the left hemi�eld. To begin with, the item set is subdivided into disjoint clusters

on the basis of local item density. Then, with a few �xations connected by rela-

tively short saccades, the �rst cluster is analyzed in more detail as to the color

and the form of the items. The actual number of �xations conceivably depends

on working memory capacity and on the number of items processed per �xation.

That number, again, is determined by the local stimulus parameters, item density,

color entropy, and form entropy, and some of their interactions. After gathering

as much information as is appropriate in terms of memory load, subjects tend to

direct their gaze with one long horizontal saccade to the corresponding cluster in

the other hemi�eld. The item features in that cluster can then be compared to the

stored representation, working memory can be cleared, and the �rst cluster can
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be tagged as analyzed. Processing may now proceed to the next cluster, which

is determined by strategic considerations (in order to avoid returns) as well as

tactic ones (on the basis of local item density), and so forth. If, however, search

and comparison yields a �suspicion�, that phase will turn into a detection and

veri�cation phase which is characterized by few, but extraordinarily long �xa-

tions. It should be noted that people are more likely to miss the mismatch upon

encountering the target cluster when the di�erence is in form than when it is in

color.

The picture of comparative visual search that emerges from the experiment

does not provide any support at all for a travelling salesman strategy which pro-

ceeds item by item: In contrast to the corresponding predictions, saccade length

and �xation duration do depend on local stimulus parameters. To some extent, the

results are rather compatible in part with the clustering and the searchlight strat-

egy: With each �xation, a limited number of items is processed before proceeding

to the next cluster. As for saccade length and �xation duration, the pattern of re-

sults corresponds to the predictions made on the basis of the searchlight strategy.

These basic measures of oculomotor behavior are a�ected by the local parameter

relating to the spatial con�guration of the items to be scanned. The area coverage

per �xation, however, exhibits a determination pattern that closely resembles the

predictions made on the basis of the clustering strategy. The e�ects of local item

density, color entropy, and form entropy suggest that economical aspects play

a part in determining the search path. Within the limit set by the capacity of

working memory, the number of items that can be processed with each �xation

depends on item similarity in terms of location, color, and form. The main e�ect

of local item density signi�es that a cluster comprises the more items, the closer

they are to each other. The main e�ects of color and form entropy signify that

a cluster comprises the more items the more homogeneous they are in terms of

color and form.

When discussing strategy issues, however, we must take into account that

shifts of attention may occur relatively independently of eye movements. There

might be local strategies of scanning that are invisible to the analysis of eye

movements, at least with regard to the present scenario. This point is addressed in

further investigations described in this work, especially in the context of scanpath

modelling.

Not in line with our initial hypotheses, no interaction of entropy with den-

sity has been found in any basic or derived variable. This means that the e�ect

of entropy is not � as we assumed � restricted to regions of high item density.

Conceivably, the maximum distances between neighboring items have not been

su�cient to reduce entropy e�ects in regions of low density in our experiments.

According to the investigation of the in�uence of retinal eccentricity on feature

recognition (Section 2.2.3), this �nding is plausible: The features of single items

can be recognized even at high eccentricities from the gaze position without caus-

ing signi�cant cognitive �costs�. Therefore, it seems that the size of the atten-

tional focus can be adapted to speci�c situations: The focus of attention can, for

example, cover a large area in regions of low item density. Due to this �exibility,
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the entropy of item features plays an important part even if the items are located

far apart from each other.

Altogether, the results of the present experiment suggest that oculomotor

behavior in comparative visual search is determined on the basis of cognitive

economy. The clustering strategy employed re�ects the existence of a �where?�

subsystem to provide a basis for chunking, and of a �what?� subsystem to provide

a basis for comparison. One question that remains to be answered, then, is how

cluster size can be modelled best. It will be taken up in Chapter 6 below.

As stated in the summary above, one fundamental aspect of comparative

visual search was only touched so far, namely the question of di�erences between

color and form search. Since subjects did not know the type of mismatch in

advance, their eye-movement patterns were not in�uenced by the dimension of

the mismatch. The only di�erence was found to be a higher probability of missing

the target in the case of form targets, causing increased additional search time

and, consequently, increased reaction time. There might be further di�erences

between color and form search. The setting of Experiment A, however, does not

allow us to investigate them.

In order to overcome this restriction, Experiments B and C were conducted.

These experiments provided situations in which subjects were able to perform

speci�c search for color or form targets respectively. In this context, the results

of Experiment A serve as a baseline for comparisons between these experiments.
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Chapter 4

Experiments B and C: How to

Disregard Irrelevant Stimulus

Dimensions

4.1 Introduction

The processing of di�erent dimensions of visual items has been a central issue in

perceptual studies at all times. One question within this �eld of research concerns

the integrality of stimulus dimensions: Do stimulus dimensions such as color and

form capture a viewer's attention automatically even if they are irrelevant with

regard to a certain task? Or is the observer able to process particular stimulus

dimensions and to disregard others because of his knowledge of what is relevant

and what is irrelevant in a given situation? In other words, should control of

attention be conceived of in a bottom-up fashion or in a top-down fashion?

This issue has been investigated within the scope of various paradigms. One of

these paradigms is visual search (Pashler, 1988; Theeuwes, 1992; Bacon & Egeth,

1994; Friedman-Hill & Wolfe, 1995). The basic concepts of visual search have

been outlined in Section 1.4. In a typical experiment investigating the question

posed above (Bacon & Egeth, 1994), subjects had to search a display for a target

(circle) among distractors (diamonds) and to state whether a line segment inside

the target was horizontal or vertical. When all items were of the same color,

this task was very easy to accomplish since the discrepant item appeared to �pop

out� among the distractor items. In e�ect, reaction times were short and virtually

independent of the number of distractors. However, when one of the distractors

di�ered in color from both the target and the other distractors, reaction times

increased. The additional discrepant item seemed to compete for attention with

the actual target. The same results were obtained for a color target and form

as the irrelevant dimension (Theeuwes, 1991). All in all, the observations from

visual search lead to the conclusion that subjects are not able to disregard the

irrelevant color or form dimension.

Another experimental approach is the same-di�erent paradigm (Dixon & Just,
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1978; Howard & Kerst, 1978; Santee & Egeth, 1980; Watanabe, 1988). As men-

tioned in Section 1.4, in a same-di�erent task two stimuli are presented to the

subject either simultaneously or in succession, and the subject has to decide

whether they are the same or di�erent with respect to certain relevant stimulus

dimensions. In a classical experiment, Egeth (1966) used stimuli that were de-

�ned by three dimensions: Color (red or blue), form (square or circle), and tilt

(the �gure contained an ascending or descending line). A mismatch in a speci-

�ed characteristic should lead to a �di�erent� answer. An analysis of the �same�

answers showed that reaction times were faster when the stimuli were identical

with respect to the irrelevant dimensions than when they were di�erent. If, for

example, the subjects had to decide whether or not two stimuli had the same

color, a �same� response was faster when their forms were identical as well. Find-

ings like these indicate that, as in visual search, subjects cannot ignore irrelevant

dimensions.

These two paradigms share the characteristic that the tasks are not too de-

manding. The stimulus sets are easy to survey and it takes only a few processing

steps to generate an appropriate response. Furthermore, the dependent variables

in these experiments are typically reaction time and error rate which re�ect cog-

nitive processes in visual search or same-di�erent decisions only coarsely. The use

of rather coarse dependent variables possibly goes along with relatively simple

tasks: With such rough measures, it may be necessary to use simple tasks in or-

der to arrive at signi�cant conclusions about the cognitive processes involved in

visual search and same-di�erent decisions.

It seems possible to get a more precise answer to the initially posed question

with the help of comparative visual search. As supported by the results of Exper-

iment A, comparative search enables us to thoroughly investigate the dependence

of eye movements on local stimulus features during the completion of a complex

task. Since comparative search can be considered a combination of visual search

and a same-di�erent task (see Section 1.4), it seems to be a reasonable paradigm

for the continuation of the studies mentioned above.

In order to address the question of disregarding irrelevant stimulus dimen-

sions, we complement Experiment A by two further Experiments B and C (to

be described in more detail in Sections 4.3 and 4.4). Both experiments employ

the comparative visual search scenario of Experiment A. However, Experiment B

di�ers from Experiment A in that now the subject is verbally informed about the

type of mismatch (i.e. either �color� or �form�) in advance. This would provide

any top-down processes for the control of attention with the necessary informa-

tion what stimulus dimension might be ignored. Therefore, the contribution of

any such processes might become visible in a comparison of the results of Exper-

iments A and B.

Experiment C di�ers from Experiment B in that now the irrelevant dimension

is held constant. This means that all items in the display share the same form if

there is a color mismatch. Analogously, all items have the same color if a form

mismatch is present. This modi�cation allows us to investigate any facilitating

e�ects of bottom-up processes on the subjects' performance, which would be
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indicated by di�erences between the results of Experiments B and C.

Moreover, these experiments permit us to compare color and form as irrel-

evant dimensions. Are subjects equally e�ective in �ltering out color and form

information? Or are top-down processes su�cient to disregard one of the two

dimensions while bottom-up processes help to disregard the other one? Any dis-

parities could be interpreted as indicating di�erences in the cognitive processing

of color and form.

After a brief characterization of the relevant independent and dependent vari-

ables of Experiments A to C, in Section 4.2 we recapitulate the main �ndings for

Experiment A, viewed from the perspective of our present discussion. Then, Ex-

periment B is described (Section 4.3), followed by the comparison of its results to

those of Experiment A. In Section 4.4, we report Experiment C and compare the

respective �ndings to those of Experiment B. The chapter closes with a general

discussion.

What are promising variables to investigate? Since we indend to compare the

results between the experiments, the �rst independent variable in our design is

experiment. As stated above, an important question to be investigated is whether

the control of attention exerts speci�c e�ects on color and form search. Thus,

another independent variable is the type of mismatch, i.e. whether the di�erence

between corresponding items is in color or in form. In order to investigate the

e�ects of local color and form information on the subjects' eye movements, the

variables local color entropy and local form entropy are considered as well. In

Chapter 3, these variables have already proven their relevance for the investigation

of mental processes during comparative visual search.

The dependent variables were reaction times and selected eye-movement vari-

ables. As mentioned above, reaction time (RT) is a global measure of the sub-

jects' e�ciency in a visual search or same-di�erent task. RT should decrease if

the search gets more e�cient, i.e. if subjects are able to disregard the irrelevant

stimulus dimension.

The analysis of eye movements is based on one �classical� and two derived

variables: The �classical� variable of eye-movement research is �xation duration

(FD). FD is known to indicate quantitative as well as categorial di�erences in

mental e�ort (Velichkovsky, 1995; Velichkovsky, Sprenger & Pomplun, 1997). As

suggested by the results of Experiment A, FD is likely to depend on the amount

of information that has to be encoded at any step; thus, it should decrease if the

subjects are able to disregard the irrelevant stimulus dimension.

Furthermore, Experiment A has shown that the time required to detect a

mismatch does not only depend on the speed of search and comparison, but also

on the additional search time (AT) caused by missing the target. AT can be

viewed as a measure of the subjects' target detection capability. Therefore, AT

should decrease if subjects ignore one stimulus dimension.

As a measure of the e�ciency of memorization and comparison which is neither

in�uenced by AT nor by the manual reaction, the speed of processing (SP) is taken

into account as well. Presumably, SP should increase if the subjects restrict their

attention to one instead of two stimulus dimensions.
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Finally, the area coverage per �xation (AC) is analyzed, because AC is not

only a global, but also a local measure of search e�ciency. The global AC value

should increase with the general search e�ciency. If AC increases with the local

color or form entropy value, this would suggest that subjects do not completely

disregard the respective dimension.

To sum up: The independent variables within each experiment are type of

mismatch, local color entropy, and local form entropy. For between-experiment

analyses, the independent variable experiment is added. The dependent variables

are RT, FD, AT, SP, and AC.

4.2 Experiment A: Unspeci�c Comparative

Search

In Experiment A we assessed the e�ects of color and form as the irrelevant stimu-

lus dimension on any of the dependent variables. Subjects had to analyze both di-

mensions because they were not informed about the type of mismatch in advance.

Under these circumstances, neither top-down nor bottom-up �ltering processes

are possible.

The results of Experiment A provide a baseline for further comparisons be-

tween experiments. Experiment A itself does not yield unequivocal information

about processing di�erences because it is impossible to decide if those di�er-

ences should be attributed to di�erences in cognitive processes such as modes of

control or to characteristics of the stimuli, in particular the similarities between

chosen colors and forms. For instance, by using only slightly di�ering shades of

grey instead of fully saturated blue, green, and yellow as item colors, the detec-

tion of color mismatches could be made much harder than the detection of form

mismatches.

Although the results of Experiment A have already been reported in Chapter

3, the relevant subset of these results is reported again in order to facilitate the

between-experiment comparisons in the present context. Moreover, due to the

modi�ed entropy levels, some of the analyses had to be adapted to this situation.

As to the global variables, RT was signi�cantly shorter with respect to

color mismatches (9903 ms) than with respect to form mismatches (11997 ms)

(t(15) = �2:94; p = 0:010). The type of mismatch had no signi�cant e�ect on

SP (45.59 pixels/s for color mismatches and 45.30 pixels/s for form mismatches),

on AC (2619.7 pixels versus 2619.8 pixels), and on FD (208.75 ms versus 207.46

ms). Therefore, these variables cannot account for the RT di�erence. AT indi-

cates the amount of additional search time caused by missing the target. Here, a

form mismatch �costs� 2855 ms as compared to 1248 ms for a color mismatch.

This di�erence was signi�cant (t(15) = �3:04; p = 0:008). This means that AT

accounts for 1607 ms of the overall RT di�erence of 2094 ms. As discussed in

Chapter 3, it is plausible to assume AT plus divergent latencies of the subjects'

manual reaction to be responsible for the di�erence in RT.
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Referring to the local entropy values as independent variables, only the de-

pendent variables FD and AC can be investigated, because RT, AT, and SP are

global measures. Di�ering from the analyses of variance reported in Chapter 3,

only two levels of entropy (�low� versus �high�) are distinguished with the cut-

point set at 0.75. This bisection leads to an improved comparability of entropy

in�uences between the experiments. However, this might lead to deviations in the

mean values of the respective dependent variables from the mean values presented

in Chapter 3.

FD was neither signi�cantly a�ected by color entropy (207.58 ms for low color

entropy and 208.38 ms for high color entropy) nor by form entropy (208.10 ms

for low form entropy and 207.82 ms for high form entropy). AC, however, showed

a signi�cant dependence on color entropy (F (1; 15) = 62:99; p < 0:001) as well
as on form entropy (F (1; 15) = 6:37; p = 0:023). AC was larger in areas of low

color entropy (2793.7 pixels) than in areas of high color entropy (2492.6 pixels);

low form entropy induced larger AC (2728.9 pixels) than did high form entropy

(2557.4 pixels). As a matter of fact, these di�erences did not depend on the type

of mismatch.

These �ndings suggest the following coarse characterization of the di�erences

between color and form search in Experiment A: When the subjects are not

informed about the type of mismatch, detecting a form target is more di�cult.

More speci�cally, subjects are more likely to �miss� a form mismatch than a

color mismatch. Missing the target forces the subject to continue searching. This

extra search takes time (AT), causing an increase in RT. However, we are not

yet able to decide if these di�erences between color and form search depend on

di�erences in the underlying mental processes or on di�erences in the similarity

between colors and forms chosen. To illucidate that issue, we now turn to two

new Experiments B and C.

4.3 Experiment B: Top-Down Control of Atten-

tion

Experiment B was designed to investigate whether top-down control can enable

subjects to �lter out the irrelevant stimulus dimension (color or form). As a

straightforward way to allow subjects to attend to the relevant stimulus dimension

and to disregard the irrelevant one, we used a verbal instruction that informed the

subjects in advance when to expect which type of mismatch. An e�ciency gain

would be indicated by a signi�cant decrease in RT, FD, and AT and an increase

in SP and AC from Experiment A to Experiment B. In technical terms, these

expectations correspond to a signi�cant main e�ect of the factor experiment.

Another objective of Experiment B was to study whether color and form can

be ignored in an equally e�ective way. This could be assumed if the changes in

the e�ciency parameters turn out to be independent of the type of mismatch.

If, however, the e�ciency gain is more pronounced for color search than for form

search or vice versa � indicated by a signi�cant interaction between the factors
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experiment and type of mismatch � this would suggest that the feasibility of

top-down control of attention depends on the choice of the relevant/irrelevant

dimension.

The in�uence of local entropy values on AC is likely to reveal the extent of

which subjects are able to disregard a speci�c dimension. In Experiment A, AC

signi�cantly depends on both the color and the form entropy. If, for example,

form entropy has no signifcant e�ect on AC during color search in Experiment

B, we can conclude that top-down control permits subjects � at least partially �

to disregard form information. Thus, asymmetrical top-down in�uences on color

and form processing can be detected this way. If subjects are able to ignore the

irrelevant dimension, we expect only the relevant dimension to exert an entropy

e�ect on AC.

4.3.1 Method

Subjects

A new group of twenty subjects with normal or corrected-to-normal vision was

recruited at the University of Bielefeld and paid 7 DM for their participation. As

in Experiment A, none of them was color-blind or had pupil anomalies.

Apparatus, Stimuli, and Procedure

Apparatus, stimuli, and procedure were identical to Experiment A with one ex-

ception: The trials were arranged in six blocks, each block consisted of ten trials

with either only color or only form mismatches. Between blocks, the subjects were

explicitly informed which type of mismatch to expect during the next block. The

information was given in written form.

4.3.2 Results and Discussion

As in Experiment A, RT was signi�cantly shorter with respect to color mismatches

(7330 ms) than with respect to form mismatches (10541 ms) (t(19) = �5:45; p <

0:001). The type of mismatch had no signi�cant e�ect on FD; FD was 208.04 ms

during color search and 203.91 ms during form search. SP was faster for color

mismatches (57.92 pixels/s) than for form mismatches (48.47 pixels/s) (t(19) =
3:28; p = 0:004). The AC di�erence between color search (3170.8 pixels) and form

search (2873.7 pixels) missed signi�cance (t(19) = 1:97; p = 0:063). Advance
information about the type of mismatch seems to enhance color search but not

form search. Again, AT was shorter for color mismatches (818 ms) than for form

mismatches (2500 ms) (t(19) = �4:14; p < 0:001). In contrast to Experiment A,

the AT di�erence of 1682 ms did not completely account for the RT di�erence of

3211 ms. The two values di�ered signi�cantly from each other (t(19) = �2:59; p =
0:018). A plausible explanation is to assume that the extra time was caused by

di�erent speeds of processing (SP).
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Figure 4.1: Mean area coverage as a function of local color and form entropy

More explicitly: Even if subjects know in advance which kind of mismatch to

expect, form search seems to be harder to accomplish than color search, at least

with these particular colors and forms. Search for a di�erence in form is slower

than color search; also, more time is �wasted� by overlooking form mismatches

in comparison to color mismatches. Thus, the increase in RT is due to longer AT

as well as to higher SP.

While color and form entropy did not a�ect FD, they exerted speci�c ef-

fects on AC (see Figure 4.1). A three-factorial analysis of variance (type of mis-

match, color entropy, form entropy) showed that, during color search, AC was

signi�cantly larger in areas of low color entropy (3520.6 pixels) than in areas of

high color entropy (2999.3 pixels) (F (1; 19) = 19:03; p < 0:001), whereas form

entropy had no reliable e�ect (3312.2 pixels versus 3207.7 pixels). Correspond-

ingly, during form search, AC was not signi�cantly a�ected by color entropy

(2922.9 pixels versus 2801.6 pixels), but presented a signi�cant e�ect of form en-

tropy (F (1; 19) = 10:29; p = 0:005): AC was larger in areas of low form entropy

(2969.5 pixels) than in areas of high form entropy (2755.1 pixels). There was a

signi�cant interaction between the factors type of mismatch and color entropy

(F (1; 19) = 9:03; p = 0:007), while the interaction between type of mismatch and

form entropy remained below signi�cance. These results suggest that subjects are

able to disregard irrelevant color information as well as irrelevant form informa-

tion. Disregarding color, however, seems to be more e�ective than disregarding

form.

To analyze the data with respect to e�ciency gains and the potential di�erence

between color and form as irrelevant dimension, analyses of variance on RT,

FD, AT, SP, and AC with the within-subjects factor type of mismatch (color
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versus form mismatch) and the between-subjects factor experiment (Experiment

A versus Experiment B) were conducted. For the sake of completeness, both main

e�ects and the interaction are reported for all dependent variables. Our focus,

however, is on the di�erences between the experiments, because the main e�ects

could be traced back to the particular colors and forms used in experimentation.

The type of mismatch had signi�cant e�ects on RT (F (1; 34) = 33:55; p <

0:001), on SP (F (1; 34) = 7:98; p = 0:008), and on AT (F (1; 34) = 25:24; p <

0:001). In detail, a color target was detected faster (8617 ms) than a form target

(11269 ms), SP was faster for color mismatches (51.76 pixels/s) than for form

mismatches (46.89 pixels/s), and AT was shorter when search was directed at a

color mismatch (1033 ms) than when it was directed at a form mismatch (2678

ms).

As to the factor experiment: Average RTs in Experiment B (8936 ms) were

faster than in Experiment A (10950 ms) (F (1; 34) = 5:26; p = 0:028). No other

variables showed an e�ect of the factor experiment, as shown in the comparative

diagrams presented in Figures 4.2 to 4.6.

The only signi�cant interaction e�ect was on SP (F (1; 34) = 7:07; p = 0:012).
Simple e�ects analyses indicated that the factor experiment had an e�ect only in

color mismatch trials (F (1; 34) = 4:70; p = 0:037), while type of mismatch had

an e�ect only in trials in Experiment B (F (1; 34) = 16:93; p < 0:001). In other

words: SP was identical for color and form mismatches in Experiment A and for

form mismatches in Experiment B. The only condition that di�ered from the

others was search for color mismatches in Experiment B: SP is higher.

How are these results to be understood in the light of our assumptions? One

e�ciency measure, namely RT, is faster in Experiment A than in Experiment

B. Obviously, subjects bene�t from the information about the type of mismatch.

They are able to disregard an irrelevant stimulus dimension � at least in part �

irrespective of the type of mismatch. On the other hand, the interaction between

type of mismatch and experiment indicates that color search bene�ts from infor-

mation about the type of mismatch while form search does not. In other words:

It seems easier to disregard irrelevant form information via top-down processes

than irrelevant color information.

So far, we might conclude with some discretion that color and form search

bene�ts from information about the type of mismatch and that this bene�t is

stronger for color search than for form search.

4.4 Experiment C: Bottom-Up Control of At-

tention

It must be pointed out, though, that �a-priori� information about the relevant

dimension does not necessarily preclude the irrelevant dimension from being pro-

cessed. Rather, the e�ects of a verbal instruction are restricted to those attentional

mechanisms that are controlled by top-down processes. Other mechanisms may

still make subjects attend to the irrelevant dimension.
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Thus, Experiment C was designed to investigate the following question: Can

a constant irrelevant stimulus dimension be disregarded more e�ectively than a

variable one, i.e. do bottom-up processes facilitate comparative visual search? As

a matter of fact, holding constant the irrelevant dimension necessarily goes along

with informing subjects about the relevant dimension in advance. The comparison

of results between Experiment B and Experiment C can therefore be assumed to

indicate e�ects of �data-driven�, i.e. bottom-up control of attention. Once again,

enhanced search e�ciency would be signi�ed by shorter RT, FD, and AT, and by

higher SP and AC in Experiment C in comparison to Experiment B.

Another important point is to �gure out whether color and form search are

unequally in�uenced by bottom-up control of attention. This could be assumed if

the potential changes in the e�ciency measures depend on the type of mismatch.

In technical terms, we would expect a signi�cant interaction between the factors

experiment and type of mismatch.

4.4.1 Method

Subjects

Sixteen new subjects were recruited at the University of Bielefeld. They had

normal or corrected-to-normal vision and none of them was color-blind or had

pupil anomalies. All subjects were paid 7 DM for their participation.

Apparatus, Stimuli, and Procedure

Apparatus, stimuli, and procedure were identical to those described in Experiment

B. However, the subjects were not only informed about the relevant dimension,

but additionally the irrelevant dimension was held constant, i.e. all forms were

identical in color-mismatch trials and all colors were identical in form-mismatch

trials. The frequencies of the three forms and the three colors that constituted

the irrelevant dimension were balanced.

4.4.2 Results and Discussion

A signi�cant di�erence in RT was found between color and form mismatches:

Subjects needed 7422 ms to respond if color was the relevant dimension and

9279 ms if form was relevant (t(15) = �4:28; p = 0:001) (diagrams are shown in

Figures 4.2 to 4.6). FD revealed no signi�cant e�ect of type of mismatch (218.01

ms for color mismatches and 214.66 ms for form mismatches). SP was signi�cantly

higher for a di�erence in color (58.78 pixels/s) than for a di�erence in form (46.57

pixels/s) (t(15) = 4:90; p < 0:001). Color search induced larger AC (3671.3 pixels)

than form search (2900.2 pixels) (t(15) = 5:47; p < 0:001). The type of mismatch

a�ected AT as well: Subjects spent 598 ms due to missing color targets and 1272

ms due to missing form targets (t(15) = �3:59; p = 0:003). As in Experiment B,

this AT di�erence of 674 ms does not su�ciently explain the overall RT di�erence
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Figure 4.2: Mean reaction time for all three experiments and both types of mis-

match

of 1857 ms (t(15) = �2:73; p = 0:016). Thus, the remaining di�erence could be

attributed to the lower SP value for the detection of form mismatches.

Reasonably, the analysis of the independent variable color entropy was re-

stricted to color search and the analysis of form entropy was restricted to form

search. Neither of these variables signi�cantly in�uenced FD, but AC was af-

fected both by color entropy (F (1; 15) = 11:74; p = 0:004) and by form entropy

(F (1; 15) = 35:23; p < 0:001). Low color entropy led to larger AC (3975.8 pixels)

than did high color entropy (3483.0 pixels) and low form entropy induced larger

AC (3026.5 pixels) than did high form entropy (2710.9 pixels).

All in all, holding one dimension constant does not seem to change the relation

between color and form search, except for the AC di�erence which constitutes

only a tendency in Experiment B and reaches signi�cance in Experiment C. In

Experiment C, search is still harder to accomplish for form mismatches than for

color mismatches: Speed of processing and area coverage are lower and additional

search time is longer, resulting in longer RT.

In analogy to the comparison between Experiment A and B, analyses of vari-

ance were calculated on RT, FD, AT, SP, and AC with the within-subjects factor

type of mismatch (color versus form mismatch) and the between-subjects factor

experiment (Experiment B versus Experiment C).

The type of mismatch exerted a signi�cant in�uence on all dependent vari-

ables, namely on RT (F (1; 34) = 43:82; p < 0:001), on FD (F (1; 34) = 4:35; p =
0:045), on SP (F (1; 34) = 30:52; p < 0:001), on AC (F (1; 34) = 25:78; p < 0:001),
and on AT (F (1; 34) = 23:61; p < 0:001). Subjects needed less time to detect a

color target (7376 ms) than to detect a form target (9910 ms). FD was longer for
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Figure 4.3: Mean �xation duration

color search (213.03 ms) than it was for form search (209.29 ms), SP was higher

for color mismatches (58.35 pixels/s) than for form mismatches (47.52 pixels/s),

AC was larger during color search (3393.2 pixels) than during form search (2885.1

pixels), and AT was shorter when subjects searched for a color mismatch (708

ms) than when they searched for a form mismatch (1886 ms).

As to the factor experiment, it exerted a signi�canct e�ect on AT (F (1; 34) =
5:92; p = 0:020): AT was shorter in Experiment B (1659 ms) than in Experi-

ment C (935 ms). The other e�ciency measures were independent of the factor

experiment.

The comparison of Experiments B and C revealed two signi�cant interaction

e�ects of the factors type of mismatch and experiment, namely an e�ect on AC

(F (1; 34) = 5:08; p = 0:031) and another on AT (F (1; 34) = 4:32; p = 0:045).
Simple e�ect analyses indicated only a tendency for the factor experiment to

in�uence AC (F (1; 34) = 3:38; p = 0:075). AC was signi�cantly a�ected by the

type of mismatch both in Experiment B (F (1; 34) = 4:49; p = 0:042) and in

Experiment C (F (1; 34) = 24:18; p < 0:001). As to AT, the factor experiment

only a�ected form mismatch trials (F (1; 34) = 6:44; p = 0:016) and the type of

mismatch only a�ected trials in Experiment B signi�cantly (F (1; 34) = 27:07; p <
0:001), while Experiment C presented only a tendency for an in�uence of the type

of mismatch (F (1; 34) = 3:48; p = 0:071).

Probably, the variation in Experiment C reconciles the AT values through the

in�uence on form mismatch trials. The only condition that di�ers signi�cantly

from the others is search for form mismatches in Experiment B: In this condition,

AT is higher.

What does the comparison between Experiments B and C tell us with regard
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Figure 4.4: Mean additional search time caused by missing the target

to our assumptions? Again, only one of the e�ciency parameters, this time AT,

di�ers between the two experiments, but this main e�ect loses its relevance in the

light of the signi�cant interaction for AT between the factors type of mismatch

and experiment. Keeping the irrelevant color dimension constant seems to improve

the e�ciency of form search, but keeping the irrelevant form dimension constant

does not seem to improve color search any further than just a verbal instruction

about the type of mismatch.

4.5 General Discussion

In view of our central question, we have to ask how the results are to be interpreted

concerning the disregarding of irrelevant information under di�erent conditions.

As argued in Section 4.2, di�erences concerning color versus form search within

the same experiment cannot be viewed as universally valid, because they strongly

depend on the similarity of chosen colors and forms. Therefore, emphasis is put

on the di�erences between the experiments. The interactions between the factors

experiment and type of mismatch are especially important, because they suggest

color-form asymmetries in the e�ects of bottom-up control of attention (compar-

ison of Experiment A to Experiment B) and of top-down control of attention

(comparison of Experiment B to Experiment C).

Before discussing the results yielded by the global measures, we should focus

our attention on the analysis of local parameters, i.e. local color and form entropy.

In contrast to the global variables, the e�ects of local entropy on the subjects' eye

movements can be assumed to directly indicate to what extent a speci�c stimulus
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Figure 4.5: Mean speed of processing in y-direction

dimension was regarded or disregarded: If, for instance, the subjects' performance

decreases in display areas of high color entropy (i.e. areas presenting much color

information), this would suggest that the color information is not completely

disregarded.

Fixation duration does neither depend on local color entropy nor on local

form entropy in any of the experiments. Conceivably, �xation duration cannot be

considered an appropriate measure of a subject's e�ciency in comparative visual

search. Area coverage, however, is signi�cantly a�ected by both color entropy and

form entropy in Experiment A. This result is plausible: Subjects do not know the

dimension of the mismatch in advance, hence they have to pay attention to the

colors as well as to the forms of the items. In Experiment B, the entropy e�ects

are restricted to the relevant dimension: AC signi�cantly depends on the entropy

of the relevant dimension, but not on the entropy of the irrelevant dimension.

High values of irrelevant entropy seem to decrease AC as well, but this e�ect

does not reach signi�cance. While the interaction of the factors type of mismatch

and color entropy shows a reliable e�ect, the interaction of type of mismatch and

form entropy remains below signi�cance. These �ndings suggest that both color

and form can, at least to some extent, be disregarded on the basis of bottom-up

control of attention. Disregarding form information, however, seems to be more

e�cient than disregarding color information. The results of Experiment C are in

line with the above interpretations; AC always depends on the relevant entropy.

Are the e�ects of local entropy re�ected in the global measures of e�ciency?

The analysis of variance between Experiments A and B does not show an inter-

action between the type of mismatch and any of the variables RT, FD, AC, and

AT. This �nding indicates that the bottom-up control introduced in Experiment
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Figure 4.6: Mean area coverage per �xation

B does not a�ect these variables di�erently for color and form search. However,

there is such an interaction for SP (see Figure 4.5). SP shows no signi�cant shift

in situations of form mismatches, but an acceleration at the detection of color

mismatches.

Why is this SP e�ect not re�ected in the overall RT? Logically, RT should

decrease with increasing SP. When regarding the RT results in Figure 4.2, such

a correspondence can actually be assumed: Color RT seems to decrease more

strongly than does form RT between Experiments A and B. This interaction,

however, does not attain signi�cance. The reason for this missing signi�cance

is likely to be the high variance of RT, because RT is the sum of at least three

di�erent components: The time to reach the target, the additional time caused by

eventually missing the target (AT), and the time needed for manual response. This

�noise� handicaps the analysis of RT. Therefore, investigating eye movements in

comparative visual search does not only enable us to recognize the factors that

determine the overall RT, but also to increase the validity of the results.

The SP and AC data indicate, as expected, that the detection of color targets

is facilitated by verbally specifying the relevant dimension. Surprisingly though,

there is no analogous e�ect on the detection of form targets. Although it seems to

be possible � to some extent � to disregard color information during form search

(see above), this capability does not enhance the speed of processing. Hence, we

might assume the maximum search speed to be higher for color targets than for

form targets.

According to the results of SP and AC, simultaneous search for color and form

in Experiment A is not signi�cantly less e�cient than speci�c search for form in

Experiment B. Thus, it seems that form processing might imply color processing.
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In the light of these considerations, the e�ects between Experiments B and C

are especially insightful: How does the additional bottom-up help of eliminating

the irrelevant stimulus dimension interact with the search for color and form

targets? This time, the variables RT, FD, and SP do not signify any interactions

between the factors experiment and type of mismatch, whereas the variable AC

is signi�cantly in�uenced: AC bene�ts from the bottom-up control only with

regard to color search, supporting our view that color search is not completely

independent of the form information given in the display.

AT, however, remains almost constant with regard to color search and clearly

decreases for form search. Irrelevant color information during form search seems

to be more �confusing� for the subjects, leading to longer additional search time

after missing the target than does irrelevant form information during color search.

The improving e�ect of bottom-up control on form search is restricted to target

detection itself; search e�ciency is not a�ected, as indicated by SP and AC. Again,

no signi�cant e�ect is established for RT, although the RT di�erence corresponds

well to the divergence of AT between Experiment B and Experiment C.

All in all, the results enable us to outline a rough picture of the processing

and disregarding of color and form during comparative search. As a matter of

fact, there is no evidence supporting a dichotomy of �processed� versus �non-

processed� (disregarded) information. The irrelevant dimension seems to in�uence

the subjects' search performance, both during color and form search, but the

in�uence of the relevant dimension is stronger in either case.

There are, however, basic di�erences between color and form search. The ef-

�ciency measures SP and AC indicate that form search is neither signi�cantly

facilitated by top-down nor by bottom-up control of attention. This �nding sup-

ports the assumption raised above: Form processing may imply color processing.

Handling form information seems to be more demanding and to be achieved at a

certain maximum speed that cannot be increased by the control of attention. Dur-

ing form search, color information � as a �by-product� � may become accessible

to the cognitive system as well.

During color search, however, it seems possible to avoid form processing to

some extent. Search e�ciency bene�ts both from top-down control (SP) and from

bottom-up control (AC). The bottom-up e�ect on AC suggests that irrelevant

form information is not completely disregarded. This �nding underlines the con-

clusion drawn above: The capability of disregarding irrelevant information varies

along a continuum rather than between the states �yes� and �no�.
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Chapter 5

Experiments D and E: Variations

of the Basis Scenario

Motivated by the insights gained from the carefully assigned changes between Ex-

periments A, B, and C about the factors that in�uence comparative visual search,

we will now consider further variations and analyze changes in the eye-movement

parameters in order to investigate the cognitive processes in comparative visual

search in more detail. What kind of variations appear most promising in this

respect?

Comparative visual search is practically an untouched �eld of research so far,

hence countless combinations of novel stimuli and tasks are open to scienti�c

investigation. It goes without saying that only a very small fraction of them can

be covered in a single work like the one in hand. Therefore, it seems useful to

take a look at substantial changes in the scenario in order to explore the range of

phenomena. Before introducing new elements to the stimuli, we should consider

those changes that do not a�ect the �old� two-dimensional, geometrical items

with three colors and three forms.

Fundamental modi�cations of the scenario can be achieved by various kinds of

its inversion. When thinking about inversion, one idea is likely to strike our minds

immediately: So far, subjects have been searching for a mismatch among other-

wise corresponding items. What about having them search for a match among

otherwise dissimilar items? This idea has been taken as the basis of Experiment

D, which is described in the following section. Another aspect of inversion refers

to the geometry of the stimulus pictures: In the previous experiments, the right

hemi�eld has been a translated copy of the left one (except for the target item).

What will happen to the subjects' eye movements if the right hemi�eld were a

mirror image of the left hemi�eld instead? Experiment E is an attempt to answer

this question.
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5.1 Experiment D: Searching for a Match

There are various possibilities of arranging stimuli for match detection. For in-

stance, in the simplest situation, subjects could search for a combined color and

form match among pairs of items that di�er in either their color or form. How-

ever, we decided to use the exact inversion of Experiments A and B in order to

make the experiments comparable to each other: The distractors di�er in both

dimensions, while the targets are of either the same color or form, as shown in

Figure 5.1. Nevertheless, the question remains whether the subjects should be

informed about the type of match in advance, i.e. whether the experiment should

correspond to Experiment A or to Experiment B.

Figure 5.1: Example stimulus used in Experiment D. Subjects are to �nd a color

or form match between items in corresponding locations.

Both alternatives were investigated in a pre-study. It revealed that keeping

the subjects uninformed about the relevant dimension results in too di�cult a

task. The subjects' mean reaction time was more than twice as long as in Exper-

iment A. Moreover, subjects soon got fatigued, and some of them completely lost

their motivation to solve the task (solving the example task in Fig. 5.1 may help

to understand this e�ect). Such phenomena have not been observed in any other

experiment using comparative visual search. In order to ensure overall compara-

bility to those, Experiment D was designed in such a way that subjects know the

dimension of the match in advance. Consequently, Experiment D corresponds to

Experiment B, hence it is useful to compare their results. Technically speaking,

the independent variables are type of match (color versus form) and experiment

(Experiment B versus Experiment D).
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What e�ects can be expected to occur when subjects have to search for a

match rather than a mismatch? As in Experiment B, only one of the two stim-

ulus dimensions (color or form) is relevant for task completion, the other one is

purely distracting. The comparison between Experiments A and B in Chapter 4

has shown that the subjects' knowledge about the relevant dimension increases

their search e�ciency only with respect to color search, suggesting that irrelevant

form information can be disregarded more e�ectively than irrelevant color infor-

mation. Basically, the situation in Experiment D is the same; only one stimulus

dimension is relevant within each trial. If we assume that there are no funda-

mental di�erences between the detection of matches and mismatches, the pattern

of results should resemble the one obtained in Experiment B. In particular, we

expect an increased e�ciency during color search which should be indicated by

the variables reaction time (RT), speed of processing (SP), and area coverage per

�xation (AC).

It might be possible, however, that the comparison of merely di�erent color

and form information between the hemi�elds is more demanding than the com-

parison of mainly identical information, because individual information provided

in each hemi�eld is likely to induce higher memory load during its processing.

Since we assume a constant capacity of working memory, the number of items (or

the subarea of the display) memorized at a time might be smaller in Experiment

D than in Experiment B. This could be indicated by lower values of the e�ciency

measures RT, SP, and AC. Additionally, saccade length (SL) is an appropriate

measure: Shorter saccades could signify a more thorough search strategy caused

by a smaller focus of attention.

Finally, interesting questions are whether matches are missed more frequently

than mismatches and whether this frequency is a�ected by local entropy in the

same way for matches and mismatches. It is important to investigate these ques-

tions, because the answers may provide information about the factors that de-

termine the �visibility� of matches and mismatches. Therefore, we analyze the

dependence of the probability of missing the target (PM) on the factors experi-

ment, type of mismatch, color entropy, and form entropy.

5.1.1 Method

Subjects

The subjects (N = 14) were students of various �elds at the University of Biele-

feld. They were paid 7 DM for their participation. All of them had normal or

corrected-to-normal vision; none had pupil anomalies, and all were able to dis-

tinguish between colors.

Materials

The parameters of the stimuli and their presentation were identical to Experiment

B with one fundamental di�erence: This time, item �twins� neither had the same
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color nor the same form, except for the target items which corresponded in exactly

one of these dimensions (see Figure 5.1 for an example). Again, the random

distribution of colors and forms tended to generate areas of similar items (see

Section 2.3).

Apparatus

Eye movements were recorded using the OMNITRACK1 system. The experimen-

tal set-up was the same as in the previous experiments.

Procedure

Subjects were tested individually. They were instructed to �nd the only color or

form match between corresponding items shown in the display. They had to press

a mouse key as soon as they detected the match. Each subject viewed 60 pictures

which were individually generated. After every tenth picture, the eye tracker was

recalibrated. Three of the six resulting blocks of stimuli contained a color match,

the other three blocks contained a form match. Their order of presentation was

randomized. Prior to each block, subjects were informed which kind of match to

expect.

5.1.2 Results and Discussion

Since the results of Experiment D cannot be interpreted without their compar-

ison to Experiment B, all results of Experiment D are immediately followed by

their comparison to Experiment B in this section. This seems to be the most

comprehensive way to report the �ndings.

Figure 5.2 illustrates the scanpath generated on the example stimulus by one

of the subjects. Obviously, most of the �xations are located closely to items,

demonstrating a thorough search strategy. All in all, the search process seems to

proceed more slowly in Experiment D than in the corresponding Experiment B.

This is corroborated by the results of the quantitative analyses. Saccade length

(SL) is found to be signi�cantly shorter than in Experiment B, regardless of the

dimension of the match or mismatch respectively. Concerning color targets (color

matches or mismatches respectively), SL decreases from 62.26 to 55.50 pixels

(t(32) = 2:28; p = 0:030). With regard to form targets, it diminishes from 58.86

to 52.46 pixels (t(32) = 2:53; p = 0:016). Within Experiment D, SL is signi�cantly

higher during color search (t(32) = 2:83; p = 0:014) than during form search. This

�nding suggests that color search still induces higher e�ciency of task completion

than form search, una�ected by the task inversion between Experiments B and

D.

Moreover, the variable search speed (SP) reveals a corresponding pattern of

results. In Experiment D, SP is signi�cantly slower than in Experiment B, which

holds for color search (35.39 versus 57.92 pixels/s; t(32) = �3:63; p < 0:001) as

well as for form search (29.52 versus 48.47 pixels/s; t(32) = �5:11; p < 0:001). The
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Figure 5.2: Example picture with a subject's gaze trajectory. Fixations are num-

bered; �xation duration is indicated by circle size.

SP di�erence between the detection of color and form matches in Experiment D

shows a tendency towards higher speed during color search; it does not, however,

reach signi�cance.

The same e�ects are found with respect to the area coverage per �xation

(AC). It is reliably smaller in Experiment D than in Experiment B, both during

color search (2253 versus 3171 pixels; t(32) = �3:65; p < 0:001) and during form

search (2055 versus 2874 pixels; t(32) = �4:21; p < 0:001). The mean AC in

Experiment D is somewhat larger for color search than for form search, however,

this di�erence closely misses signi�cance.

Since the observations for the variables SL, SP, and AC suggest some tendency

towards higher search e�ciency of color detection as compared to form detection,

we should expect reaction time (RT) to reveal an analogous e�ect. However,

this is not true. Matching color targets require a mean RT of 13694 ms, while

form targets require 13496 ms, which is almost the same result. In comparison

to Experiment B, however, e�ciency is reduced: Color search causes longer RT

in Experiment D than in Experiment B (7330 ms) (t(32) = 7:63; p < 0:001), and

the same holds true for form search (Experiment B: 10541 ms) (t(32) = 3:12; p =

0:004).

In the previous Chapter 4, we have argued that RT is not completely de-

termined by the variables SL, SP, and AC. The probability of missing the target

(PM) has a substantial impact on RT as well. A four-factorial analysis of variance

(type of match, local item density, local color entropy, local form entropy) unveils

an interesting e�ect: Color targets lead to signi�cantly higher PM (22.8%) than
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form targets (17.8%) (F (1; 13) = 6:83; p = 0:021), which explains the missing

RT di�erence between color and form search. This �nding is inverse to the corre-

sponding result of Experiment B, where PM is lower for color mismatches (9.2%)

than for form mismatches (19.4%) (F (1; 19) = 14:38; p = 0:001). Moreover, in

Experiment D, PM signi�cantly depends on the local color entropy at the tar-

get items. It is smaller for low color entropy (12.1%) than for high color entropy

(19.0%) (F (1; 13) = 16:21; p = 0:001). Form entropy, on the other hand, does not

exert a reliable e�ect on PM. Again, the situation is inverse in Experiment B,

which exhibits a signi�cant in�uence of local form entropy on PM. PM increases

from low form entropy (8.9%) to high form entropy (12.7%) (F (1; 19) = 8:91;

p = 0:008), while it does not depend on color entropy.

The results obtained are not consistent with the assumption that match and

mismatch detection involve the same kind of processes. As indicated by the vari-

ables SL, SP, AC, and RT, search e�ciency is substantially higher during mis-

match detection than during match detection. The reason for this discrepancy

conceivably lies in the fact that subjects memorize and compare groups of items

rather than single items. If subjects sequentially compared single pairs of corre-

sponding items, search e�ciency should not strongly depend on the task (match

versus mismatch detection). However, subjects tend to memorize and compare

about two to four items at the same time, as estimated in Chapter 3. In Exper-

iment B, the items corresponding between the hemi�elds had the same identity,

which means that they were of the same color as well as of the same form. Only the

target items had di�ering identities. Hence, groups of items could be compared

holistically; they matched perfectly between the hemi�elds unless they contained

the target items. The situation in Experiment D is completely di�erent: Nei-

ther the distractors nor the target items share the same identity between the

hemi�elds. Since item groups always di�er between the hemi�elds, their holistic

comparison is impossible. Additionally, it is more di�cult to identify the items

which correspond to the actually memorized ones, because the only cue is their

location, whereas in Experiment B their color and form constitute further signals.

Apart from the generally reduced e�ciency in Experiment D, the increased

value of PM with regard to color targets has to be explained. Conceivably, this

e�ect is to some extent caused by the subjects' overestimation of their own ca-

pacities. As Experiments B and C have demonstrated, it is easier to perceive,

memorize, and compare the color information of item groups than their form

information. Since a holistic comparison of such groups is possible, PM is even

smaller for color search than for form search. In Experiment D, the detection of

color targets still seems to be easier, because the pure perception of color infor-

mation is not impaired. Accordingly, subjects might proceed faster during color

search than during form search, memorizing larger groups of items at the same

time. This is supported by the variables SL, SP, and AC. The impracticability of

holistic group comparisons, however, might eliminate the better detectability of

color targets. Hence, subjects are likely to�pay� for their faster scanning during

color search with higher PM. As a matter of fact, such an e�ect would increase

with the complexity of color patterns, i.e. the local color entropy at the target
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items.

In the situation of mirror symmetry between the hemi�elds, holistic processing

should be impaired as well. Thus, it is promising to compare the e�ects to be

observed in Experiment E with those established in Experiment D in order to

verify the considerations mentioned above.

5.2 Experiment E: Stimuli with Mirror Symme-

try

The e�ects of translational or �repeated� symmetry versus mirror symmetry were

examined in various contexts. For instance, Julesz (1969) reported that subjects

were able to detect mirror symmetry in random-dot patterns faster than repeti-

tion. The study of Bruce & Morgan (1975) is more closely related to comparative

visual search (see Section 1.5). The authors used left-right mirror symmetric or

horizontally shifted line patterns as stimuli. Some of these stimuli contained sym-

metry violations which the subjects had to detect. Similar to Julesz' (1969) re-

sults, the subjects' search e�ciency was signi�cantly higher with mirror symmetry

than with repetition. This advantage of mirror symmetry was found to diminish

with an increasing horizontal eccentricity of the violation due to a longer distance

between the two mismatching locations. Unfortunately, neither of the two studies

mentioned above investigated the subjects' gaze trajectories.

In order to keep Experiment E as comparable as possible to Experiment A,

the parameters of the stimuli used in Experiment A were not changed at all, with

the sole exception of the right hemi�eld being a horizontally mirrored rather than

a translated copy of the left hemi�eld. An example stimulus is shown in Figure

5.3. Additionally, we decided to use the same task as in Experiment A, hence

subjects were not informed about the dimension of the mismatch they had to

search for.

Since the di�erence between Experiments A and E is of a geometrical na-

ture, it is especially interesting to compare the spatial structure of the respective

scanpaths. As a matter of course, we expect the distribution of saccade length

between the hemi�elds to be homogeneous rather than �peak-shaped� as in pre-

vious experiments, because the distance between corresponding items varies in

Experiment E. This distance can be substantially longer than in the situation of

translational symmetry. Thus, particularly long saccades are to be executed which

may require subsequent corrective saccades in order to direct the gaze to the in-

tended position. SL is likely to be a�ected by the occurrence of these additional

saccades.

Furthermore, we expect to replicate the eccentricity e�ect reported by Bruce

& Morgan (1975) under the conditions of Experiment E. This e�ect could be

caused by two di�erent factors: First, the probability of missing the target (PM)

might be lower for items near the symmetry axis, and second, subjects may tend

to scan the area near the axis before proceeding to more distant regions. If at

least one of these considerations holds, there should be an e�ect on the subjects'
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Figure 5.3: One of the stimuli used in Experiment E. The right hemi�eld is a

mirror image of the left one, except for one mismatching pair of items.

reaction time (RT). RT should increase with the distance between the target and

the symmetry axis.

But can we expect our subjects to require shorter reaction times in Exper-

iment E than in Experiment A in replication of the Bruce & Morgan (1975)

study? We must be careful, because the setting used by Bruce & Morgan (1975)

is quite di�erent from that in Experiment E. In their study, the mismatch be-

tween the hemi�elds consisted in missing or additional line elements. The stimuli

were monochrome and all lines were of the same rectangular shape, such that no

complex local features had to be compared. Moreover, the stimuli occupied only

about six degrees of visual angle, allowing subjects to perceive the hemi�elds al-

most as a whole instead of conducting sequential steps of local memorization and

comparison. In Experiment E, on the other hand, the global mirror symmetry is

less relevant due to the necessity of local processing. It might at best be possible

that targets in the vicinity of the dividing line are detected faster, because no or

only small lateral eye movements have to be applied.

As a matter of course, the local information is a�ected by the type of sym-

metry as well. In the case of translational symmetry, the memorized information

can be directly compared with the corresponding data in the other hemi�eld,

while mirror symmetry requires the subjects to mentally perform the respective

transformation. There is no obvious reason why this additional transformation

should facilitate search performance, hence we should rather expect the opposite

e�ect. At any rate, it is useful to compare the results of Experiments D and E in

order to establish any e�ects of increasing task complexity.
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As a basis for the comparison to Experiments A and D, we investigate the

variables RT, SP, AC, SL, and PM as functions of the type of mismatch in Ex-

periment E.

5.2.1 Method

Subjects

Sixteen paid subjects (7 DM each) participated in Experiment E. They were

students of various faculties at the University of Bielefeld. They had normal or

corrected-to-normal vision; none of them had pupil anomalies or was unable to

distinguish between colors.

Materials

The type of stimuli and their presentation were the same as in Experiment A

with one variation: The right hemi�eld was not a translational copy of the left

hemi�eld as in the previous experiments, but itsmirror image. The white line that

separated the hemi�elds was taken as the symmetry axis. The random distribution

of colors and forms as well as the integration of mismatches did not di�er from

Experiment A.

Apparatus

The OMNITRACK1 device was used to record the subjects' eye movements. The

experimental set-up was the same as in Experiments A to D.

Procedure

All subjects were tested individually. Their task consisted in detecting the only

color or form mismatch between corresponding, i.e. �re�ected� items in the dis-

play. Subjects were to press a mouse key as soon as they found the mismatch.

Each subject viewed 50 individually generated stimuli, 25 of which contained a

color mismatch and 25 a form mismatch. The order of presentation of stimuli was

randomly permutated. After every tenth picture, the eye tracker was recalibrated.

Subjects were not informed when to expect which type of mismatch.

5.2.2 Results and Discussion

Figure 5.4 shows one subject's gaze trajectory on the underlying example stimu-

lus. In fact, the subject starts scanning exclusively the targets which are located

close to the symmetry axis, and indeed succeeds. Conceivably, he takes advantage

of the assumed increased detectability of these �favorable� targets. This example

motivates the investigation of the question raised above: Are targets near the

dividing line detected faster than others? In order to assess the magnitude of the

assumed horizontal target bias of RT, we compare it with the vertical one. In
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Figure 5.4: Example picture with a subject's plotted visual scanpath. Fixations

are numbered; the circle size indicates �xation duration.

Experiments A to D, subjects tended to start scanning at the top of the display

and then move downwards. Which is the dominant strategy in Experiment E?

Figure 5.5: Reaction time for di�erent target distances from the top of the display

or the dividing line respectively

Figure 5.5 presents the RT values for three equidistant intervals of target
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distances. The light columns represent the horizontal intervals, the dark columns

the vertical ones. A two-factorial analysis of variance (horizontal and vertical

target distance) reveals that the vertical target position exerts a signi�cant e�ect

on RT (F (2; 30) = 28:91; p < 0:001). A short distance to the top of the stimulus

leads to shorter RT (8298 ms) than a medium distance (11490 ms) (F (1; 15) =

12:56; p = 0:003). A long distance induces higher RT (15660 ms) than a short

one (F (1; 15) = 40:22; p < 0:001) or a medium one (F (1; 15) = 25:93; p < 0:001).

Increasing horizontal target distance from the dividing line exhibits a tendency

to cause longer RT as well (11137 ms for a short, 11903 ms for a medium, and

12590 ms for a long distance). Just like the interaction between the two factors,

however, the tendency to cause longer RT does not reach signi�cance.

It must be stated that the in�uences of the horizontal and the vertical target

position are not perfectly comparable, since the height of a hemi�eld exceeds its

width by about 50%. The order of magnitude between the horizontal and the

vertical target bias of RT, however, cannot be caused by the height-width ratio of

the stimuli alone. Obviously, the top-down strategy still determines the subjects'

scanpaths much more strongly than does the horizontal factor. Subjects prefer

the plain, vertical alignment of scanpaths, although strategies as shown in Fig-

ure 5.4 are likely to be more e�cient on average. Conceivably, a clear distinction

between visited and not yet visited items is considered to be more important

than the chance of faster target detection. This attitude is absolutely reasonable,

because confounding visited and unvisited items could lead to substantially in-

creased probability of missing the target (PM), which in turn could hardly be

compensated by statistically faster detection.

With regard to the di�erences between color and form search, RT presents

a signi�cant dependence (t(15) = �2:80; p = 0:014); it is shorter for color mis-

matches (10903 ms) than for form mismatches (12958 ms). This di�erence of ap-

proximately two seconds compares well to the one obtained in the corresponding

Experiment A (9903 ms versus 11997 ms). The absolute values, though somewhat

higher in Experiment E, do not signi�cantly di�er from Experiment A. In all re-

spects, the hypothesis of increased search e�ciency in mirror-symmetric stimuli

does not hold. This �nding clearly supports our assumption of local information

processing being impaired by additional mental transformation.

Accordingly, the e�ciency parameters SP, AC, and SL should be higher in

Experiment A than in Experiment E. Search speed (SP) is in fact substan-

tially faster in Experiment A (45.44 pixels/s) than in Experiment E (31.65

pixels/s) (t(30) = 5:31; p < 0:001). Area coverage (AC) presents a similar

e�ect between Experiment A (2619 pixels) and Experiment E (2006 pixels)

(t(30) = 3:92; p < 0:001). Since subjects are not informed about the type of

mismatch in both experiments, neither SP nor AC reveals a signi�cant di�erence

between color and form search. However, the third e�ciency variable, namely

saccade length (SL), exhibits a di�erence between Experiments A and E in the

opposite direction. SL is signi�cantly shorter in Experiment A (55.14 pixels) than

in Experiment E (60.68 pixels) (t(30) = �2:70; p = 0:011). What can be the rea-

son for this unexpected e�ect?
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The reason conceivably lies in the occurrence of extremely long distances to be

covered by single saccades. In Experiment A, the saccades between the hemi�elds

are of approximately the same length, because there is a constant horizontal shift

of 360 pixels between corresponding items. The stimuli in Experiment E, how-

ever, present horizontal distances between 100 and 620 pixels and hence require

a certain proportion of very long saccades. Saccades are �programmed� before

their execution rather than being continuously controlled during execution. This

programming might be especially fast and often incorrect due to the subjects' lack

of time. The end points of longer saccades are more likely to hit a �wrong� group

of items in the opposite hemi�eld or sometimes even in the same hemi�eld, thus

requiring an additional saccade for correction. If the imprecise as well as the cor-

rective saccades are the reason for the increased value of SL, the within-hemi�eld

saccades with starting points or end points of high horizontal eccentricity should

be longer than those of low eccentricity. In fact, SL was signi�cantly higher (69.85

pixels) for saccades with long distances between their end point and the dividing

line than for those with a short distance (49.52 pixels) (t(15) = 16:34; p < 0:001).

Obviously, attending to �wrong� item groups that have already been visited or

still have to be visited does not strongly a�ect AC. It might, however, decrease

SP, because �split� saccades go along with longer latencies than direct ones.
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Figure 5.6: Histogram of saccade length

Besides the occurrence of corrective saccades, it is obvious that the introduc-

tion of mirror symmetry must exert an e�ect on the distribution of SL. Figure 5.6

shows SL histograms for the saccades within and between the hemi�elds respec-

tively. Since the horizontal distance between corresponding items is variable, it

is not surprising that the between-hemi�eld SL distribution in Experiment E has

a much higher dispersion and does not show the �peak� found in Experiment A
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(see Figure 3.5). Interestingly, the maximum distance of 620 pixels between cor-

responding items is practically not occupied in the SL histogram. This is in line

with the abovementioned idea that long distances are probable to be covered by

two successive saccades instead of a single saccade. Furthermore, since subjects

tend to inspect item groups rather than individual items, they prefer to conduct

saccades between the innermost points of groups to be compared. As supported

by the visual inspection of scanpaths, these two circumstances are responsible for

an almost complete elimination of saccades longer than 580 pixels.

Generally speaking, the e�ects of search e�ciency induced by the introduction

of mirror symmetry resemble those being caused by match detection instead of

mismatch detection in Experiment D. In fact, there are no signi�cant di�erences

in SP or AC between Experiment D and E, neither for color nor for form search.

However, color search leads to smaller RT than form search in Experiment E (see

above), whereas Experiment D does not show a dependence of RT on the type of

match. RT for color search is signi�cantly longer in Experiment D (13694 ms) than

in Experiment E (10903 ms) (t(28) = 3:09; p = 0:004), while there is no such e�ect

for form search (13496 ms versus 12958 ms). The low RT value in Experiment E is

accompanied by an accordingly low PM value. With regard to color targets, PM

is signi�cantly higher in Experiment D (22.8%) than in Experiment E (15.9%)

(t(28) = 2:81; p = 0:009). Since the subjects do not know the dimension of the

mismatch, they can never ignore the form information, which seems to prevent

them from �overestimating� their own capacities like e.g. in Experiment D.

5.3 Conclusions

Unexpectedly, the tasks in Experiments D and E, which were based on di�erent

types of inversions, have led to similar patterns of results. Search e�ciency is

lower than in the corresponding Experiments B and A respectively, indicating

that inversion requires increased mental e�ort for the completion of the task.

An advantage in e�ciency of mirror symmetry over translational symmetry (e.g.

Bruce &Morgan, 1975) has not been established. This e�ect seems to be restricted

to global symmetry, and does not occur during successive processing of local

information. Instead, successive processing of local information requires subjects

to perform an additional mental transformation on the visual input which impairs

their search e�ciency.

A holistic comparison of local item groups appears to be the most e�cient,

because the correspondence of items between the hemi�elds is clearer. Further-

more, the �ndings suggest the dominance of �ad hoc� processing of information

in tasks of comparative visual search. If holistic processing is possible, the visual

information need not enter higher perceptual or cognitive levels. It is rather the

case that the immediate visual impression can be memorized and matched with

the corresponding region in the other hemi�eld. This strategy is most e�cient if

only a holistic same-di�erent decision is required.

However, if the memorized information cannot be compared as a whole, its



102 Experiments D and E: Variations of the Basis Scenario

super�cial processing is not su�cient for task completion. In Experiment D, nei-

ther the forms nor the colors of items correspond between the hemi�elds, hence

not even the corresponding position of memorized information can be determined

holistically. The locations of items might be processed independently of their color

and form attributes in order to �nd the complementary items in the other hemi-

�eld. Subsequently, the memorized data are retrieved and compared, presumably

demanding a serial process, since there is no holistic correspondence with mis-

matches �popping out� as in Experiments A to C. Experiment E makes similar

demands on the subjects; although the items' identity between corresponding lo-

cations is the same, their relative positions are horizontally mirrored. Moreover,

the mirror symmetry seems to disable subjects to perform a holistic comparison

of memorized item information.

In Experiments D and E, the local information has to be represented in a

rather �exible way, because transformations are to be performed and locations

and attributes are to be retrieved separately. As indicated by the variables SL,

AC, and SP, these increased demands on working memory, combined with a

strive towards e�ciency, may lead to smaller groups of items being memorized at

the same time. Interestingly, �xation duration (FD) does not vary signi�cantly

between Experiments A to E, supporting our assumption of a constant capacity

of working memory. Irrespective of the task, memory usage is adjusted in such

a way that single steps of local memorization and comparison take about 200

ms, which seems to be the optimal duration in combination with the time �cost�

of necessary saccades. Consequently, increasing qualitative demands on working

memory will lead to smaller quantities of objects being memorized during each

step.

A more thorough investigation of working memory usage during comparative

visual search is performed in the following Chapter 6. The extension of the basis

scenario allows to observe how working memory controls the search process. Fur-

thermore, the stimulus-dependent capacity of working memory and its e�ects on

search e�ciency are investigated.



Chapter 6

Experiment F: From Items to

Item Clusters

6.1 Guiding the Subjects' Attention

Despite the �ndings from Experiments A to E, it seems that several interesting

basic questions cannot be addressed within this �class� of experiments:

� Are there general principles of scanpath selection? If so, what are these

principles?

� How many items are held in working memory at the same time? What is

the e�ect of color and form entropy on this number?

� Which perceptual characteristics of the stimuli guide the viewers' attention?

We might try to design visual displays which strongly suggest a grouping of

items into clusters of a particular size. Assuming that the suggested grouping is

indeed used by the subjects and determines their memory load, we might then

study the resulting scanpaths and compare the �ndings for di�erent sizes of sug-

gested groupings. In this way, we might get a clue how scanpath generation and

memory load (assuming the latter to be largely determined by the size of the

suggested groupings) are interrelated. The dependence of various eye-movement

variables on local stimulus features might become amenable to quantitative anal-

ysis. Finally, the sequential scanning of item groups can be assumed to reduce the

immense variabililty of scanpaths found in the previous experiments. This situa-

tion may facilitate the revelation of general, basic characteristics of scanpaths.

What is an appropriate method of stimulus design with regard to this purpose?

For a start, we could use spatially clustered items instead of homogeneously ran-

domly distributed ones as in Experiments A to E. However, this approach has two

drawbacks: First, the comparability to the former experiments would be rather

low, because all items are located in regions of high density and can thus be per-

ceived with fewer �xations and shorter saccades. Second, conclusions about the
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capacity of working memory are not generally valid for the paradigm of compara-

tive visual search, since in most cases working memory can be ��lled up� without

employing any saccades during this process in most cases.

Recent research in our group (Koesling, Pomplun & Ritter, submitted 1997)

suggests a di�erent approach of how to create suitable stimuli. In Hendrik Koes-

ling's experiments, subjects were presented with scenes as shown in Figure 6.1.

These scenes showed two non-identical random distributions of dots with addi-

tional connecting lines in the left hemi�eld, forming groups of approximately equal

size. The subjects had to decide whether there were more dots displayed in the

left or in the right hemi�eld. As a matter of fact, they had to base their estimate

on perception and were not allowed to count the dots (the reader is invited to

solve the example task displayed in Figure 6.1 before reading the correct answer

in the next paragraph. Which of the hemi�elds has more dots?).

Figure 6.1: One of the stimuli used in Koesling's experiments. Which of the two

hemi�elds contains more dots?

As the empirical results showed, people tend to believe that it is the right

hemi�eld that contains more dots. In fact, there are 150 dots in the left hemi�eld

while there are only 135 dots in the right hemi�eld. This perplexing e�ect of

quantitative underestimation caused by the additional line elements (edges) was

found to increase with the number of displayed dots. In another series of experi-

ments, subjects were to spontaneously adjust the number of single dots shown in

the right hemi�eld to match the number of connected dots in the left hemi�eld.

The data obtained revealed a mean underestimation ranging from 20% (30 dots

shown) to 44% (150 dots shown). Moreover, the studies demonstrated that the

introduction of line elements had a substantially stronger impact on the subjects'
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estimation bias than many other methods of grouping which were tested as well:

Grouping by color, contour, or pointers exerted, if any, only small e�ects.

The observed occurrence of underestimation can be attributed to the percep-

tual grouping of dots induced by the additional lines. In the left image of Figure

6.1, for instance, we perceive groups of dots rather than a distribution of single

dots plus another distribution of lines or polygons. In fact, the lines make it hard

to perceive the (existing!) homogeneous random arrangement of dots as such. The

structural information given by the edges leads to a perceptual �simpli�cation�

of the left hemi�eld causing the estimation bias (for a detailed discussion see

Koesling, Pomplun & Ritter).

With respect to our initial problem, what can we infer from these �ndings?

The experiments described above yielded evidence for connecting lines to cause a

strong e�ect of perceptual grouping in random distributions of dot-like items. It is

important to note that no change of any item positions was necessary in order to

achieve this perceptual impression. Hence, the idea near at hand is to connect the

items in our scenario of comparative visual search with straight lines. Compared

to our aforementioned suggestion to group items by moving them closer to each

other (�spatial clusters�), this method has the advantage of not changing the

overall random distribution of item locations. Although we have to take into

account the presence of additional line elements, the comparability to previous

experiments as well as the general validity of results is, therefore, signi�cantly

enhanced.

What e�ects of the additional connecting edges on the subjects' gaze tra-

jectories can we expect? First of all, the stimuli are likely to be scanned in a

cluster-by-cluster fashion; this was our main requirement for their creation. Con-

sequently, cluster size is an important independent variable in Experiment F: In

which way do the subjects' eye movements depend on the size of the perceptual

units, i.e. the number of items per cluster?

Being a �classical� measure of search e�ciency, reaction time (RT) is investi-

gated as a dependent variable. Ideally, we expect RT to present a distinct mini-

mum value for a speci�c cluster size, indicating the presumably optimal number

of items to be memorized at a time during comparative search. As suggested by

Experiments A to C (see Chapter 4), however, speed of processing (SP) and area

coverage per �xation (AC) might be more reliable indicators for e�ciency than

RT. Maximum values of SP and AC would suggest the optimal cluster size. At

any rate, RT, SP, and AC should signify the same size to be the optimal one.

As argued above, if subjects scan the display in a clusterwise pattern, we

are able to precisely investigate the dependence of eye-movement parameters on

the size, color entropy, and form entropy of a cluster being processed. For this

purpose, we have to use appropriate within-cluster parameters of gaze trajectories

as dependent variables: Number of comparisons between hemi�elds (NC), number

of �xations (NF), and duration of processing (DP). If these variables depend

proportionally on cluster size, the potential e�ects of cluster size on the global

measures RT, SP, and AC cannot be attributed to processes within the clusters.

In this case, the global e�ciency gains for speci�c cluster sizes are conceivably
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caused by the cluster structure facilitating the construction and tracking of global

scanpaths.

6.2 Method

6.2.1 Subjects

Sixteen students of various �elds at the University of Bielefeld took part in Exper-

iment F. They were paid 7 DM for their participation. All of them had normal

or corrected-to-normal vision; none had pupil anomalies, and all were able to

distinguish between colors.

6.2.2 Materials

Basically, the stimuli had the same appearance as in Experiment A. Colors and

forms were still distributed with a tendency towards the generation of uniform

areas, and the mismatch was either in color or in form.

As mentioned before, one of the key questions to be investigated is the in-

�uence of cluster size on the eye-movement parameters. In this context, cluster

size means the number of items in each perceptual group (or cluster) formed by

the connecting edges. This cluster size was varied from one to six with �size one�

corresponding to the presentation of unclustered stimuli like those used in Ex-

periments A and B. These unclustered stimuli were integrated into Experiment

F as well, yielding baseline data for the investigation of grouping e�ects. It goes

without saying that the total number of items per hemi�eld was kept constant at

a value of 30, which led to a problem with stimuli of cluster size four. Since 30

cannot be divided by four, we chose stimuli of six clusters of size four plus two

clusters of size three. In Experiment F, 60 di�erent stimuli were used, ten of each

cluster size. Five stimuli per cluster size contained a color mismatch, the other

�ve contained a form mismatch.

Thin white lines were introduced to connect the centers of items and thus to

form item clusters. These lines were identical for the left and the right hemi�eld.

In analogy to the experiments of Koesling, Pomplun & Ritter, the clusters were

algorithmically generated with the minimization of geometrical within-cluster dis-

tances between items being the clustering criterion. Items within the same cluster

were connected with lines using a standard �travelling salesman� algorithm (see

Section 3.1.1). It can be mathematically demonstrated that the connecting lines

of a valid TSP path never intersect each other. Therefore, using the TSP algo-

rithm led to a standardized and clearly arranged appearance of clusters. Figure

6.2 presents one example stimulus for each cluster size.

Since we expected a reduced variability of scanpaths due to the �guiding

e�ect� of the suggested clusters, it did not seem useful to generate individual

stimuli for each subject as performed in Experiments A to E. Presenting each

subject with the same set of stimuli in randomized order instead, enabled us to
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Figure 6.2: Example stimuli used in Experiment F with cluster size increasing

from one to six

superimpose their scanpaths in order to discover common regularities.

Although this experimental design was favorable, the restricted stimulus set

required us to take a closer look at its statistical balance. For example, the overall

reaction time RT was known to depend to a high extent on the vertical target

position (see Experiment E). In order to obtain valid RT results, the target posi-

tion had to be counterbalanced across stimuli. For this reason, the left hemi�eld

of every generated stimulus was divided into three times three rectangular areas

of equal size. For each cluster size, the stimuli used in the experiment were chosen

in such a way that the targets were located twice in the center area and once in

each of the eight surrounding areas.
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6.2.3 Apparatus

Eye movements were recorded with the help of the OMNITRACK1 device. The

experimental setting remained the same as in the previous experiments.

6.2.4 Procedure

Subjects were tested individually. They were instructed to �nd the only mis-

match between corresponding items without being informed about its type (color

or form mismatch). They were to press a mouse key as soon as they detected

the mismatch. Each subject viewed the 60 stimuli in an individually generated

random order. After every tenth picture, the eye tracker was recalibrated.

6.3 Results and Discussion

6.3.1 Qualitative Analysis of Scanpath Characteristics

Figure 6.3: One of the stimuli presenting �ve items per cluster, superimposed

with a subject's scanpath. Fixations are numbered; circle size indicates �xation

duration.

Did the additional line structure essentially in�uence the subjects' eye move-

ments? For reasons of illustration, Figure 6.3 presents the scanpath generated by

one of the subjects for an example stimulus of cluster size �ve. The e�ect exerted

by the grouping lines is clearly visible: The subject employed a cluster-by-cluster

strategy. Actually, this was the typical way displays were scanned in Experiment
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F. As a rule, subjects did not proceed to a di�erent pair of clusters before the

currently visited pair had been completely inspected. This behavior was observed

for all subjects and almost all stimuli with cluster sizes ranging from three to six.

Cluster size two did not seem to trigger this e�ect, but this may be due to di�-

culties in assigning gaze positions to particular clusters, because clusters of two

items are shaped like lines rather than areas. An alternative interpretation would

be that the information content of two items may be insu�cient for subjects to

�ll up their working memory, so that single clusters of size two cannot attract the

subjects' attention completely. We will return to this point further below.

Obviously, the additional structural information served as a �guideline� for

the creation of a global, self-avoiding search path. When using clusters instead of

individual items as scanpath units, it is much easier for the subjects to remember

which part of the display they have already visited during task completion.

The fact that our clusters control the subjects' eye movements to some extent

should result in a reduced variability between scanpaths. Thus, it is promising

to pose one of the initial questions once again: Are there general principles of

scanpath selection? An appropriate method of investigation is to visualize the

eye-movement data of all 16 subjects at the same time on the background of the

underlying stimulus picture. For the bene�t of a clearly arranged illustration, it

is useful to disregard the between-hemi�eld saccades and to superimpose all data

onto one hemi�eld.

The upper row of Figure 6.4 shows the results of this procedure with regard

to an example stimulus of cluster size three. One hemi�eld of this stimulus with

a square marking the target item is shown in diagram (a). The next diagram

(b) presents the �xations produced by all subjects while processing the example

stimulus. Each �xation is represented by a circle with its radius being proportional

to �xation duration, the thick circles indicating the �rst �xation measured for each

subject. Not surprisingly, the �xations are attracted to the items such that the

�xation pattern reveals a �hole� in the item-free region to the left of the image

center. Moreover, we see that most of the subjects start their search at the top

of the picture, some of them at the bottom, but no one in between. Apart from

these rather trivial �ndings, no particular characteristics of eye movements can

be detected. This is also the case for diagram (c), which shows all saccades that

were generated by the 16 subjects. The only available information is that there

are more saccades in areas of high local item density. Finally, diagram (d) gives a

more detailed insight into scanpath features by displaying the subjects' cluster-to-

cluster transitions. For each scanpath, all �xations belonging to the same cluster

are summed up. The position of the circle indicates their center of gravity, and

its radius signi�es the sum of their durations. These circles are connected by lines

according to their temporal order of occurrence and the start circle is thicker

than the other ones. While the centers of gravity and the sums of durations still

exhibit strong variability, the structure of the cluster-to-cluster paths reveals a

certain tendency. There is a �chain� of four clusters leading from the center to the

lower right corner of the image. These clusters have only small distances between

each other and are aligned to roughly the same direction. As the accumulation
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of connecting lines in diagram (d) proves, subjects clearly tend to visit these

four groups in immediate succession. It seems that the minimization of scanpath

length plays an important role in the subjects' search strategies, reminding us of

the travelling salesman problem (see above).

Figure 6.4: Eye-movement data accumulated over 16 di�erent subjects (upper

row) and 10 trials of the same subject (lower row) performed on an example

stimulus (a). The distribution of �xations (b), the scanpaths (c) as well as the

cluster-to-cluster trajectories (d) are displayed with circle size indicating duration

and thick circles signifying the starting point of each path.

At this point, another interesting question arises: Is there an even more re-

duced variability between scanpaths of the same subject, yielding more precise

information on strategies and their individual characteristics? To try to give an

answer to this question, we had one additional subject participate in the experi-

ment ten times with delays of three or four days between the sessions. Undoubt-
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edly, the investigation of a group of subjects instead of a single subject would have

led to results of higher general validity, however, the e�ort for the conduction of

such a study would have been beyond the scope of the present work. Being aware

of the missing statistical signi�cance, we inspected the eye movements of the sin-

gle subject in order to get an idea of the within-subject variability of scanpaths.

As a matter of fact, an e�ect of learning partially in�uenced his eye movements

and led to shorter reaction times. This a-priori knowledge was indicated by long

saccades hitting the target area within the �rst one or two seconds after stimulus

onset. It was found by his report and the inspection of his scanpaths that in the

case of only eleven of the 60 stimuli no such in�uence took place in any of the

ten respective trials. One of those was the stimulus shown in Figure 6.4, where

the lower row presents the eye-movement patterns accumulated over the subject's

ten trials. Diagram (b) exhibits a stronger concentration of �xations around the

items than in the between-subjects analysis, but their exact locations are still

unpredictable. In all trials the subject started searching at the top of the display.

His saccades, shown in diagram (c), suggest that he prefers a distinct global

strategy. There seems to be less �noise� than in the 16 paths of di�erent subjects.

This is true for diagram (d) as well, which indicates only very few deviations from

his favorite scanpath. Unlike most of the other subjects, he integrated a �fth

group of items into the abovementioned chain of clusters, which might indicate

the existence of stable individual preferences. Moreover, the centers of �xations

within clusters do not shift strongly between his paths, suggesting that he paid an

individually constant amount of attention to each item. This attentional pattern

is not re�ected in the distribution of �xations, as we have seen in diagram (b).

All in all, the qualitative analysis of both between-subject and within-subject

scanpaths gives some idea of their global structure and their variability. On the

level of single �xations, however, we do not �nd any common regularities.

6.3.2 The In�uence of Cluster Size

Now that we have studied the e�ects of clustered stimuli in a qualitative fashion,

we have to take a look at the impact of cluster size on the empirical data. The �rst

idea is to analyze the dependence of the overall reaction time (RT) on cluster size

in order to determine which size is most convenient for the subjects. The mean

RT values separated for di�erent cluster sizes are shown in Figure 6.5. Neither a

linear dependence on cluster size nor an RT peak is visible. In fact, there is no

signi�cant e�ect of cluster size on RT.

What does this �nding mean? Is the factor cluster size completely irrelevant

to the subjects' performance? Before such conclusion, we might remember that,

in Experiments B and C, the pure analysis of RT did not prove to be su�cient to

establish such e�ects either. RT was biased by subjects' target misses, which led

to the more speci�c performance indicators search speed (SP) and area coverage

per �xation (AC) being checked for clari�cation. In Experiment F, the situation

seems to be comparable: An even higher probability of missing the target (PM)

of 18.1% adds a lot of �noise� to the RT values. Therefore, a closer analysis of
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Figure 6.5: Reaction time RT for di�erent cluster sizes

SP and AC is required before we draw any conclusions.

Figure 6.6: Search speed SP as a function of cluster size revealing a �double

stairway� characteristic

In fact, the SP results shown in Figure 6.6 present an interesting pattern: SP

increases from cluster size one to three, declines from size three to four, and in-

creases again from size four to six, yielding a pattern that reminds us of a �double

stairway�. The analysis of variance reveals a signi�cant e�ect of cluster size on
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SP (F (5; 75) = 10:82; p < 0:001). Also, the contrasts between di�erent cluster

sizes are analyzed: While the SP di�erence between size one (40.76 pixels/s) and

two (44.61 pixels/s) only presents a tendency, the SP value for size three (51.82

pixels/s) is signi�cantly higher than for size one (F (1; 15) = 33:40; p < 0:001) as
well as size two (F (1; 15) = 16:18; p = 0:001). The �step back� between size three

and four (46.43 pixels/s) also reaches signi�cance (F (1; 15) = 9:14; p = 0:009).
The SP variation from size four to �ve (51.76 pixels/s) is just a tendency, whereas

SP for size six (60.17 pixels/s) is signi�cantly higher in comparison to both size

four (F (1; 15) = 11:90; p = 0:004) and size �ve (F (1; 15) = 5:02; p = 0:041). Last
not least, the di�erence between the two peaks at size three and size six is reliable

as well (F (1; 15) = 5:54; p = 0:033).

Figure 6.7: Area coverage AC in dependence on cluster size

Basically, the same �double stairway� pattern as for SP occurs when analyzing

AC (see Figure 6.7). An analysis of variance exhibits a signi�cant dependence of

AC on cluster size (F (5; 75) = 3:03; p = 0:002). The analysis of contrasts between
di�erent cluster sizes led to the following results: The increase in AC between

size one (2539.3 pixels) and size three (3068.4 pixels) constitutes a signi�cant

di�erence (F (1; 15) = 10:00; p = 0:006) as well as its reduction from size three to

size four (2456.1 pixels) (F (1; 15) = 14:45; p = 0:002). Furthermore, its increase

from size four to size six (2978.1 pixels) reaches signi�cance (F (1; 15) = 11:57; p =
0:004) as well. The AC values for cluster size two (2638.5 pixels) and �ve (2716.4

pixels) show statistical tendencies to di�er from their neighboring values, however,

without attaining signi�cance.

The basic variables FD and SL are not a�ected by cluster size. Moreover,

it should be noted that the values of RT, SP, AC, FD, and SL for cluster size

one do not di�er signi�cantly from the respective values obtained in Experiment
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A. Conceivably, the connecting edges shown in most trials do not motivate the

subjects to generally apply di�erent strategies of search and comparison.

From the results of SP and AC it is obvious that the subjects' performance

increases approximately linearly from cluster size one to three, falls o� at size

four and increases again in an approximately linear fashion up to size six. This

�nding suggests that the processing of stimulus subsets containing three items or

multiples of object triplets leads to optimal search e�ciency. According to this

interpretation, memorizing clusters of size one or two does not completely ��ll

up� working memory, so that subjects have to combine them to larger ones. This

e�ort is not necessary in a situation of three items per cluster, which increases

the subjects' search e�ciency. Clusters of four items appear to be processed in

two steps; they are split up into two groups containing either one and three items

or two items each. An alternative method, namely memorization and compari-

son of item triplets across cluster boundaries, does not seem to be applied, as

the qualitative analysis of eye movements suggests. It could be inferred that the

capacity of working memory is not exhausted and thus the optimal search e�-

ciency cannot be reached. The same problem occurs for clusters of size �ve, but

here the impact on e�ciency is less dramatic since they can be divided into two

groups of two and three items respectively. Apparently, six items per cluster allow

a perfect separation into two clusters of size three and therefore do not inhibit

the search progress. On the contrary, the possibility of choosing how to split up

the big clusters seems to allow even faster search than when there are three items

per cluster, as the SP data suggest. Another circumstance that conceivably con-

tributes to the SP increase might be that �ve clusters of size six simplify the

selection of scanpaths even more than do ten clusters of size three.

Although it involves some speculation, the assumption of an �optimal� clus-

ter size of three is plausible; it is in line with the results obtained so far. This

observation motivates the investigation of eye movements within the processing

of single clusters in order to �nd out whether the SP and AC e�ects are based on

di�erences during the comparison of clusters or rather during the transition be-

tween them. Moreover, the dependence of within-cluster variables on cluster size

is likely to reveal information about working memory and its utilization during

comparative visual search.

6.3.3 What Happens Within a Cluster?

In order to analyze a section of a scanpath that corresponds to a subject's pro-

cessing of a certain cluster pair, we have to identify the �rst and the last �xation

directed at this pair. The algorithm for the analysis of this works as follows:

Each �xation is attributed to one of the cluster pairs in the display, namely, the

one that contains the item with the shortest geometrical distance to the �xation

point. The onset of the �rst �xation attributed to a certain cluster pair is taken

as the starting time of processing. Now the algorithm could successively inspect

the subsequent �xations until it �nds one that belongs to a di�erent cluster pair.

It then could take the end of the last �xation that still belongs to the current
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cluster pair as the end time of processing.

However, this method would not account for the fact that saccades between

hemi�elds sometimes go along with orientational or imprecise �xations (see Sec-

tion 5.2.2). These are likely to be assigned to a di�erent cluster pair than the

one that is being processed. Thus, if one �xation of this kind occurred during a

subject's inspection of a certain pair, the algorithm would interpret it as the �end

signal� of the ongoing processing and the next one as the �start signal� of another

processing of the same cluster pair. As a result, we would �nd too many and too

short sections of processing, leading to improper results. In order to avoid this,

the algorithm disregards those single �xations of a pair A which are preceded

and followed by one or more �xations of a di�erent pair B. A processing of a

cluster has to include at least one saccade between the hemi�elds in order to be

accepted by the algorithm. Visual inspection shows that these re�nements lead

to plausible scanpath intersections.
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Figure 6.8: Histograms of the number of comparisons per cluster processing in

dependence on cluster size

Now that the facilities for clusterwise analysis of gaze trajectories are avail-

able, what are promising variables to look at? With the investigation of working

memory in view, one of the most interesting within-cluster variables is the num-

ber of comparisons (NC). It is de�ned as the number of saccades between the

hemi�elds and tells us how many switches (comparisons) between hemi�elds the

subjects needed to process a cluster of a certain size. Figure 6.8 presents his-

tograms of NC for cluster sizes three to six. Sizes one and two are not considered

since they do not admit a clear correspondence between �xations and clusters

(see above). In stimuli of size four, the two cluster pairs of size three are excluded

from the analysis.
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The mean values of NC were entered into an analysis of variance with the only

factor being cluster size. It revealed a signi�cant main e�ect (F (3; 45) = 76:50; p <
0:001) as well as signi�cant contrasts between cluster sizes: NC is higher at size

four (2.429) than at size three (1.788) (F (1; 15) = 77:23; p < 0:001). Cluster size
�ve induces greater NC (3.012) than size four (F (1; 15) = 51:43; p < 0:001), and
�nally size six leads to higher NC (3.430) than size �ve (F (1; 15) = 16:71; p =
0:001). As a matter of fact, all other contrasts reach signi�cance as well.

All in all, we �nd that with increasing cluster size the histograms grow towards

larger numbers of comparisons. This dependence of NC on cluster size is in agree-

ment with the assumption of a constant capacity of working memory. The more

items are to be compared, the more processes of memorization and retrieval are to

be conducted. However, when inferring cognitive functions and their parameters

from these data, we must be careful. Since all clusters consist of homogeneously

randomly distributed items, the area covered by them increases with cluster size.

This means that the dependence of NC on the number of items in a cluster could

be attributed to geometrical cluster size. Even if the subjects scanned the display

at random, the larger clusters would statistically be hit by more �xations and

thus yield higher NC values. As a consequence, the results would re�ect features

of the stimuli rather than characteristics of speci�c cognitive processes.

It is important to investigate these possibilities, but how can we separate

cognitive factors from stimulus factors? An idea is to do another analysis of NC,

but this time based on computer-generated, pseudo-randomly located ��xations�.

If NC still showed the same functional relationship to cluster size we would have

to reject a cognitive interpretation of our �ndings.

However, a pattern of random �xations is quite di�erent from the empiri-

cal pattern during comparative visual search, making it di�cult to compare the

two analyses. In order to preserve the spatiotemporal characteristics of subjects'

eye movements while dissolving any relationships with geometrical characteristics

of the display, the empirical �xation patterns were rotated by 180o around the

centers of the underlying stimuli.

An analysis of variance showed that NC is still signi�cantly a�ected by cluster

size (F (3; 45) = 22:48; p < 0:001), but in contrast to the previous analysis its

di�erences between size four and �ve as well as between size �ve and six do

not reach signi�cance. Moreover, the di�erences between the mean values of NC

(2.225 for size three, 2.470 for size four, 2.674 for size �ve, and 2.805 for size six)

have harshly diminished. The results of this �imitation� analysis are illustrated

in Figure 6.9. As can easily be seen, the NC di�erences between cluster sizes

appear to be much smaller than in the �genuine� analysis (see Figure 6.8). The

histograms of cluster sizes three to six practically present the same shape. On

this basis, we may safely assume the cognitive view to hold, and to push the

investigation of within-cluster variables even further.

Another important indicator of cognitive processes is the number of �xations

(NF) during the processing of a cluster pair. We can assume NF to increase

even more strongly with cluster size than NC does, because longer within-cluster

distances have to be bridged. The results displayed in Figure 6.10 do not support
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Figure 6.9: Histograms corresponding to the previous �gure, but computed on

the basis of dislocated �xations

this assumption: The distributions of NF resemble the ones of NC quite closely.

In fact, the mean values of NF (4.740 for size three, 6.541 for size four, 7.979

for size �ve, and 9.101 for size six) are approximately proportional to NC. One

step of comparison corresponds to 2.65 �xations. This �nding suggests a close

relationship between NC and NF that is independent of cluster size.
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Figure 6.10: Histograms showing the number of �xations per cluster processing

for di�erent cluster sizes
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Finally, we should take a look at the duration of cluster processing (DP). This

variable is measured as the di�erence between the starting time and the end

time of processing a cluster pair. The analysis of DP is of particular importance,

because it accounts for the duration of orientational �xations which were excluded

from the analyses of NC and NF. Deviations of DP from the proportionality

to NC and NF would hint at the existence of cluster-size dependent e�ects of

orientational �xations on the subjects' gaze trajectories that would have to be

studied more closely. T-tests revealed that the mean DP values (915.9 ms for

size three, 1269.9 ms for size four, 1492.8 ms for size �ve, and 1767.7 ms for size

six) do not signi�cantly deviate from proportionality to NC and NF. One step

of comparison takes about 512 ms. Furthermore, the inspection of Figure 6.11

suggests that the histograms of DP do not di�er from those of NC and NF.
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Figure 6.11: Histograms showing the duration of cluster processing in dependence

on cluster size

How do the within-cluster results relate to the e�ects of cluster size on the

global variables SP and AC? If those e�ects are based on di�erences that occur

during the processing of clusters, we would expect the within-cluster variables

to show a dependence on cluster size corresponding to SP and AC. When inves-

tigating this point, we have to take into account that SP and AC refer to the

processing of a constant number of item pairs (30), whereas NC, NF, and DP re-

fer to a number of item pairs that varies with cluster size. In order to make these

two groups of variables comparable to each other, we divide the within-cluster

variables by their respective cluster size so that all of them refer to the processing

of exactly one item.

In Figure 6.12, the relative values of these variables for di�erent cluster sizes

are given. The data for size three are taken as the basis for standardization, which

means that all displayed values have been divided by the respective values for size
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Figure 6.12: Relative values of comparisons (NC), �xations (NF), and duration

(DP) for cluster sizes three to six with size three serving as the basis for stan-

dardization

three. We �nd a tendency of NC, NF, and DP to increase from size three to four,

to decrease from size four to �ve, and to further decrease from size �ve to six.

Since these three variables are measures of ine�ciency, i.e. since they decrease

with higher search e�ciency, they should behave inversely proportional to SP

and AC. Indeed, Figure 6.12 seems to con�rm this hypothesis, but the di�erences

are rather weak and far from being signi�cant, as the large errorbars indicate.

Therefore, the SP and AC e�ects are not likely to be caused by within-cluster

processes alone, but between-cluster factors seem to play an important part as

well.

6.3.4 Entropy and Working Memory

In the previous sections we have extensively discussed the e�ects of cluster size,

i.e. of the number of items, on the subjects' eye movements and the utilization

of working memory. Yet, the identity of items should in�uence the utilization of

working memory as well. We do not expect a group of items with mixed colors

and/or forms (high entropy) to be memorized as easily as the same number of

identical items (low entropy). In Experiments A to E, our entropy considerations

were based on local entropy values in the regions being �xated, but we did not

know which of the items displayed there were currently being processed. This was

a reasonable handicap, because the notion of entropy is meaningful only with

regard to item combinations and not with regard to single items. To give an

extreme example: If subjects held only one item in memory at a time, the local

entropy would have no e�ect on their scanpaths at all.
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The fact that subjects used a cluster-by-cluster strategy of comparative search

in Experiment F enables us to precisely investigate the in�uence of color and form

entropy on working memory. Our way of within-cluster analysis � as applied in

the previous section � allows to take a look at scanpath sections that correspond

to the processing of a known subset of items. Hence, we can de�ne a suitable

measure of entropy within an item set and study the e�ects of entropy on the

variables NC, NF, and DP. These variables are expected to increase with entropy

due to the higher e�ort needed for processing. The question has to be asked how

entropy should be de�ned here.

In any case we should retain the distinction between color and form entropy,

because these two dimensions are likely to exert di�erent e�ects on the subjects'

performance. Since clusters consist of only a small number of discrete items, it

is not justi�ed to apply a complicated formula as (2.10) given in Section 2.4.1.

The interpretation of results based on such a de�nition of entropy would be

unnecessarily di�cult. Here is an easier way to arrive at reasonable entropy values:

Given a cluster of three items, for example, only three di�erent levels of color

entropy are possible:

Level 1: All items are of the same color.

Level 2: The cluster contains two di�erent colors, which goes along with two

items of color A and one item of color B.

Level 3: There are three di�erent colors, resulting in all items having distinct

colors.

Unquestionably, this is the simplest and most transparent de�nition of en-

tropy with respect to groups of three items. Though the scale of measurement

is ordinal in nature, it enables us to analyze the e�ects of color and form en-

tropy (with three levels each) on the within-cluster variables at cluster size three.

Figure 6.13 illustrates the obtained results with the help of a two-dimensional

column diagram of NC. Obviously, our hypothesis is con�rmed: Higher entropy

seems to cause increasing NC. This e�ect is especially strong between the simul-

taneous minimum and maximum of color and form entropy (1.000 versus 2.548

comparisons). The results were entered into a two-factorial (color and form en-

tropy) analysis of variance. Since a within-subjects design would have had several

empty cells, all 1112 measured NC values for clusters of size three were treated

as independent samples. Though this way of analyzing data does not match the

actual design, it is conservative in that error variances are overestimated; thus, it

is a practicable way to proceed. The analysis revealed a signi�cant main e�ect of

color entropy (F (2; 1103) = 3:27; p = 0:038). The calculation of contrasts between
di�erent cluster sizes exhibited that NC is signi�cantly higher at level three of

color entropy (2.102) than at level one (1.599) (F (1; 1103) = 4:93; p = 0:027), and
neither of these values shows a reliable deviation from level two (1.909). The main

e�ect of form entropy reaches signi�cance as well (F (2; 1103) = 7:48; p < 0:001).
Here, NC is signi�cantly higher at level two (1.955) than at level one (1.429)
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Figure 6.13: Number of comparisons in clusters of size three as a function of color

and form entropy

(F (1; 1103) = 5:90; p = 0:015). Level three (2.227) induces higher NC than level

one (F (1; 1103) = 12:66; p < 0:001) and level two (F (1; 1103) = 6:46; p = 0:011).
No reliable interaction between color and form entropy was found.

All in all, form entropy exerts a strong e�ect on NC. The NC values increase

signi�cantly with form entropy. There is an e�ect of color entropy as well, however,

it is somewhat less pronounced.

The situation becomes more complicated if we want to study clusters of four

items. On the one hand, we can still de�ne, for instance, color entropy as the

number of di�erent colors that appear in the cluster, which results in three pos-

sible entropy levels again. Accordingly, the analysis of entropy e�ects on NC has

the same design as the previous one. With regard to color entropy, NC has the

value 2.273 at level one, 2.439 at level two, and 2.688 at level three. Form entropy

causes NC values of 2.565 at level one, of 2.447 at level two, and of 2.501 at level

three. Neither the main e�ects nor the interaction reach signi�cance.

On the other hand, we could argue that there are actually four levels of entropy

in clusters of size four, because level two comprises two sub-levels: The two colors

can be distributed either equally (two items each of colors A and B) or unequally

(three items of color A, one item of color B). Nevertheless, the NC di�erence

between these sub-levels is not signi�cant.

Both de�nitions of entropy (�three levels� and �all possible levels� respec-

tively) were applied to analyze clusters of �ve and six items in the same way. In

none of these cases any entropy e�ects were found.

A plausible interpretation of these �ndings is that in clusters containing more
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than three items, subjects are unlikely to memorize all items at the same time.

Therefore, the subjects' behavior is determined by the entropy within the chosen

subsets of items rather than by the overall entropy within the cluster. Our inter-

pretation of the SP and AC dependence on cluster size is clearly compatible with

this view: Three items can be processed as one unit, but larger groups have to be

split up.

6.4 Conclusions

The results obtained in Experiment F have provided answers to the questions

posed at the beginning of this chapter. First of all, the visualization of accu-

mulated scanpaths can be viewed to be compatible with a �travelling salesman�

strategy: Subjects preferred cluster-to-cluster scanpaths of minimized length. As

suggested by visual inspection, these paths appeared to be even less variable

within the same subject than between subjects. Interestingly, the �xations mea-

sured in within-subject scanpaths had almost constant centers of gravity for each

cluster, indicating an invariant distribution of attention. On the level of single �x-

ations, however, no correspondence between locations was discovered. This result

suggests that, during local inspection of the display, eye movements and shifts of

attention are only loosely coupled with each other. In Chapter 11 this point is

taken up in the context of scanpath modelling.

Furthermore, there was evidence as to the number of items being held in

memory at a time. The �magical number� three is compatible with an earlier

estimation in Experiment A, suggesting a range from two to four items. The

speci�c value, three, was not only indicated by the patterns of SP and AC as

functions of cluster size, but also by the cluster-size dependence of entropy e�ects.

The processing of three items per cluster is strongly in�uenced by color and form

entropy, which indicates that all three items are memorized at the same time.

Clusters of size four to six do not exhibit signi�cant in�uences of entropy, which

suggests that they are processed in multiple, sequential steps.

Apart from entropy, the quantity of items exerts signi�cant e�ects on the

number of comparisons, the number of �xations, and the duration of processing.

These three variables vary proportionally with each other, suggesting that some

local, low-level characteristics of gaze trajectories are not biased by the additional

line structures. Other �ndings support this point of view:

� The within-cluster variables increase proportionally with the number of

items per cluster. Therefore, no speci�c cluster size seems to facilitate com-

parative search within a cluster.

� The basic eye-movement variables �xation duration and saccade length are

not in�uenced by cluster size.

� The results of Experiment A are replicated under the condition of cluster

size one in Experiment F. Thus, we can assume that the basic search be-
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havior remains unchanged, regardless of the connecting edges appearing in

most of the stimuli.

Based on these observations, we can assume our cluster stimuli to be well-chosen

for the purpose of Experiment F: The subjects �accept� the pre-de�ned cluster

structure as a perceptual guideline for task completion without changing their

low-level mechanisms of comparative visual search.

Altogether, the novel stimuli used in Experiment F enable us to discover

facts beyond the range of the basis scenario. Here, the augmentation of search

pictures turned out to be highly fruitful. Experiment G, described in the following

Chapter 7, extends the paradigm in yet a di�erent direction, namely into the third

dimension.
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Chapter 7

Experiment G: Introducing the

Third Dimension

7.1 Using Three-Dimensional Stimuli

Although the task of comparative visual search has ecological relevance (see Chap-

ter 1), the stimuli used in Experiments A to F are far from being natural. In

everyday life, we are not likely to be confronted with sets of two-dimensional,

abstract, geometrical items. Our environment and the objects we perceive and

manipulate are rather three-dimensional. These objects have speci�c meaning and

are characterized by their materials, textures, functions etc. Being aware of this

discrepancy between experimental and natural conditions, the question has to be

posed whether we can design a reasonable variant of the basis scenario that gets

us closer to an ecologically plausible situation.

As shown in Chapter 2, the choice of arti�cial objects as elementary search

items was well-considered. The high-level factors involved in the perception of

realistic things and scenes would have caused problems in the analysis and inter-

pretation of the empirical data. For the same reason, most experiments in visual

search (see Section 1.4) are based on abstract items rather than on realistic ones.

However, another aspect of ecological inadequacy can be overcome without

facing these di�culties and without giving up the comparability to previous ex-

periments. It is the restriction to two dimensions. Three-dimensional scenes re-

quire perception on a higher level as well, but since this enhancement is of a

purely geometrical nature, semantic factors as knowledge or interpretation do

not play an important part. Consequently, the most fruitful strategy is to stick to

arti�cial items that should be as similar to the ones used in Experiments A to F

as possible, and to embed them into a three-dimensional scene. There are many

possible ways of realizing this idea which deserve to be taken into consideration.

The technically simplest method consists in using patterns of two-dimensional

stimuli that are interpreted as three-dimensional arrangements. This is what we

automatically do when viewing photographs or drawings: We do not perceive

them as planar distributions of colors or lines, but as spatial objects. Perspective,
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texture gradients, occlusions, and many other cues help us to perceptually recon-

struct the inherent three-dimensional information. Various experiments of visual

search investigating this e�ect have been conducted (for a review, see Grossberg,

Mingolla & Ross, 1994). Enns & Rensink (1990), for instance, used images of

cubes as items with the target item having a di�erent shading than the distractor

items, indicating that our judgement of lighting is a�ected by a three-dimensional

interpretation. In several control experiments, the same shadings were used on

items which could only be interpreted as two-dimensional. It was found that only

the �rst experiment enabled parallel search, whereas the others required serial

search (for the distinction between parallel and serial search, see Section 1.4).

This result shows that three-dimensional perception can enhance e�ciency in vi-

sual search, even if the stimuli are in fact two-dimensional. Moreover, it falsi�es

the wide-spread assumption (e.g. Treisman & Gelade, 1980) that visual search is

exclusively controlled by feature-coding processes on a low perceptual level.

The �ndings mentioned above clearly demonstrate that the introduction of the

third dimension considerably extends the horizon of visual search experiments.

It motivates analogous studies in comparative visual search. However, the pre-

sentation of shaded two-dimensional stimuli is still not yet ecologically adequate,

because it neglects an essential perceptual factor, namely �binocular disparity�.

When we look at a certain point in three-dimensional space, we direct the two

visual axes of our eyes to this point in such a way that its image is projected

to corresponding locations on both retinae. This projection on corresponding lo-

cations is called zero binocular disparity. The projected images of items in front

or behind this point cause crossed or uncrossed binocular disparity respectively

on the retinae. Binocular disparity is the dominant indicator of relative spatial

depth for the visual system. Items that are much nearer or much more distant

than the �xation point such that they cause disparity of more than approximately

one degree (lying outside the so-called Panum's fusional area, see e.g. Schor &

Ciu�reda, 1983) cannot be fused. They are seen as doubled images, but their

depth is still perceived due to their binocular disparity.

Since the EyeLink system is capable of recording binocular eye movements,

it seems to be especially fruitful to use �genuine� three-dimensional stimuli in-

volving binocular disparity. The measurement of the vergence angle, i.e. the angle

between the visual axes, enables us to investigate three-dimensional gaze trajec-

tories during comparative visual search. But how can spatial stimuli be presented

on a standard computer monitor?

More speci�cally, the question should be: How can each of a subject's eyes get

individual information from one and the same screen, inducing di�erent levels

of binocular disparity? There are four basic techniques for trying to solve this

question:

Stereo image-pairs: Two images are presented side by side on the screen. Sub-

jects have to �xate an (imaginary) point in front or behind the center of the

screen, adjusting their visual axes to di�erent images by crossed or parallel

view respectively. After binocular fusion, a stable 3D image is perceived



7.1 Using Three-Dimensional Stimuli 127

which does not require a speci�c point of �xation anymore.

Auto-stereograms: This is the famous type of �magic eye� images. The prin-

ciple is identical to the stereo image-pairs with the di�erence that in auto-

stereograms the information for both eyes is combined in a single image.

Usually, subjects perceive a three-dimensional, textured surface.

Shutter glasses: Subjects wear special glasses that alternately �shut� (darken)

their left or right side, which is synchronized with the monitor frame rate.

Between frames, the monitor display changes from the right-eye to the left-

eye information or vice versa, so that each eye views its individual scene

exclusively. If the frame rate is su�ciently high, both scenes can be fusioned

to a stable, spatial image.

Red-green images (anaglyphs): Here, the two eye-speci�c images have to be

monochrome. They are converted in such a way that one of them shows

varying shades of red and the other one varying shades of green. Afterwards,

they are superimposed on the monitor screen. The subjects wear a pair of

glasses with the left glass colored red and the right glass colored green. The

glasses serve as �lters which allow the left eye to perceive only di�erences in

the red value, whereas the right eye is solely sensitive to green values. Thus,

the two original images are separately shown to the eyes and perceptually

combined to a monochrome, three-dimensional scene.

There are not many experiments in visual search that employ one of these meth-

ods. This may be due to the increased complexity of conduction and evaluation of

such studies. He & Nakayama (1992) performed an experiment which is compara-

ble to the abovementioned study by Enns & Rensink (1990) to some extent, but it

was technically based on shutter glasses instead of two-dimensional images. The

authors used white L-shaped target items and reversed Ls as distractors (or vice

versa), which were accompanied by black squares. In one condition, the squares

were shown behind the Ls, in another condition they appeared in front of them.

In the second condition, the Ls were perceived as white squares being partially

occluded by the black ones. According to this three-dimensional interpretation,

the di�erence between target and distractor items is perceived as a horizontal

shift of the white square rather than the reversal of an L-shape. The second con-

dition leads to longer reaction times than the �rst one, demonstrating the impact

of three-dimensional perception on visual search.

Actual three-dimensional search instead of three-dimensional item features

was studied by Nakayama & Silverman (1986). Using the technique of stereo

image-pairs, they simultaneously presented items distributed on two di�erent

depth planes. The distractor items had speci�c colors (or directions of move-

ment) for each plane, while the target item was of a di�erent color (or di�erent

direction). It was shown that conjunctive search for the combinations of depth

and color as well as depth and motion can be performed in parallel. A similar
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Figure 7.1: Subject simultaneously wearing the EyeLink head-set and red-green

glasses

study by Steinman (1987) that used vertical lines basically con�rmed these re-

sults. These �ndings contradict the classical assumption that the detection of

feature combinations requires serial search (e.g. Treisman & Gelade, 1980), and

hence suggest that stereoscopic depth plays a special role in visual perception.

O'Toole & Walker (1997) have recently argued that the experiments of

Nakayama & Silverman (1986) and Steinman (1987) were inappropriate, because

their targets could be detected by monocular cues as well. In order to achieve im-

provement, they used random-dot stereograms to verify those results and found

conditions under which stereoscopic disparity requires serial search. In their opin-

ion, the relative disparity of target and distractors, the size of the stimulus display,

and the global surface context are the factors which determine whether parallel

processing is feasible.

Since its e�ects on visual search are not completely known, stereoscopic depth

is an attractive feature to be investigated. The presentation of items in di�erent

depth planes seems to be perfectly transferable to our scenario of comparative

visual search and promises interesting results. However, before designing the ex-

periment � which we will call Experiment G � we should clarify its technical

realization: What is the appropriate method of three-dimensional stimulus dis-

play?

The technique of stereo image-pairs has the advantage not to require special

glasses, but it involves unnatural vergence of the eyes and is thus inadequate for

the measurement of vergence eye-movements. Auto-stereograms are not suitable
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either, because they do not allow for the presentation of discrete items. From a

psychological point of view, the use of shutter glasses would be ideal, but their

technical integration into the eye-tracker system would be too complicated. The

infra-red interface for shutter-monitor synchronization interferes with the infra-

red alignment system of the eye tracker and it is di�cult to combine the special

glasses with the eye cameras. At least with regard to the intended exploration of

three-dimensional situations, the e�orts a practical realization would take would

not be justi�ed.

In face of this, we decided to use red-green glasses. Figure 7.1 shows our com-

bination of the EyeLink head-set with adjustable red-green glasses. Fortunately,

the infra-red eye cameras and the pupil-tracking hardware can �nd the subject's

pupils through the colored glasses without any problems.

As mentioned above, one drawback of the chosen method is the restriction

to monochrome stimuli. This means that an exact replication of the basic ex-

periments A to C which employs three-dimensional distributions of the same

�old� items is not feasible. We could use three di�erent levels of brightness in-

stead of three di�erent colors, but due to the heterogeneous color �lters, the

subjects' judgement of brightness could be impaired and could vary individually.

Another type of analogy to the previous experiments is more reasonable: We

replace the three levels of color with three levels of depth. Consequently, each

stimulus presents ten items in a back plane, ten items in a middle plane, and ten

items in a front plane. The mismatch then consists in either the form or in the

depth of a single item.

An example stimulus is shown in Figure 7.2 on page 133. The items in each

hemi�eld consist of a red and a green component with black areas of overlap. The

yellow background color has the same intensity of red or green respectively as

these components. Through the red glass, subjects see the green components as

dark, because their red value is zero. The red components are invisible, because

they present the same red value as the background and are thus perceived in the

same brightness. Vice versa, only the information on red components passes the

green glass. The black areas are seen by both eyes. As a consequence, subjects

perceive three virtual planes of dark items on a light background. Light items

on dark background would be more similar to the situation in Experiments A to

F. Due to the characteristics of the red-green glasses and the monitor, however,

their presentation cannot be realized as perfectly as the chosen variant.

The virtual planes are equidistant with the distance between back and front

plane being the same as the distance between the top and the bottom of the

stimuli. There are no e�ects of perspective, hence the size of the items � as

seen without red-green glasses � does not vary with their depth plane. This ar-

rangement is important, because otherwise we could not decide whether depth

mismatches are detected by their di�erence in depth or by their di�erence in size.

In three-dimensional perception, the items in the back seem to be slightly larger

than those in the front, but this e�ect is small and does not impair the overall

stability of perception.

What results can be expected? It could be possible that subjects tend to scan
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the display using a plane-by-plane strategy in order to decrease the number of

necessary vergence eye-movements. We can take a look at the three-dimensional

gaze trajectories to �gure out the strategies that are applied. Another indica-

tor could be speed of processing (SP): If planewise scanning is performed, SP

measures the mean gaze speed for processing one plane, i.e. ten items instead of

thirty. Hence, extraordinarily high SP values would signify that plane-by-plane

trajectories play an important part in Experiment G.

In Experiment G, the detection of depth mismatches should require shorter

reaction time (RT) and lead to higher values of saccade length (SL), area coverage

(AC), and speed of processing (SP) than the detection of any mismatches in the

��at� scenario. This assumption is based on the studies mentioned above which

proposed special properties of binocular disparity to enable parallel search. In the

case of comparative visual search, parallel search can only be locally parallel, but

nevertheless it should result in higher search e�ciency. In order to detect further

di�erences in eye-movement parameters between the scanning of two- and three-

dimensional stimuli, the other eye-movement variables, namely FD, SL, and FW,

will be analyzed as well.

Another expectation is that the detection of mismatches in the back plane

should be more di�cult than in the front plane, because the perception of the

back plane is impaired by the two other planes being located in front of it.

Finally, vergence movements are assumed to be weaker during the search for a

depth di�erence than during the search for a form di�erence, since the perception

of depth is not restricted to Panum's fusional area (see above), whereas form

recognition is because it requires precise inspection. To investigate the di�erences

between depth and form search in Experiment G, subjects should be informed

about the type of mismatch in advance.

7.2 Method

7.2.1 Subjects

Sixteen students from di�erent faculties at the University of Bielefeld were re-

cruited as subjects for this experiment. They were paid 7 DM for their participa-

tion. All of them had normal or corrected-to-normal vision; no pupil anomaly or

color blindness was found.

7.2.2 Materials

The stimuli were shown on a computer screen with a resolution of 1024�768 pix-

els. They consisted of distributions of simple geometrical items (triangles, squares,

and circles). Each item was represented by a red and a green component on the

same vertical position but with a horizontal shift between them. The background

color was yellow, while the areas of overlapping red and green components were

black-colored. The subjects wore red-green glasses and were placed in front of
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the monitor with an eye-screen distance of 50 cm. They perceived the items as

being located on one of three di�erent virtual planes parallel to the surface of the

screen: One plane 11 cm behind the screen, another on the screen, and a third

one 11 cm in front of it.

The size of the items was about 24 pixels in diameter. Their locations were

pseudo-randomly chosen under the condition of not touching or overlapping each

other. The random distribution slightly tended to create regions of similar item

forms and depths in order to allow the investigation of eye movements in homo-

geneous versus heterogeneous areas (see Section 2.3).

Each stimulus picture presented two hemi�elds separated by a vertical black

line and containing 30 items each (see Figure 7.2). These rectangular hemi�elds

were 22 cm high and 16 cm wide with a horizontal gap of 4 cm in between. The

items in each hemi�eld were equally balanced for form and depth. Except for

their translation, the hemi�elds were identical with respect to the form and the

spatial distribution of the 30 items � with exactly one exception: One mismatch

between corresponding items was integrated, consisting in either their form or

their depth.

7.2.3 Apparatus

While the subjects solved their task, their eye movements were measured with

the SMI EyeLink system, which is a video-based binocular eye tracker (cf. Section

2.1.3). They wore a head-set with two miniature infrared eye cameras fastened

to it, yielding eye movement data without imposing severe restrictions on the

subjects' �eld of view or their head movements. The stimuli were presented on a

20� Sony Trinitron monitor.

For each eye, the time of occurrence, the duration, and the screen coordinates

of the subjects' �xations were recorded. The absolute spatial precision of the

system lay within 0.7 to 0.9 degrees of visual angle corresponding to about 0.6

to 0.8 cm on the screen. Due to the high frame rate of the infrared cameras, the

temporal resolution of the measured data was 4 ms.

Preceding each experiment, a calibration procedure had to be carried out,

demanding the subject to �xate a target that appeared in di�erent positions on

the screen. Before the presentation of each stimulus, a drift correction using a

single target in the center of the screen was performed.

7.2.4 Procedure

All subjects were tested individually. Their task consisted in detecting the mis-

match between the two hemi�elds that were simultaneously presented on the

computer screen. They had to report target detection by pressing any button on

a computer mouse being placed in front of them.

Each subject viewed 60 pictures which were newly generated for every subject

and thus di�ering between trials as well as between subjects. Either the �rst 30 or

the last 30 pictures being shown (counterbalanced between subjects) contained
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a depth mismatch, whereas the remaining 30 presented a form mismatch. The

subjects always knew the type of mismatch they had to search for in advance.

7.3 Results and Discussion

7.3.1 Characteristics of Three-Dimensional Scanpaths

As in the previous experiments, the gaze position is measured as the point where

the visual axis intersects the monitor screen. The only innovation is that there

are two gaze positions at a time now, one for each eye. In general, the vertical

coordinates of these two positions do not di�er from each other, while the shift

between their horizontal locations is variable and indicates the subject's vergence

angle. This is the angle between the two visual axes, which is usually adjusted

by means of vergence eye-movements if attention is shifted between points of

di�erent distances from the observer. Vergence movements and conjugate move-

ments, i.e. binocular saccades within a depth plane, are controlled in completely

di�erent ways. Vergence movements are slow (4�20o/s) and can be altered or

stopped in response to stimulus changes, while saccades are fast (200�700o/s)

and unchangeably �programmed� before their realization (for detailed informa-

tion about vergence eye-movements, see Schor & Ciu�reda, 1983).

Furthermore, the horizontal shift between the measured gaze positions allows

to geometrically calculate the depth of the actually inspected point in space. If the

left eye's horizontal gaze position is measured to be right of the right eye's gaze

position, this point is located in front of the screen, in the opposite case it is behind

the screen. Figure 7.3 attempts to visualize a pair of scanpaths for the example

stimulus. This is obviously more problematic than in the monocular case. Hence,

no durations or numbers are displayed, while the saccades are marked with thick

lines. The green lines signify saccades of the left eye, the red ones those of the right

eye. These shades correspond to the components of items: The left eye perceives

only the green components, the right eye only the red ones. Thus, viewing Figure

7.3 through red-green glasses, the reader will see a three-dimensional scanpath

within a three-dimensional stimulus, which is impressive and illustrative at the

same time.

Nevertheless, even without the use of red-green glasses the image provides

some preliminary information about the gaze trajectory and its relation to the

underlying stimulus. The subject starts his search for a form mismatch exactly

from the center of the screen (where the target for drift correction has been

shown immediately before stimulus onset). After an orientation phase he begins

his comparative search at the top of the stimulus with most of the items being

located in the middle plane, i.e. on the screen level. Accordingly, there is no shift

between the gaze positions of his left and his right eye. The subject proceeds to

the front plane, indicated by the red components being displayed to the left of

the green ones.
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Figure 7.2: Example of a virtual three-dimensional stimulus. Viewing this image

through red-green glasses leads to its spatial perception.

Figure 7.3: A subject's binocular scanpath in the example stimulus. The green

lines signify saccades of the left eye, the red ones saccades of the right eye. They

are directed at the green or red objects respectively.
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In fact, we can observe the subject adjusting his vergence to the item depth,

which is especially obvious in the lower left corner of the image. The horizontal

shift between the two gaze positions on the screen is identical to the horizontal

shift between complementary item components. At this point, the subject changes

to the back plane and inverts the shift between his gaze positions with respect

to the screen level. Finally, he detects the form mismatch located on the middle

plane at the center of each hemi�eld.

This illustration demonstrates that, in fact, binocular eye tracking allows to

record three-dimensional scanpaths. However, it must be stated that the explic-

itness of the data chosen for this illustration is clearly above average. Errors

in measurement as well as incomplete or inaccurate vergence movements during

comparative search lead to considerable �background noise�, as we will see below.

7.3.2 Baseline Data of Vergence Eye-Movements

Before proceeding to the analysis of vergence eye-movements during comparative

visual search, some of their basic features with regard to the chosen scenario have

been investigated. During task completion, a subject's vergence movements are

likely to be interrupted or inhibited by conjugate movements, i.e. by binocular

saccades, in order to optimize search e�ciency. These e�ects can be disentangled

only if there are baseline data for unbiased vergence movements. Therefore, in an

informal pre-study, the gaze trajectories of two additional subjects were recorded.

They were not instructed to search for a mismatch, but rather to inspect items

on certain depth planes. During each trial, they were told several times to direct

their attention to a speci�ed plane. One of the subjects was used to viewing

red-green images and thus had a very stable perception of the three-dimensional

stimuli. The other subject was unfamiliar with pictures of this kind, but after some

practice trials she gained an almost stable perception as well. Only immediately

after stimulus onset, it always took her about one or two seconds to stabilize her

perceived image.

Figure 7.4 presents the experienced subject's data. The diagram shows the

spatial depth of inspected items (dotted line) and the corresponding gaze depth

(solid line) for each of his �xations recorded during one trial. Although the hori-

zontal axis refers to the number of the �xation instead of the time, the diagram

can be viewed as the time course of depth values, since no systematic temporal

distortion occurs. The spatial depth of a �xation is measured as the depth of the

nearest neighboring item to the �xation point, while the gaze depth is geomet-

rically computed (intersection of visual axes). Increasing depth values indicate

shorter distances to the subject; the front plane is located at 11 cm, the middle

plane at 0 cm, and the back plane at -11 cm relative to the screen plane. In

order to compensate for the background noise mentioned above, both item and

gaze depth are processed by a median �lter of window size �ve. The results show

a good temporal correspondence between these two variables, and additionally

an interesting e�ect: Vergence movements from a near plane to a more distant

one (divergence) are clearly slower than those in the opposite direction (conver-
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Figure 7.4: Time course of gaze depth during the inspection of di�erent depth

planes by an experienced subject

gence), preventing the subject from reaching the optimal vergence angle for the

perception of the back plane. This di�erence in vergence velocity is well-known

(e.g. Yarbus, 1967), but it still lacks an indisputable physiological explanation.

In earlier times, scientists used to assume that the eye muscles were innervated

only in case of convergence, and that they were just �released� for divergence,

since the physiological resting position of the eyes is even more divergent than

parallel view. Electrophysiological data have falsi�ed this assumption, however.

From an evolutionary point of view, the e�ect is plausible: Approaching items

are potentially more dangerous than vanishing ones, which means that it is more

important to focus attention on the former as soon as possible.

In the case of the unexperienced subject, the discrepancy between converging

and diverging eye movements is even stronger (see Figure 7.5). She starts in the

front plane, then moves to the middle plane, and �nally inspects the back plane.

The corresponding vergence movements are extremely slow and do not reach the

optimal vergence angle for the back plane, although it is viewed for more than

ten seconds. As shown at the beginning of this trial, the converging movements

are still rather fast; they even tend to �overshoot� the respective target distance.

Apart from physiological aspects, we have to consider another factor that may

contribute to the extremely low velocity of divergent movements, namely the

perceptual interference with those planes lying in front of the actual �xation

point in space. Results from similar experiments in our group demonstrate that

a clear lateral separation of depth planes enables even unexperienced subjects to

produce vergence movements as shown in Figure 7.4.
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Figure 7.5: Time course of gaze depth during the successive inspection of the

front, middle, and back plane by an unexperienced subject

7.3.3 3D Scanpaths in Comparative Visual Search

Now we are prepared to take a closer look at the time course of gaze depth during

comparative search, as illustrated in Figure 7.3. The example presented in Figure

7.6 is compatible with our assumption: During rapid sequences of transitions be-

tween di�erent depth planes, vergence movements are not conducted completely.

Although the subject is searching for a form mismatch, task completion does

not seem to require exact vergence. Another observable e�ect is the �hyper�-

convergence while looking at items in the front plane that cannot be perfectly

explained. The �nding of overshooting convergent movements mentioned above

may contribute to the hyper-convergence, and possibly subjects like to sustain

this state, because it reduces the visibility of items in the other planes. Thus, the

perceptual interference with these planes decreases, which may result in a higher

search e�ciency. A further reason could consist in systematic errors in gaze po-

sition measurement, because the eye tracker is still calibrated using targets on

the two-dimensional monitor screen. If the computation of �xation points works

correctly, however, which is very probable, the deviation between measured and

applied vergence should be rather small.

The sample binocular scanpath (Figure 7.3) suggests that the third dimension

increases the variability of scanpaths, since the subject does not proceed from the

top of the display to its bottom or vice versa, but rather applies a plane-to-plane

strategy: Starting on the middle plane, he goes on to the front plane, brie�y

inspects the back plane, until he detects the target in the middle plane again.

Obviously, the z-axis seems to replace the y-axis as the most important structur-

ing standard. The main advantage of a planewise strategy is that it reduces the
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Figure 7.6: Example of one subject's time course of gaze depth during the search

for a form mismatch

perceptual e�ort for the visual system, because fewer changes between di�erent

depth planes have to be performed. As mentioned above, gaze shifts along the

z-axis are slower than those along the x- and y-axis, since vergence movements

have to be employed instead of saccades. The sequential scanning of all items in

the same depth plane is likely to allow a better adjustment of vergence and hence

an improved discriminability of items.

How can we investigate individual preferences of certain scanpath strategies?

One illustrative approach consists in accumulating all time courses of gaze and

item depth recorded for the same subject. For each number of �xation, these

values are represented by their arithmetic mean. Since we expect form search

to induce a more precise adjustment of vergence than depth search, only the 30

trials with form mismatches are considered. Figure 7.7 shows one of the resulting

diagrams with the �xation index ranging from one to 59, because fewer than �ve

scanpaths contain more than 59 �xations and the subsequent data are thus not

reliable. It can clearly be seen that the subject tends to begin her search in the

front plane, to move to the middle plane afterwards, and �nally � if necessary �

to scan the back plane. Furthermore, the slow vergence movements from nearer

to more distant planes, the interference with planes lying in front of the gaze

position, as well as the assumed e�ect of overshooting convergence lead to a

strong statistical deviation of gaze depth from item depth towards the subject.

Did all subjects prefer such front-to-back strategies, or did maybe some of

them choose back-to-front schemes? In order to get a quantitative measure of

�strategy alignment�, we calculated two linear regressions on each subject's time

course of item depth: One regression on the 30 trials of depth search and another

on the 30 trials of form search. Thus, we obtained 32 straight lines of regression
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Figure 7.7: Time course of gaze depth averaged over 30 trials of one of the subjects

indicating individual alignments of scanning strategies. A straight line is deter-

mined by two parameters: The �depth o�set�, i.e. the depth value for the �rst

�xation, and the �depth slope�, i.e. the depth di�erence between successive �x-

ations. If a line of regression presents a depth o�set which is close to the front

plane, for example 10 cm, together with a strong negative depth slope, e.g. -0.5

cm per �xation, we can assume the subject to use a front-to-back scheme almost

every time. Vice versa, back-to-front strategies would be signi�ed by a negative

o�set and a positive slope.

Figure 7.8 shows the distribution of these two-dimensional scanpath param-

eters for the 16 subjects, separated for depth search and form search. In this

diagram, the vertical axis represents the depth o�set, while the horizontal axis

represents the depth slope. The global shape of the distribution reveals a nega-

tive correlation between the two dimensions which can be explained in a plausible

way: Since the average depth of inspected items is likely to be close to zero, those

lines of regression starting with a positive depth o�set tend to have a negative

slope, and those with a negative o�set tend to have a positive slope.

Taking a closer look at the illustrated distribution, we �nd that a group of

twelve individual parameters (four times depth search, eight times form search) is

located near the origin of the diagram, indicating no correlation between �xation

index and item depth. The respective strategies are likely to be aligned to the

y-axis, just as the scanpaths in Experiments A to F. Also, it could be possible

that these subjects switch between front-to-back and back-to-front strategies in

such a way that the respective e�ects neutralize each other; however, an almost

perfect neutralization is rather improbable.

Two further clusters of parameters are located in the vicinity of the �cen-
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Figure 7.8: Quantitative characterization of the 16 subjects' scanning strategies,

as obtained by a linear regression calculated on the time course of item depth in

the subjects' scanpaths. The resulting lines of regression are represented by their

depth o�sets (vertical axis) and by their depth slopes (horizontal axis).

tral� group, suggesting at least tendencies towards front-to-back and back-to-front

schemes respectively. Only three lines of regression clearly indicate the dominance

of a speci�c type of strategy: Two of them (form search) signify front-to-back

strategies and another one (depth search) signi�es a back-to-front strategy.

These �ndings show that the additional third dimension causes a higher vari-

ability of cognitive strategies. Some subjects apply planewise scanning, others do

not align their strategies with the depth planes. No signi�cant di�erence between

depth search and form search is indicated so far.

The relationship between gaze depth and item depth during comparative

search, which has not been analyzed on a quantitative level yet, might reveal

an e�ect of the type of mismatch. In Section 7.1 we assumed the condition of

form search to induce a more precise adjustment of vergence than depth search.

This hypothesis can be tested by separately calculating the mean gaze depth for

the di�erent viewed planes and the types of mismatch (depth versus form).

Figure 7.9 gives the data which are based on the relation between the me-
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Figure 7.9: Measured depth of the subjects' gaze according to the di�erent depth

planes

dian values of gaze and item depth as illustrated above. Concerning the absolute

gaze depth, the results are compatible with previous �ndings, demonstrating a

substantial gap between gaze and item depth. Even during the inspection of the

back plane, the subjects' vergence does not statistically point behind the monitor

screen. Nevertheless, the two-factorial (viewed plane, type of mismatch) analysis

of variance revealed a signi�cant main e�ect of the viewed plane on gaze depth

(F (2; 30) = 140:01; p < 0:001). The analysis of contrasts between di�erent depth

planes showed that gaze depth is signi�cantly higher during the examination of

the middle plane (4.83 cm) than during the inspection of the back plane (2.96

cm) (F (1; 15) = 17:37; p < 0:001). At the front plane, gaze depth is signi�cantly

higher (10.34 cm) than at the middle plane (F (1; 15) = 199:78; p < 0:001) and

at the back plane (F (1; 15) = 229:50; p < 0:001). The main e�ect of the type of

mismatch does not reach signi�cance, which means that the average gaze depth

does not di�er between depth search and form search. Interestingly, there is a

reliable interaction between the two factors (F (2; 30) = 14:25; p < 0:001), signi-

fying di�erent in�uences of the viewed plane on the adjusted gaze depth in the

conditions of depth search or form search respectively. As shown in the diagram,

this di�erence is relatively small but obvious, and it supports our hypothesis:

Form search leads to a better adjustment of vergence to the currently viewed

plane than does depth search.
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7.3.4 Comparison to the �Flat� Scenario

Since there were always two stimulus dimensions and since the subjects knew

the dimension of the mismatch in advance, the results of Experiment G should

be compared to those of Experiment B. For a start, we can take a look at re-

action time (RT). As expected, RT is signi�cantly shorter for the detection of

depth mismatches (9060 ms) than for the detection of form mismatches (11458

ms) (t(15) = �2:77; p = 0:014). With respect to form search, RT does not sig-

ni�cantly di�er between Experiment B (10541 ms) and Experiment G, but we

�nd a reliable di�erence between color search in Experiment B (7330 ms) and

depth search in Experiment G (t(34) = �2:11; p = 0:042). This result shows

that stereoscopic depth � though it leads to faster detection than form attributes

� is not �special� in the sense that it facilitates higher search e�ciency than

two-dimensional features.

Figure 7.10: Reaction time RT for di�erent depth locations of the mismatch

At this point, we can test our initial hypothesis that mismatches in more

distant planes are more di�cult to detect. Figure 7.10 presents a diagram of RT

values separated for di�erent planes containing the mismatch. The three columns

on the left side refer to depth search, where every mismatch involves two planes

at a time. An analysis of variance reveals that RT is signi�cantly shorter for the

detection of depth mismatches between the back and the front plane (7471 ms)

than for those between the back and the middle plane (10021 ms) (F (1; 15) =

6:08; p = 0:026). The RT value with respect to mismatches between the middle

and the front plane (8793 ms) is located between the two others, but does not

signi�cantly di�er from either. Obviously, increasing discrepancies in depth lead

to faster target detection. The tendency of back-middle mismatches to induce

somewhat longer RT than the equidistant middle-front mismatches � though not
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signi�cant � can be attributed to the interference with the front plane which

possibly �covers� back-middle mismatches.

The right hemi�eld of Figure 7.10 refers to the detection of form mismatches,

which are always located on the same depth plane. Its most striking feature is

faster RT for the detection of mismatches in the front plane (9900 ms), but the

di�erences to the RT values for the back plane (12159 ms) and the middle plane

(12048 ms) are short of statistical signi�cance (F (1; 15) = 3:69; p = 0:074 with

respect to the middle plane). Nevertheless, it is plausible to assume that the

inclusion of additional subjects to the data basis would have made this e�ect a

reliable one, since the mismatches in the front plane are the only ones that are

not obscured by layers of other items.

Which e�ects do the eye-movement variables reveal? For each variable, the

data were entered into a four-factorial (type of mismatch, local item density,

local depth entropy, local form entropy) analysis of variance with two levels per

factor. The independent variable local depth entropy replaced the variable local

color entropy used in Experiments A to F, yielding information about the depth

�disorder� at a given two-dimensional location on the screen. Since Experiment

G presented three levels of depth instead of three levels of color, the calculation

of depth entropy was completely analogous to that of color and form entropy.

One of the basic variables, namely �xation duration (FD), shows an interesting

dependence on the type of mismatch. FD is signi�cantly higher during depth

search (226.46 ms) than during form search (209.40 ms) (F (1; 15) = 29:82; p <

0:001). Furthermore, the FD values obtained in Experiment B during color search

(208.04 ms) as well as during form search (203.91 ms) are signi�cantly lower than

those for depth search in Experiment G (t(34) = �3:61; p < 0:001 and t(34) =

�3:75; p < 0:001 respectively). In none of the previous experiments the type

of mismatch exerted a signi�cant e�ect on FD, which suggests basic di�erences

between the detection of depth targets and planar targets. Conceivably, subjects

are able to perceive and memorize larger areas of local depth patterns within a

single �xation than they are with regard to color or form patterns. Consequently,

the memorization of more information needs longer FD.

Another factor exerts a signi�cant e�ect on FD, namely local item density at

the �xation point. As in all previous experiments, FD is shorter in regions of low

item density (211.90 ms) than in regions of high density (223.96 ms) (F (1; 15) =

29:82; p < 0:001). Neither depth entropy nor form entropy e�ects on FD were

found.

Saccade length (SL), the second basic variable, is signi�cantly higher in Ex-

periment G (73.27 pixels) than in Experiment B (60.46 pixels) (t(34) = 4:87; p <

0:001). No reliable di�erence between depth and form search was found. Conceiv-

ably, the prolonged saccades are caused by the fact that some of the subjects use

a plane-by-plane search strategy instead of performing top-down oder bottom-up

scanning. They minimize the necessary vergence movements at the cost of longer

saccades.

Two four-factorial analyses of variance were calculated, one referring to the

local parameters at the starting points of the saccades, the other referring to
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their end points. With regard to the starting points, SL is signi�cantly shorter

for low item density (74.63 pixels) than for high density (69.83 pixels) (F (1; 15) =

15:96; p = 0:001), which corresponds to the results of previous experiments. Con-

cerning the end points of the saccades, the same e�ect is found with SL having a

value of 76.61 pixels and 66.27 pixels respectively (F (1; 15) = 76:80; p < 0:001).

Moreover, saccades landing in areas of low depth entropy are signi�cantly shorter

(69.36 pixels) than those landing in areas of high depth entropy (73.52 pixels)

(F (1; 15) = 17:38; p < 0:001). The interaction between depth entropy and type

of mismatch is reliable as well (F (1; 15) = 6:40; p = 0:023), indicating a stronger

e�ect of depth entropy during form search (68.97 versus 75.27 pixels) than dur-

ing depth search (69.76 versus 71.77 pixels). These �ndings suggest that subjects

avoid �xations in regions of high depth entropy, i.e. in areas surrounded by items

in di�erent depth planes, because it is di�cult to gather information while attend-

ing to such regions. Since it is more problematic to �predict� the form entropy

at the saccade's end point, �xations preceded by longer saccades are accordingly

more likely to be located there. The detection of form mismatches is even more

obstructed by high depth entropy than the detection of depth mismatches, be-

cause form recognition requires vergence movements to the respective planes.

Therefore, subjects try even harder to avoid such regions, which leads to a more

pronounced e�ect of depth entropy on SL.

The number of successive �xations within the same hemi�eld (FW) does not

reveal any main e�ects of the four factors, but shows one signi�cant interaction,

namely between type of mismatch and local form entropy. Figure 7.11 (left) il-

lustrates the interaction. In the situation of depth search, FW decreases with

increasing form entropy (2.679 versus 2.557 �xations), whereas form search leads

to an increase in FW with higher form entropy (2.658 versus 2.715 �xations).

Interestingly, the analysis of area coverage per �xation (AC) exhibits an anal-

ogous type of interaction, as shown in Figure 7.11 (right). AC increases with local

form entropy during depth search (3376 versus 3577 pixels), and shows an inverse

e�ect during form search (3641 versus 3202 pixels). These results concerning FW

and AC suggest that depth search is facilitated by high form entropy, because

items of di�erent forms facilitate the comparison of depth patterns. In regions of

low form entropy, e.g. in areas that exclusively contain circles, it is di�cult to

match the memorized depth pattern with the corresponding depth structure in

the other hemi�eld, since there are no suitable points of reference. This problem

causes additional �xations and hence increases FW and decreases AC. During

form search, though, patterns of form attributes have to be memorized and com-

pared. As shown in the previous experiments, high form entropy goes along with

more information to be processed, leading to higher FW and lower AC.

Additionally, AC is higher in regions of low item density (3837 pixels) than in

regions of high item density (3061 pixels) (F (1; 15) = 7:40; p = 0:016), which is

compatible with earlier �ndings. A comparison to Experiment B reveals that form

search induces lower AC in Experiment B (2874 pixels) than in Experiment E

(3588 pixels) (t(34) = �2:82; p = 0:008) as well as depth search in Experiment E

(3572 pixels) (t(34) = �2:26; p = 0:031). This �nding indicates that the additional
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Figure 7.11: Interaction of the factors type of mismatch and local form entropy,

which exerts signi�cant e�ects on the variables FW (left) and AC (right)

depth information leads to larger areas being covered per �xation, at least with

regard to two-dimensional form search.

The most striking di�erence between Experiments B and G is re�ected in the

search speed (SP). The mean SP value is signi�cantly higher in Experiment G

(82.62 pixels/s) than in Experiment B (52.14 pixels/s) (t(34) = �4:09; p < 0:001).

In analogy to the results of SL, this e�ect can be attributed to the plane-based

scanning strategies that some of the subjects appear to have applied.

7.4 Are Excursions to the Third Dimension

Pro�table?

The results of Experiment G show that the introduction of the third dimension

leads to a broader variety of scanning strategies, suggesting that the z-axis �

though represented by only three discrete levels � is perceptually �accepted� like

the x- and y-axis. Some subjects use the depth structure in the stimuli as a

guideline for their gaze trajectories; they start searching the front plane, then

move on to the middle plane, and �nally inspect the back plane; the reverse order

of planes is possible as well. This behavior is caused by the facts that perceptual

grouping of items in the same stereoscopic depth is especially convenient and

stable and that planewise scanning needs fewer time-consuming vergence eye-

movements. Vergence movements towards deeper planes are found to be extremely

slow, since the perception of these planes interferes with the items lying in front

of them. Moreover, physiological factors as well as most of the subjects' little

experience with arti�cial three-dimensional stimuli contribute to this e�ect.
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The impaired recognition of items in the back plane seems to be responsible

for the fact that form mismatches located there are � at least in a tendency �

more di�cult to detect. This tendency supports the view that mismatch detection

is based on binocular perception in Experiment G, since monocular inspection of

the stimuli should not handicap target detection in the back plane. The �nding of

depth mismatches between the back and the front plane to induce longer reaction

times than others, however, would be expected for monocular processing as well:

In the monocular situation, the depth mismatches between back and front plane

correspond to a larger horizontal shift between the target items than do other

depth mismatches.

Fundamental di�erences between the detection of depth and form mismatches,

i.e. two-dimensional and three-dimensional mismatches, have been found. In order

to enable target detection, form search needs more precise vergence movements

than depth search. The basic eye-movement variable �xation duration, which has

not been a�ected by the factors type of mismatch and experiment so far, sub-

stantially increases during depth search. This �nding suggests that depth search

facilitates the memorization of larger local regions for each step of comparison,

causing increased �xation duration. In regions of low form entropy, depth search

is less e�cient, because the correspondence of information between the hemi�elds

is less obvious.

This pattern of results is compatible with physiological data found in liter-

ature (e.g. Schor & Ciu�reda, 1983). Nevertheless, the insight gained with the

help of Experiment G is of a special quality. Experiment G shows the importance

and fruitfulness of studying the interactions of perceptive and cognitive factors

during the completion of a complex and demanding task. For instance, the inves-

tigation of dynamically applied binocular vision, optimized for e�ciency, yields

detailed information about how our brain adapts the participating processes in

order to facilitate fast target detection. Observing the visual system in ecologi-

cally adequate action enables us to combine the knowledge about isolated factors

to achieve a more comprehensive understanding of the brain's architecture.

To answer the question posed in the headline: The excursion was de�nitely

pro�table and should by all means be extended. First, we must �nd out whether

the e�ect of hyper-convergence during the inspection of the front plane is caused

by a systematic error in measurement or rather by perceptive factors (�overshoot-

ing� and reduction of interference). Further research with the help of a spatial

calibration procedure will be carried out in order to clarify this point. Second, as

discussed in Section 7.1, the use of shutter glasses instead of red-green glasses is

preferable, because it provides more natural conditions and allows us to present

colored stimuli. Hence, this technical upgrade should be realized.

Within the scope of the present work, Experiment G can be considered as

a suitable �nale of the investigations of comparative visual search, because it

provides an interesting outlook on possible research based on more realistic sce-

narios. Undoubtedly, our visual system has been evolutionary designed for a three-

dimensional environment, and only in three-dimensional space it reveals all its

capabilities.
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The �nal part of this work is concerned with the construction and veri�cation

of computer models which try to reproduce the subjects' gaze trajectories on the

basis of the empirical results. As explained in Chapter 1, only the combination of

empirical research with approaches to simulations of the observed e�ects can lead

to a broad understanding of the factors and processes involved in comparative

visual search.



Chapter 8

A First Approach to Modelling:

Random Walk

8.1 What can We Learn from Computer Simu-

lations?

In many �elds of research, computer simulations are the perfect complement to

empirical studies. Empirical work, i.e. the conduction of experiments and the anal-

ysis of the resulting data, enables us to generate and to test hypotheses about

our topic of investigation. In general, this process is aimed at the construction of

a more or less formal model which ideally explains all of the experimental obser-

vations. Isaac Newton, for instance, studied the e�ects of gravity as well as the

trajectories of planets. Based on empirical data, he found a common principle

connecting those seemingly distinct topics. He formulated the �law of gravita-

tion�, a simple equation that can be viewed as his �model� of gravity. It does

not explain anything about the nature of gravity, but it allows to calculate the

gravitational force between any two objects with known masses and distance from

each other.

This model led to a considerable advancement in theoretical physics. With

the help of di�erential equations it enabled scientists to predict the trajectories

of two objects in space attracting each other. However, its limitations soon be-

came obvious: It was impossible to derive equations describing the trajectories of

three or more objects interacting by gravitational forces. The only way of predict-

ing the course of the objects' positions, speeds, and accelerations is a numerical

computation. Numerical methods employ an iterative calculation of a system's

state, usually based on some suitable discretization of the system's time evolu-

tion. The smaller the applied discretization steps, the higher the precision gets

and, unfortunately, the arithmetical expense as well. Therefore, calculating the

detailed behavior of a complex system by means of paper and pencil is simply

not feasible. Although Newton and his contemporaries knew all the necessary

�rules�, they were not able to predict gravitational trajectories beyond a certain

complexity.
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Nowadays, the situation is di�erent, because electronic assistants with enor-

mous arithmetical capabilities support our work. Modern computers are able to

solve problems like the one mentioned above more than a billion times faster than

human beings. At present, even rather intricate systems have become accessible

to computer simulations, for example the weather, �ying airplanes, chemical reac-

tions, �owing liquids etc. In some cases, the system's complexity and its sensitivity

to small perturbations in its parameter values thwart our best e�orts for long-

term predictability (�chaos�). For instance, even a completely computer-based

weather forecast using a gigantic database and precise measurements with high

spatial and temporal resolution will in all probability never be able to predict the

weather situation at a certain location for more than a few days in advance.

Nevertheless, comparing the results of computer simulations with the corre-

sponding empirical data tells us to what extent a simulation is adequate. Serious

discrepancies would indicate that we had not yet taken into account all the essen-

tial features of the system under study, hence our model would be incomplete or

partially wrong. In this case we would have to perform additional experiments or

measurements leading to a re�ned model which again would have to be empiri-

cally tested. As long as new �ndings or new theories are available, these steps can

be repeated over and over until a satisfactory model has been established. Com-

puter simulations can thus substantially enhance our understanding of complex

processes.

Referring to the present context, what is the use of computer simulations in

Cognitive Science? As already argued in Section 1.1, our brain constitutes the

most complex structure we know. For obvious reasons it is impossible to observe

the activity of all its neurons and their interactions in order to obtain complete

information about ongoing processes. And even if we could do that, the inter-

pretation of the recorded signals would still be more than problematic. However,

we already possess useful knowledge about the brain with respect to at least two

aspects: First, we are to some extent familiar with the various methods of com-

munication between neurons and how information processing and learning are

achieved at the neural level. Second, much is already known about the brain's

functional structure, i.e. the specialization of particular brain areas for particu-

lar functions. For instance, there are the visual cortex for handling visual input

and the motor cortex that controls motor actions. Some of the main connections

between these areas are recognized as well, though the situation is extremely

intricate and far from being well-explored.

Accordingly, there are two predominant types of models aiming at the repro-

duction of mental processes:

Neural models: This biologically motivated approach is based on the simula-

tion of a limited set of neurons and their interactions, so-called arti�cial

neural networks. A neuron is modelled as a simple processor calculating

a mathematical, multidimensional function on its inputs from many other

neurons. In turn, it sends the result of this calculation to a number of con-

nected �colleagues�. Processes of learning and adaptation are realized as
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changes in the strength of connections between neurons. There are vari-

ous kinds of network architectures and learning algorithms, covering a wide

range of possible situations.

Phenomenological models: The intention of these models is not to directly

imitate physiological (i.e. neural) processes, but to reproduce perceptive and

cognitive functions at a higher level. Here, functional subsystems (assem-

blies of neurons, whole brain areas, or distinct brain functions) are modelled

by algorithms which heuristically mimic their e�ects. The inner structure of

these areas is completely disregarded for the bene�t of reduced complexity

to be modelled. Hence, even high-level processes become accessible to this

type of computer simulations.

In recent research, a variety of computer models have been applied to a wide range

of mental processes. With regard to visual information processing in general and

visual search in particular, both neural and phenomenological approaches have

been attempted. Edelman and Weinshall (1991), for instance, proposed a neural

model of 3D object recognition. It incorporates a two-layer neural network (input

layer and representation layer) which stores information by means of unsupervised

Hebbian learning. During the training process, the model is �presented� with

images of a limited set of 3D objects from di�erent viewpoints. The neurons in

the input layer receive activation signals according to the patterns of the objects'

salient points in the images, e.g. vertices or edge elements. This information is

encoded by making neurons in the representation layer respond selectively to

speci�c conjunctions of features, i.e. patterns of activation in the input layer.

After training, the model is able to recognize the �familiar� objects in most

cases even from novel viewpoints. Interestingly, the viewpoint-dependence of the

model's recognition rate is qualitatively similar to empirical human data.

A computational approach to human pattern recognition was reported by

Caelli & Bischof (1994). According to the proposed model, pattern recognition

involves processes on three di�erent levels:

Low level: Feature extraction, realized by applying appropriate �lter masks to

the 2D intensity patterns

Intermediate level: Segmentation and recognition of the extracted features

with the help of local similarity measures

High level: Analysis of the geometrical relations between recognized features,

resulting in a symbolic representation of the scene

On each level, �classical� algorithms standardize the data representation, realiz-

ing desirable properties of pattern recognition like rotation and size invariance.

After suitable training, this model is capable of, for instance, recognizing facial

expressions even in �unknown� faces.

As to the simulation of visual search, Grossberg, Mingolla & Ross (1994)

combined four specialized neural networks for this purpose. Although the com-

munication between the networks is continuous and asynchronous, the model's
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mode of operation can best be understood in terms of four successive steps of

processing, each of them realized by a speci�c neural network:

Step 1: Preattentive processing of the visual input, resulting in a retinotopic

representation of the stimulus features

Step 2: Boundary segmentation and surface formation; the scene is grouped into

separate candidate regions

Step 3: Selection of a candidate region to be searched; this can be in�uenced

either by bottom-up salience or by top-down priming of target features (cf.

Chapter 4)

Step 4: Comparison of feature groupings with the stored target representation;

if no target is detected, a new candidate region is selected in Step 3

This model is able to reproduce empirical distributions and slopes of reaction

time and may explain psychophysical data of single-target, multi-target, form-

color, and color-color conjunctive search. Its modular structure allows to observe

its performance at least at the interfaces between the elementary networks.

A phenomenological approach was tested by Smith (1989): He modelled re-

sponse time distributions for two-choice reactions like those required in picture

matching and visual search. His approach was based on the so-called Accumulator

Model. This model assumes that the magnitudes of inspected stimulus features

lead to corresponding cognitive activations in the respective dimensions of sen-

sory e�ect. The activations vary randomly over time; both the positive and the

negative deviations of activity from a pre-de�ned standard value are added to an

accumulator A or an accumulator B respectively. If one of these accumulators �

assigned to the relevant dimension � exceeds a speci�c threshold value, the corre-

sponding alternative of the two-choice reaction is initiated. After the adjustment

of the standard and threshold values, this rather simple model is able to closely

replicate response time distributions for a wide variety of tasks.

Motivated by the above approaches, we pose the following question: What

type of simulation is adequate for comparative visual search? As we have seen in

the previous chapters, task completion requires the interaction of many di�erent

mental processes and functions. Therefore, it does not seem useful to start mod-

elling with a multi-layer neural simulation trying to explain all e�ects from the

single-neuron activities to the joint operation of attention and working memory.

It appears more reasonable to begin with a very simple phenomenological model

and to learn from its shortcomings in order to arrive at an improved and more

realistic simulation.
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Figure 8.1: Histograms of empirical saccade length for di�erent local item densities

at the saccade's center (Experiment A)

8.2 A Random-Walk Model of Comparative Vi-

sual Search

Our idea is to start with a so-called �Random-Walk Model�. It produces vir-

tual, random eye movements according to the statistical distribution of empirical

eye-movement parameters measured in Experiment A (cf. Chapter 3). Moreover,

the in�uence of local stimulus characteristics on these parameters is taken into

account as well. This rather vague description of the model's mode of operation

shall be illustrated in a more comprehensible way: For a start, let us take a look

at the variable saccade length. How does the model choose the length of the next

saccade starting from a certain gaze position within the stimulus picture?

Figure 8.1 is a 3D diagram of empirical saccade length distributions � obtained

in Experiment A � as a function of the local item density at the saccade's center.

The diagram is made up by combining the histograms of saccade length for each

level of item density, so that a �frequency landscape� emerges. If we �cut� the

enclosing cube in parallel to the paper plane, the surface of intersection will show

the histogram of saccade length according to the �item density� coordinate of

our cut. For instance, the �frequency-by-saccade length�-plane at an item density

value of 2.0 represents the distribution of saccade length for those saccades with

a local item density of 2.0 at their center. With increasing item density, both the

mean and the maximum value of the histograms obviously move towards shorter

saccade lengths. This �nding is rather plausible: In regions of higher item density,

items are located more closely to each other, hence saccades tend to be shorter.

When generating its saccades, the Random-Walk Model statistically repro-

duces these empirical saccade length distributions. According to the local item

density at the actual gaze position, the model chooses the length of the subse-
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quent saccade randomly with the corresponding plane of the histogram in Figure

8.1 serving as the random distribution. As a consequence, the Random-Walk

Model generates shorter saccades with growing item density, just as its human

�examples�.

Strictly speaking, saccade length is determined in two successive computa-

tional steps: At �rst, a temporary length is chosen according to empirical dis-

tributions referring to the saccades' starting points instead of their centers as in

Figure 8.1. Second, the item density at the center of this temporary saccade is

used to calculate the �nal saccade length in the way described above. Why so

complicated a procedure? The strongest e�ect on saccade length was found to be

induced by the item density at its center, being considerably more intense than

the one caused by item density at its starting point. In order to integrate the

stronger e�ect into the model, the weaker one had to be implemented as well to

enable the estimation of the next saccade's center.

Whereas local item density has a substantial in�uence on most basic eye-

movement variables, the e�ects of color and form entropy are rather small. Hence,

the Random-Walk Model does not account for entropy to the bene�t of a more

transparent model structure. On the whole, the model is based on six di�erent

sets of empirical distributions measured in Experiment A:

� Distributions of saccade length varying with local item density at the start-

ing points of saccades

� Distributions of saccade length varying with local item density at the center

of saccades

� Distributions of �xation duration varying with local item density at the

�xation point

� Distributions of the number of successive �xations within the same hemi�eld

varying with local item density at the �rst �xation point

� Distributions of absolute angles of saccades within one of the hemi�elds

� Distributions of angles between successive saccades within the same hemi-

�eld

Furthermore, the model reproduces the empirical duration of saccades which

mainly depends on the saccade length. Figure 8.2 shows saccade duration as a

function of saccade length, as measured in Experiment A, plus the line of regres-

sion. The noticeable deviation of the duration values from their linear regression

in the range from 150 to 300 ms is due to the fact that only a small number of

saccades in comparative visual search has these lengths (cf. Figure 3.5).

The linear regression has been taken as an approximation of the functional

relationship between saccade duration and length:

saccade duration = 29:1 ms+ 0:149
ms

pixels
� saccade length (8.1)
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Figure 8.2: Mean saccade duration as a function of saccade length plus the cor-

responding line of regression

In addition, some simplifying assumptions have been introduced in order to reduce

the complexity of our simulation:

� The only valid �xation points are the centers of all 60 items that constitutes

a stimulus picture, i.e. the simulated �xations are �rounded� to the nearest

neighboring item.

� The arti�cial gaze trajectory starts at the center of a randomly chosen item.

� When changing between hemi�elds, the gaze position always jumps to the

item corresponding to the one that was �xated right before.

� The search and comparison phase terminates as soon as the gaze position

reaches one of the two di�ering target items. That is, there are no instances

of missing the target.

� The detection and veri�cation phase consists in (randomly chosen) two,

three, or four saccades changing hemi�elds with single, prolonged �xations

in between.

Altogether, the Random-Walk Model is a strongly simpli�ed approach. Nev-

ertheless, it is capable of generating search trajectories and reaction times that

could be compared with those of human subjects. Since it incorporates the ba-

sic eye-movement �regularities� that have been found empirically, it is possible

to study the following question: To what extent can human gaze trajectories be

modelled as a statistical process and when do we have to go beyond such descrip-

tion and take into account additional factors and processes that contribute to eye

movements in comparative search?
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Figure 8.3: Example of a model-generated scanpath. Fixations are numbered;

circle size indicates �xation duration.

8.3 Evaluation of the Model

Figure 8.3 presents an example scanpath generated by the simulation. The �xa-

tion points do not always hit the centers of the items, because the spatial error in

measurement is incorporated in the Random-Walk Model as well. At �rst sight,

the gaze trajectories produced by the Random-Walk Model seem to resemble the

empirical ones. A closer inspection, however, reveals that the scanpath employed

by the model just wanders about and does not resemble any human search strat-

egy. This de�cit is re�ected in the resulting reaction times measured in 10000 runs

of the model. The model needs a mean duration of 30.0 seconds for target de-

tection, whereas the subjects needed only 11.0 seconds on average in Experiment

A.

The distribution of reaction times gives even more evidence. Figure 8.4 shows

a histogram of reaction time yielded by the model in comparison to the data

obtained from the subjects (as previously mentioned in Section 3.3). Here, a

fundamental di�erence between empirical and simulated search is made trans-

parent: While the distribution of reaction times produced by the model follows

an exponential decay law, the human data exhibit a plateau-shaped maximum

for reaction times in the range of approximately three to ten seconds. What is

the reason for this striking discrepancy?

In fact, exponential decay of reaction time is a characteristic feature of com-

pletely unstructured search. Here, �unstructured� means that neither any kind

of strategy nor a memory to remember the hitherto existing scanpath comes to

bear. Why do such conditions lead to exponential decay?
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Figure 8.4: Histogram of empirical versus simulated reaction times

Let us assume that we want to conduct a perfectly unstructured comparative

search. We randomly choose one of the items and compare it with its counterpart

in the opposite hemi�eld. If these items are identical, we choose another item

by random � it may be the same again � and perform a further comparison. We

repeat this procedure until the detection of the mismatch. With n items on each

hemi�eld, the probability p1 of solving the task by the �rst step already resolves

to:

p1 =
1

n

(8.2)

Due to the lack of strategy and memory, the probability of detection stays

the same with regard to the second step. However, we have to take into account

that this second step is performed only if the �rst step has not been successful,

thus with a probability decreased by the factor (1� p1). Generally speaking, we

derive the following equation for the probability p
s
of task completion in step s:

p
s
=

1

n

�
n� 1

n

�
s�1

(8.3)

This is obviously a function which declines exponentially with the number of

comparison steps. Taking a look at Figure 8.4 again, we �nd a substantial similar-

ity between this type of function and the distribution of reaction times yielded by

the Random-Walk Model. In order to properly compare those distributions with

Equation 8.3, we have to transform the �steps� into �times�. The average time

subjects need to compare corresponding regions in a stimulus picture is found to

be approximately 600 ms, hence we use this value for the intended transforma-

tion. Moreover, we have to take into consideration a delay caused by the �nal
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detection and veri�cation phase, which is set to 1200 ms.
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Figure 8.5: Histogram of reaction times yielded by the Random-Walk Model and

by the random choice of items respectively

Figure 8.5 presents a comparison of reaction time histograms for the Random-

Walk Model and unstructured search with the time constants de�ned above. The

similarity between the two functions is obvious. It is corroborated by Figure 8.6

showing the same data in logarithmic scaling, demonstrating the exponential

characteristic of the model's reaction time distribution.

Why does the distribution of empirical reaction times exhibit a clearly di�erent

shape (see Figure 8.4)? As we have seen in Chapter 3, subjects generally search

the whole picture using a global scanpath. It is only by mistake that the same

pair of corresponding items is compared more than once during task completion.

If the target has not been detected after checking all items, the subject must

start another search �cycle�. In this case subjects are likely to apply a completely

di�erent scanpath, probably because they hope to detect the mismatch more

easily when approaching it from a di�erent direction. However, some subjects lose

their patience at this stage and give up the structure of their search behavior.

They start comparing items in di�erent areas of the picture and try to solve the

task without making any e�ort to arrange another global strategy.

These considerations can explain the shape of the empirical reaction time

histogram. A complete search cycle takes about seven to twelve seconds, varying

strongly between subjects. Let us assume that, during this cycle, subjects are

scanning a sequence of item pairs without any pair being visited more than once.

Since each pair will equally likely turn out as the target, each step of scanning

within this sequence, from the �rst to the last one, has the same probability of

leading to target detection. The constant probability of detection in the course
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Figure 8.6: Histogram of reaction times using logarithmic scaling of frequencies

of such a search cycle will cause a plateau in the reaction time histogram.

As mentioned above, subjects may switch to unstructured search if they do

not detect the target during the �rst search cycle. In analogy to the Random-

Walk Model, such a behavior should lead to exponential decay in the reaction

time histogram. In fact, the empirical reaction time distribution shows such a

characteristic for reaction times longer than ten seconds. What impact on this

distribution can be expected from those subjects that start a second search cycle

instead of employing unstructured search? Strong between-subjects di�erences in

search speed seem to prevent the emergence of a second (or third) plateau in the

reaction time histogram.

Which conclusions can be drawn from the above �ndings? By way of re-

analyzing the course of empirical gaze trajectories, we have arrived at the fol-

lowing answer: The global (�high-level�) search strategies clearly di�er between

the Random-Walk Model and the human subjects. Obviously, the implementa-

tion of empirical parameters and dependences did not substantially enhance the

model in comparison to pure random search. Although the trajectories generated

by the Random-Walk Model seem to resemble those of the subjects, they are

lacking that kind of global strategy that distinguishes the empirical scanpaths.

The Random-Walk Model is adequate with respect to low-level features of scan-

paths, e.g. �xation duration and saccade length, but human performance that

incorporates cognitive processes on higher levels is not re�ected at all.

The results reported in this chapter clearly indicate that our extensive anal-

ysis of comparative visual search has not accounted for quantitative measures

of global scanpath characteristics so far. We have to acknowledge that not only

cognitive processes on the level of local memorization and comparison control the
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subjects' behavior, but also those processes on a higher level, which enable the

planning and tracking of global, self-avoiding scanpaths. This vertical structure

of at least two di�erent levels of information processing should be incorporated

into further approaches to computer models. As a consequence, the �rst step

towards an improved model consists in a systematic investigation of basic charac-

teristics of global scanning strategies. In the following Chapter 9, an appropriate

study is described in combination with the development and evaluation of various

algorithms for a more accurate simulation of global scanpaths.



Chapter 9

Geometrical Aspects of Global

Scanning Strategies

9.1 Introduction

The questions at the core of investigations in visual search are: Which are the

strategies we apply when exploring our visual environment? What factors deter-

mine the sequence in which we inspect a given number of items?

These questions are far from being novel, and there are numerous approaches

that have tried to provide at least partial answers. Gaze trajectories in realistic

scenes have been the subject of several studies. Many of these investigations were

conducted by computer scientists intending to �teach� vision systems to behave

like the human visual system. To date, however, human vision is still much more

powerful than even the best approaches to computer vision. It seems thus useful

to �nd out more about the biological system and to imitate parts of it technically

(for a review of e�orts along these lines see e.g. Ballard, 1991).

Most models of eye movements in realistic scenes use spatial �lters in order

to detect an image's most salient points that are likely to attract �xations. These

�lters may be sensitive to contour features like sharp angles (Kattner, 1994)

or to local symmetries (Locher & Nodine, 1987; Menkhaus, 1997; Nattkemper,

1997). Rao and Ballard (1995) proposed a model of parallel search employing

time-dependent �lters. The location of the �rst �xation is determined by a coarse

analysis (low spatial frequencies) of the given scene, whereas the locations of

the following �xations are based on the analysis of increasing spatial frequencies.

Another approach (Rimey & Brown, 1991) uses a Hidden Markov Model that is

capable of learning gaze trajectories. It optimizes its scanpaths iteratively towards

highest e�ciency of gathering information in a given scene.

However, the scenarios of the studies mentioned above are far too complex

with regard to our interest in basic properties of scanpaths. In realistic scenes,

the subjects' attention is guided by high-level factors, e.g. by the functional or

conceptual relationships between items or the individual relevance of items to the

subjects. As comparative visual search aims at discovering fundamental properties
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of human scanpaths (see Chapter 3), such factors have deliberately been excluded.

Hence, our stimuli were of a plain, abstract, and clearly parametrized nature.

Since gaze trajectories in comparative visual search yield only coarse infor-

mation about global scanpaths, i.e. the sequence of items being compared (cf.

Chapter 6), we used a simpli�ed scenario and a simpli�ed task: Subjects viewed

only one display instead of two hemi�elds. Their task was to look exactly once

at each dot in the presented random distribution of dots, starting at a speci�ed

starting dot.

Undoubtedly, the chosen scenario is a strong simpli�cation of those utilized

in the studies mentioned before. Moreover, the task of visiting each item exactly

once is rather arti�cial. In everyday life we are not used to strictly avoiding

repeated attention to the same object, because the �cost� of a redundant eye

movement is small. Although there is evidence for low-level processes of inhibition

of return facilitating serial visual search (Posner & Cohen, 1984; Klein, 1988;

Tipper, Weaver, Jerreat & Burak, 1994), these processes are not su�cient for the

construction and tracking of e�cient, i.e. self-avoiding and complete scanpaths in

comparative visual search or in the task described above. Therefore, the subjects'

scanpaths are likely to be in�uenced by higher cognitive processes than are usually

involved in natural situations. In particular, path planning processes are expected

to take place, because subjects have to keep in memory which dots they have

already visited during task completion.

In spite of these ecological shortcomings, our setting enables us to investigate

scanpaths purely based on the stimulus geometry, i.e. on the locations of the

dots. Neither item features nor relations between them (other than geometrical

relations) bias the observed strategies. The demand of attending exactly once to

each item brings about an enhanced comparability of scanpaths. If we restrict the

analysis to acceptable paths (i.e. those paths that meet this demand), it is easy

to de�ne a measure of similarity between two paths: The degree of similarity of a

path A to another path B can be calculated as the number of �jumps� or edges

between dots that appear in path A as well as in path B. Since there are 29 edges

in every acceptable path, the resulting similarity values range from 0 to 29 (the

direction of jumps is disregarded such that two paths visiting all items in nearly

reverse order are still regarded as very similar, which appears to be a reasonable

property in the present context).

The study reported in this chapter investigates geometrical regularities of

scanpaths and is aimed at obtaining baseline data on global human scanpaths.

Based on these data, we want to develop models of human scanpath selection and

compare their results to the empirical data with a view to a better understanding

of global scanpath characteristics. Although the chosen scenario seems to di�er

substantially from comparative visual search, there are two important require-

ments on e�cient scanpaths that are identical for both paradigms: Self-avoidance

and completeness. Therefore, we may hope that the results of the present study

can be transferred to comparative visual search.
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9.2 Measurement of Global Scanpaths

In this �rst approach to global characteristics of human scanpaths, we used a

rather simple setting: Subjects were presented with a set of 30 dots (diameter of

0.5 degrees of visual angle) on a black background being randomly distributed

within a square area (lateral length of 18.0 degrees) on a black background (see

Figure 9.1 left). The dots were of the same color (blue), with the sole exception

of the starting dot which was signi�cantly brighter than the others. Starting at

this dot, the subjects' task was to look once at each dot in the display. The

subjects were told not to miss any dots nor to look at any of them more than

once. Furthermore, they had to attend to each dot for at least half a second to

make sure that the eye tracker registrated a �xation.

Figure 9.1: Example stimulus (left) and corresponding visualized results (right).

The thicker the connecting line between two dots in the right image, the more

subjects scanned these dots successively.

Five di�erent dot con�gurations (stimuli) were randomly generated to prepare

a set of 20 images that were used in this study. In order to investigate directional

e�ects on the scanpaths, for instance top-down or left-right strategies according

to the subjects' direction of reading, each stimulus was shown in four di�erent

orientations (rotated by 0o, 90o, 180o, and 270o). The resulting 20 stimuli were

presented to twelve subjects in individually changing random order.

9.3 Data Pre-Processing

The recorded gaze trajectories were converted to item-based scanpaths. In other

words, the temporal order of attended dots had to be reconstructed, because our

analysis was intended to refer to these rather than to �xation points. It turned out

that this procedure could not be done automatically without a severe impairment
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Figure 9.2: Another example stimulus with a subject's gaze trajectory. Displays

of this kind were used to convert eye-movement data to item-based scanpaths.

of accuracy. The occurrence of orientational �xations, imprecise saccades as well

as errors in measurement required human intelligence for the reconstruction to be

correct. Consequently, an assistant � who was naive as to the purpose of the study

� accomplished this task. He was successively shown all of the subjects' scanpaths

on the background of the corresponding stimuli. Each �xation was plotted as a

circle with a radius signifying its duration, numbers indicating the sequence of

�xations, and saccades being represented by straight lines. From this information,

the assistant had to decide in which order the items had been visited. He used

a mouse pointer to specify this sequence of items. Figure 9.2 shows one of these

displays and illustrates some of the di�culties which rendered an algorithmic so-

lution impossible. Fixation number three is an example of an imprecise saccade:

Conceivably, the subject shifted her attention to the dot in the lower left cor-

ner, but since the next item to be visited was rather close and required the eye

movement to take a sharp turn, she executed an incomplete saccade. Inaccurate

measurement can be found at �xation number 22 which evidently does not belong

to its nearest neighboring dot, as the other �xations indicate. Fixation number

29 can be considered as orientational. The subject had to conduct a relatively

long saccade after �xation number 28 and needed foveal information about the

next group of items before choosing one of them as her following gaze target.

As a result of this semi-interpretative analysis, only 139 of the 240 converted

paths (57.9%) turned out to be acceptable in terms of the above de�nition. The

further analyses were restricted to these acceptable paths. Figure 9.1 presents a
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visualization of accumulated data (right) for an example stimulus (left). Wider

lines between dots indicate transitions used by a larger number of subjects. The

lines are bisected due to the two possible directions to move along these edges.

Each section refers to those transitions that started at the dot next to it. Sections

representing fewer than three transitions were not displayed for the bene�t of a

clearer diagram. Within clusters of dots we �nd high variability of chosen edges,

whereas the linear item structures on the right and at the bottom of the stimulus

are scanned in what might be termed a �travelling salesman� fashion with only

a few exceptions.

9.4 The In�uence of Stimulus Rotation

Proceeding to the quantitative analysis of data, we can investigate the e�ect of

rotating the stimuli: Are there directional in�uences on the scanpaths, for exam-

ple caused by the subjects' reading direction? This question can be answered by

comparing similarities of scanpaths (as de�ned above). If the scanpaths for the

same stimuli shown in the same orientation were more similar to each other than

the ones for di�erent orientations of the same stimuli, this would indicate that the

rotation exerted an e�ect. Actually, the average similarity value for the same ori-

entation was 19.43 edges per path, while the value between di�erent orientations

was 19.42. As a matter of course, this di�erence is not signi�cant. Consequently,

we may assume that there is no directional in�uence and can collapse the data for

each of the �ve original stimuli in order to improve our statistical basis. This basis

is needed for the evaluation of various computational models of scanpath selection

which we are going to develop below. Since the empirical data show no signi�cant

dependence on the rotational orientation of the �ve stimuli, all models developed

below do by construction not depend on this factor either. It thus su�ces to

evaluate them with the �ve dot con�gurations in their original orientation.

9.5 Evaluation of Scanpath Models

In order to have a baseline data for the evaluation of the models, we calculated a

path with maximal similarity to the subjects' path for every stimulus. This aver-

age maximal similarity turned out to be 21.89, which means that these �optimal�

paths are more similar to the empirical ones than the empirical ones are to each

other (similarity value of 19.4, cf. above). Moreover, this result shows that, due

to the intrinsic variability of scanpaths, no simulation can reach higher similarity

values than 21.89. Additionally, as a second baseline, the similarity of completely

randomly generated scanpaths to the subjects' paths was computed, yielding a

value of as low as 1.75.

What are promising scanpath strategies to be modelled? We developed and

tested �ve di�erent models, which are described below. An example of the optimal

paths as well as the scanpaths computed by the models is given in Figure 9.3

referring to the example stimulus in Figure 9.1.
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Figure 9.3: Scanpaths generated by the di�erent models. The �Optimum� path

is the one with optimal similarity to the empirical ones.

9.5.1 The �Greedy� Heuristic

As a �rst approach, we can test a rather plain method called �Greedy� heuristic.

The �Greedy� algorithm always jumps to the dot which is geometrically near-

est to the actual �gaze� position and which it has not visited yet. Although it

produces plausible, locally optimized sections of scanpaths, the Greedy strategy

has one drawback: On its way through the stimulus, it �forgets� to scan items of

high eccentricity. As a consequence, these items have to be �collected� later, which

causes unnaturally long saccades at the end of the trial. This lack of memory con-

stitutes a fundamental di�erence to empirically observed strategies. Nevertheless,

even this simple model reaches a similarity value of already 17.36, indicating that

its strategy of always choosing the nearest item is already tremendously better

than the pure random strategy.

9.5.2 The �Travelling Salesman� Algorithm

The shortcoming of the Greedy heuristic motivates the implementation of a TSP

(�travelling salesman problem�, see Section 3.1.1) which minimizes the global

length of its scanpaths rather than just the length of the next jump. However,

unlike standard TSP, the paths of this algorithm do not return to the start dot,

because this would lead to inacceptable paths. Instead, the TSP Model chooses

that dot to be the last one which allows to generate the shortest scanpath that
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is possible. The results show that this simulation gets much closer to the actual

human strategies than the Greedy heuristic: The similarity value is now 20.87,

which is already fairly close to the optimum of 21.89. This �nding suggests that

not only the local optimization of scanpaths � as incorporated in the Greedy

algorithm � plays an important part in human scanpath selection, but also their

global optimization.

9.5.3 Using a Self-Organizing Map

When simulating cognitive processes we should not leave aside neural network

approaches, because they provide a biologically motivated explanation of their

performance. An appropriate neural paradigm is provided by Kohonen's self-

organizing maps (SOMs), which are capable of projecting a high-dimensional

data space onto a lower-dimensional one (see Kohonen, 1990; Ritter, Martinetz

& Schulten, 1992; Wieners, 1995). SOMs are networks of formal neurons, usually

a one-dimensional chain or a 2D layer. They learn in an unsupervised way to par-

tition a given feature or input space into disjoint classes or areas and to represent

their class by a �typical� feature vector.

The feature space is a region of a classical vector space, where each vector

(v1; v2; : : : ; vn)
T shows n di�erent features or input signals. These vectors are

presented to the network in random order, and a neuron ��res� if its stored

feature, i.e. position vector, is the best approximation to the active input position

in the network. Thus we create a map � the neural network � in which each

mapped point � each neuron � represents a region or interval of input patterns.

If we also ensure that the topology of the input space is preserved, i.e. that

neighboring feature vectors are mapped to neighboring neurons, or neighboring

neurons stand for similar features, we get a low-dimensional structure representing

a possibly very high-dimensional input. This is done as follows:

1. Choose a random input vector v from feature space.

2. Select a neuron j with jv � wjj � jv � wij; 8i 6= j, i.e. the neuron with the

best representation of v; this is called the winner.

3. Change all neuron weights wi towards the input vector v, with an adaptative

step size hij that is a decay's function of the network distance between

neuron i and the winner j. Here, � is an additional global adaptative step

size parameter.

w
new
i

= w
old
i

+ � � hij � (v � wi) ; � 2 [0; 1] (9.1)

The change of neuron weights gives us an appropriate representation vector

and the distribution of change around the winner produces the desired topology.

In our case, we are only interested in a mapping from discrete 2D points onto

a linear chain representing �xation order. Hence, the feature space is only the
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discrete set of dots in IR
2, one of them labeled as starting dot. Since the chain

must begin at the starting dot, the �rst neuron is de�ned to be the winner if the

starting dot is presented, irrespective of the actual feature-vector di�erence. In

order to make sure that all dots are represented by neurons after the learning

process, the network contains a number of additional nodes. Now, the probability

to skip a dot is very low, but a number of neurons will be mapped to the same

positions. This must be resolved by a post-processing step to extract the simulated

scanpath from the chain of neurons.

The paths generated by this model look quite natural at �rst sight, their

similarity to the human ones, however, is substantially lower (19.45) in comparison

to the results obtained by the plain TSP Model.

9.5.4 A Scanpath Model on the Basis of Receptive Fields

Another model uses neurons with a special type of receptive �elds which are as-

sumed to exist in the visual cortex. In a neural network, arti�cial or natural, the

term receptive �eld stands for the region of input space that a�ects a particular

neuron. More speci�cally, in�uence from this region is not necessarily homoge-

neous, but dependent, for example, on the distance of the input vector from the

center of the region. There may also be excitatory and inhibitory subregions, suit-

ably represented by positive values for the interaction between input and neuron,

or negative values respectively (see e.g. Hubel & Wiesel, 1962).

Figure 9.4: Illustration of the simulated receptive �elds. The planar input space

is represented by the dimensions x and y; positive values of input weight signify

excitatory connections, negative values signify inhibitory connections.

With regard to our model, the receptive �elds consist of an inhibitory axis

and two laterally located, excitatory areas of circular shape (see Figure 9.4). We

use 100000 receptive �elds that are randomly distributed over the input space.
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Their size varies randomly between 80% and 120% of the relevant input space,

i.e. the area of dots to be processed. There are eight possible orientations which

are randomly assigned to the receptive �elds. It is obvious from this description

that the receptive �elds are closely packed and overlap each other.

The activation of a neuron is highest if no dot is in the inhibitory region of

the neuron's receptive �eld and as many dots as possible are in the lateral ex-

citatory regions. The neuron with the highest activation (the �winner� neuron)

thus indicates the �clearest� linear gap between two laterally located accumula-

tions of dots. Therefore, the inhibitory axis of this neuron's receptive �eld can be

considered a perceptually plausible bisection of the stimulus.

This �rst bisection is taken as the �level one� bisection, separating the set of

dots into two subsets, which are separately processed in the following step. Each

subset serves as the input to a new group of neurons with receptive �elds that

cover the region of the respective subset of dots. Since the input space for these

neurons is smaller than it was in the �rst step, the receptive �elds are smaller

as well (see above). The resulting two �level two� bisections lead to four even

smaller sets of dots which are to be bisected in the third step. This recursive

procedure is repeated until none of the sections contains more than three dots,

since the number three is a plausible estimate of the number of dots that can be

perceived at the same time. Figure 9.5 (left) shows the bisections generated by

the model with respect to the example stimulus previously shown in Figures 9.1

and 9.3. The bisections are visualized by straight lines with numbers indicating

their level.

Figure 9.5: The model's hierarchical bisections of an example stimulus (left) and

the resulting scanpath (right)

As a result, we get a hierarchical tree structure of bisections with its leaves

corresponding to the elementary groups of dots. The derivation of this structure

is our attempt to simulate a subject's perceptual processing of the visual scene.
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Finally, the scanpath is derived by a TSP algorithm calculating the shortest

scanpath that begins at the starting dot. In the present context, however, the

algorithm does not minimize the geometrical distance to be covered, but a linear

combination of the geometrical distance and the tree distance between the dots.

The tree distance between two dots A and B is the number of steps that have to

be taken within the tree to get from the group (leaf) that contains dot A to the

one that contains dot B. If we choose the coe�cients of the linear combination

in such a way that the tree distance is substantially more relevant than the

geometrical distance, the model may generate the scanpath shown in Figure 9.5

(right): The scanpath strictly follows the hierarchical tree structure, which may

lead to geometrical deviations.

What are the results of the model's statistical evaluation? If the linear coe�-

cients of the TSP component and the neural component are chosen such that the

tree distance exerts a signi�cant e�ect, neither the appearance of the simulated

scanpaths nor their calculated similarity to the empirical paths (18.73) is con-

vincing. This approach, at least in this rather simple form, does not yield more

plausible scanpaths than does the TSP Model. The bisections introduced by the

model's neural component do not seem to correspond to human strategies.

9.5.5 The Clustering Model

The fact that the TSP Model has yielded the best result so far motivates the

investigation of a re�ned variant of it. This variant is based on the assumption

that human scanpaths are based on clusterwise processing (see Section 3.3) and

that linear structures of items are likely to be scanned successively (see Figure

9.1).

In a �rst step, this so-called Clustering Model divides the distribution of items

into clusters. The clustering algorithm maximizes the between-cluster distances

and minimizes the nearest-neighbor distances between items within the same

cluster with the help of a cost function. This iterative procedure corresponds to

the one used for the creation of color and form clusters in stimuli of comparative

visual search (see Section 2.3), except that the clusters generated by the Clus-

tering Model may also have linear shape. As a result, �ve to eight perceptually

plausible clusters are calculated.

The second step consists in a TSP algorithm for scanpath generation with

the restriction, however, that the �salesman� has to visit all dots of each cluster

before he can proceed to the next one. In fact, the Clustering Model selects paths

of slightly higher similarity to the empirical ones (21.12) than does the TSP

Model.

9.6 Conclusions

Figure 9.6 displays a summary of the similarities in ascending order. It shows that

the TSP-based models (TSP and Clustering) outperform the neural approaches
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Figure 9.6: Similarity between the paths generated by the di�erent models and

the empirical scanpaths

(Receptive Fields and Kohonen), and that even the �primitive� Greedy algorithm

is not far behind.

However, discretion is advisable in the interpretation of these data, since all of

them are based on only �ve di�erent stimuli. An appropriate statistical analysis

requires the conduction of a more comprehensive follow-up experiment. Serving

this purpose, we conducted Experiment H, which is described in the following

Chapter 10.
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Chapter 10

Experiment H: Scanning

Strategies for Color and Form

Distributions

10.1 Further Aspects of Scanpaths to be Inves-

tigated

What did we learn from the scanpath study of Chapter 9? One of the results is of

particular importance for the design of Experiment H: Rotations of the stimulus

plane were not found to signi�cantly a�ect the subjects' scanpaths. Therefore,

these rotations should be eliminated in Experiment H, making it possible to

present a larger number of di�erent stimuli to the subjects and thus to improve

the validity of the experiment.

This simpli�cation of experimental design enables us to increase the compara-

bility between the scanpath and the comparative search scenario: In Experiment

H, the items shown in the display have color and form attributes, just as the

geometrical items used in Experiments A to F had. We can expect these features

to in�uence the structure of chosen scanpaths, because subjects are likely to take

advantage of this additional structural information. As mentioned above, their

main concern during task completion is to remember which of the items they

have already visited. The introduction of color and form features might allow

them to use perceptual groups of identical attributes as �scanpath units� which

need less e�ort for memorization than single items. Thus, as in the experiments

of comparative search, the stimuli should be designed with varying tendencies

towards the creation of color or form clusters.

If we �nd that subjects make use of the color and/or form information, these

e�ects should be integrated into the models. Furthermore, if the attributes lead

to a reduction of scanpath variability, we can expect these models to yield better

results than in the �rst study described in Chapter 9. Since the paths generated

by the TSP and the Clustering Model have revealed preferable similarity to the

empirical data, we should concentrate on the adaptation of these two approaches
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to the scenario of Experiment H.

In order to provide comparability, the experimental set-up and procedure of

Experiment H should correspond to the �rst study as closely as possible. The

introduction of color and form attributes brought about an important question:

How could the starting item be indicated without changing the local color or form

context in the display? We decided to use a dynamic cue, namely a �ashing red

circle around the start item which appeared two seconds after stimulus onset and

vanished 1.3 seconds later. In order to increase its attractivity to the subjects'

attention, the circle always appeared simultaneously with a beeping sound. As a

matter of course, the adjustment of the time interval between stimulus onset and

indication of the starting item is absolutely arbitrary. We can assume that, on the

one hand, a shorter interval gives the subjects less time to inspect the stimulus

before starting task completion and hence causes the grouping e�ects of color

and form attributes to decrease. On the other hand, a longer interval is supposed

to increase the cognitive e�ort subjects spend on planning their scanpaths, thus

leading to �unnaturally� optimized paths. The choice of a two-second interval

seems to allow a coarse inspection of the presented items and their attributes

without providing any possibility of planning the scanpath step by step. Apart

from this inevitable alteration, the subjects' task was the same as in the �rst

scanpath study.

10.2 Method

10.2.1 Subjects

Twenty subjects from di�erent faculties of the University of Bielefeld took part

in Experiment H. All of them had normal or corrected-to-normal vision, none

of them was color-blind or had pupil anomalies. They were paid 7 DM for their

participation.

10.2.2 Apparatus

As in Experiment G (see Section 7), the subjects' binocular eye movements were

measured with the SMI EyeLink system. This time, however, only �xations were

registrated. The gaze position samples at 250 Hz were omitted due to their re-

dundancy for the reconstruction of scanpaths.

10.2.3 Stimuli

The stimuli consisted of 30 simple geometrical items of three di�erent colors

(blue, green, and yellow) and three di�erent forms (triangle, square, and circle)

on a black background (see Figure 10.1). The items were identical to those used

in Experiments A to F. Their spatial distribution was randomly generated with

a minimum distance between neighboring items in order to avoid item overlap
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Figure 10.1: Example stimulus of Experiment H with weak color and form clus-

tering. The starting item is indicated by a circle.

or contiguity. In each stimulus, the numbers of the occurrence of di�erent colors

and forms were balanced.

The distribution of colors and forms was not always homogeneously random,

but with a tendency to create color and/or form clusters. Three di�erent levels of

clustering were used, namely �no clustering� (cluster measure 1.0), �weak clus-

tering� (cluster measure 1.3), and �strong clustering� (cluster measure 1.7) (for

detailed information about the applied cluster measure see Section 2.3). The nine

possible combinations of di�erent levels of color and form clustering constituted

the categories of our stimuli. In the experiment, �ve stimuli of each category were

presented, which were the same for each subject, but the order of presentation of

all 45 stimuli was individually permutated.

Two seconds after stimulus onset, a red circle was shown around one of the

items, together with a short sound (50 ms). The circle disappeared 300 ms later.

This process was repeated twice with delays of 200 ms in between, signifying the

location of the starting item which was always the same for the same stimulus.

Figure 10.1 presents an example stimulus of the type �weak clustering� for both

dimensions.

10.2.4 Procedure

A written instruction informed the subjects about their task. They had to look

at the starting item as soon as it was indicated. Starting with this item, they had

to �xate every shown item once, which meant that they should neither miss any

of them nor visit any of them twice. After task completion they were to press a

mouse key. The experiment started with two practice trials followed by the eye
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tracker calibration procedure and the 45 recording trials. As in Experiment G,

each trial was preceded by a short calibration for drift correction using a single

target at the center of the screen.

10.3 Results

As in the �rst study, an assistant converted the recorded �xations into scanpaths

connecting the displayed items. In order to limit the in�uence of the assistant's

subjective interpretation of the resulting data, he was only shown the locations

of the items, but not their color or form attributes. Instead of items, he viewed

distributions of dots with a brighter dot indicating the starting item, just as in

the �rst study (see Figure 9.2). The superimposed visualization of the subject's

�xations and their temporal order allowed the assistant to mark the item-based

scanpath using a mouse pointer.

The proportion of acceptable paths turned out to be substantially higher

than in the �rst study (93.3% versus 57.9%). Obviously, the additional color and

form information helped the subjects not to �get lost� during task completion,

apparently because the individual features of the items facilitated a more reliable

memorization and recognition than their locations alone. The incorrect paths were

approximately equally distributed among the nine categories of stimuli, hence

they were excluded from the analysis for the bene�t of a better comparability of

di�erent paths.

For a start, we can take a look at the calculated scanpaths of maximal sim-

ilarity to the empirical ones with respect to varied classes of stimuli. The upper

row of Figure 10.2 presents these paths for (from the left to the right column) an

unclustered, a weakly color-clustered, a strongly color-clustered, a weakly form-

clustered, and a strongly form-clustered stimulus. We do not �nd any striking

evidence for the in�uence of color or form attributes on the subjects' action. Of

course, there are some longer sections of scanpaths exclusively visiting items of

the same color or form, but these items are always located closely together. A

close analysis of the data yields strong evidence that the location of items remains

the most important factor to determine the structure of scanpaths.

How can we �nd out whether there are any e�ects of the items' attributes as

well? First of all, we need a quantitative measure of color and form clustering

within scanpaths. An appropriate choice is the mean runlength with regard to

these dimensions. In the present context, a �run� means a sequence of items of

the same color or form respectively, being found within a scanpath. The runlength

is the number of items that constitute a run, ranging from one to ten in the

chosen scenario. If we want to calculate the mean runlength of multiple paths,

it is useful to employ a weighted mean, because items in longer runs would be

less meaningful otherwise. For instance, a scanpath consisting of 30 color runs (no

transitions between items of the same color, runlength one) a�ects an unweighted

mean ten times as strongly as a scanpath of three color runs (all colors scanned

successively, runlength ten). This problem is solved by weighting each run with
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Figure 10.2: Scanpaths generated by subjects (most similar paths), TSP, and

Color TSP. Circles indicate the starting items.

its runlength.

Now that we have a measure of the subjects' color and form clustering, how

can we test whether its results indeed re�ect the in�uence of item attributes or

rather the geometrical structure of the stimulus? Even a subject who completely

ignores colors and forms is supposed to generate longer runs with increasing

strength of spatial clustering in the stimulus. This is due to the fact that, in

this situation, items with the same features move closer together. Since subjects

exhibit a tendency towards generating scanpaths of minimized length (�TSP�),

neighboring items are likely to be scanned successively.

Fortunately, there is an absolutely �color and form blind� model which can

provide us with reference data, namely the TSP Model. As in the �rst study, this

model yields paths of good similarity to the empirical ones (see second row in

Figure 10.2). If the subjects produced signi�cantly longer color or form runs than

the �travelling salesman�, this would indicate grouping processes caused by the

respective item attributes.

Figure 10.3 shows the subjects' mean color and form runlengths respectively

for the di�erent levels of clustering in the stimuli. The color runlengths refer to

the three levels of color clustering, the form runlengths to those of form clus-

tering. The baseline values of the TSP Model include the color and form runs,
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Figure 10.3: Mean color and form runlength depending on the strength of clus-

tering with regard to the relevant dimension. TSP paths are not separated for

color and form, because the TSP Model does not account for these attributes.

because there is no signi�cant di�erence between them. In the �no clustering�

condition, color and form runlength do not show any signi�cant deviation from

the corresponding TSP value. The �weak clustering� condition, however, leads to

longer color runs, whereas the form runs remain on the TSP level. T-tests reveal

that the di�erence between color runlength (3.716) and form runlength (3.307)

closely misses signi�cance (t(38) = 1:92; p = 0:063) as does the di�erence be-

tween color runlength and TSP runlength (3.269) (t(48) = 2:01; p = 0:050). The
deviations seem to increase in the �strong clustering� condition, going along with

a slight e�ect on form runs as well. T-tests show that color runlength (6.466) is

signi�cantly higher than both form runlength (5.822) (t(38) = 3:22; p = 0:002)
and TSP runlength (5.589) (t(48) = 4:00; p < 0:001) now. The di�erence between
form runlength and TSP runlength, however, remains below signi�cance. These

results demonstrate that only the items' color in�uences the subjects' scanpath

strategies, whereas their form does not seem to play a part. The e�ect of color

increases with the strength of color clustering in the stimuli.

Additionally, the two-factorial design (color clustering, form clustering) of the

experiment makes it possible to test whether there is any interaction between

these factors. The two-dimensional analysis of variance reveals signi�cant main

e�ects of color clustering (F (2; 38) = 362:96; p < 0:001) and form clustering

(F (2; 38) = 1269:63; p < 0:001), as indicated by the diagram in Figure 10.3.

Their interaction, however, does not reach signi�cance. All in all, our �ndings

yield evidence for the e�ect of color clustering on color runlength to be the only

consequence of introducing item attributes.
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Figure 10.3 provokes an important question: What might be the reason for the

standard error to be substantially higher for color runs than for form runs? Are

there maybe two or more distinct groups of subjects using di�erent strategies of

color clustering, demanding separate analyses? We can investigate this with the

help of an appropriate visualization of the subjects' individual scanpath parame-

ters. Each subject can be characterized by a two-dimensional vector consisting of

his/her mean color and form runlengths. These vectors are divided by the average

TSP runlength for easy interpretation: A vector component of 1.0 indicates that

the subject's scanpaths are not likely to be guided by the corresponding item

dimension, while increasing values signify growing e�ects of the mentioned kind.
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Figure 10.4: Distribution of the 20 subjects with regard to the mean color and

form runlengths found in their scanpaths (relative to the TSP runlengths)

Figure 10.4 presents a cumulative diagram of the 20 subject vectors displayed

as �diamonds�. As can easily be seen, the distribution extends more widely on

the x-axis (color runlength) than on the y-axis (form runlength). Whereas the

form runlengths keep close to the value 1.0, the color runlengths range from 1.0

to 1.2 and reveal two additional �runaway� values at 1.43 and 1.86. Although

these two cases show striking di�erences to the majority of subjects as well as

to each other, it would not be justi�ed to exclude them from the analysis. The

two exceptions do not constitute a group of their own that should be studied

separately. They rather indicate a wide range of applied strategies which should

be incorporated into the computer models we are going to develop.
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10.4 Modelling Human Scanpaths

The results of the �rst study motivate the adaptation of both the TSP Model and

the Clustering Model to stimuli containing items with color and form attributes.

Since the Clustering Model can be viewed as a re�nement of the TSP Model, we

should start with the adjustment of the TSP Model.

How can we �teach� the TSP algorithm to react to the color attributes in the

same way as the average subject does? Basically, it should still calculate scanpaths

of minimal length, but this length may not be of purely geometrical nature, but

it must also account for the �color distance� between the colors of the items. An

appropriate idea is to �tell� the �travelling salesman� that the distance between

two items of di�erent colors is their geometrical distance multiplied by a constant

factor which we could call distance factor. The distance between items of the

same color, however, remains identical to their geometrical distance.

Understandably, the algorithm's behavior will strongly depend on the choice of

the distance factor. It is obvious that a distance factor of 1.0 leads to a standard

TSP algorithm which is not in�uenced by color information at all. A distance

factor of 1000, for instance, makes the algorithm use a minimum of transitions

between di�erent colors. At �rst, it visits all items of the starting item's color

A, then it inspects all items of color B, and �nally those of color C. Within the

color groups it behaves as a conventional �travelling salesman�, and the passages

between them are the shortest that can be found. By adjusting the distance factor

we are able to control the in�uence of colors and hence the average color runlength

produced by the TSP algorithm. Since our goal is to adapt the TSP Model to

the empirical data, i.e. to produce runlengths as generated by the subjects, the

distance factor needs to be adjusted for the best match.

What is the response of our algorithm to the new de�nition of distance? It

reveals a tendency towards the avoidance of transitions between items of di�er-

ent colors, because these transitions increase the overall length of the scanpath

above proportion. Figure 10.5 presents a diagram of color runlength as a function

of the distance factor ranging from 1.0 to 1.5. Higher distance factors cause an

implausibly strong clustering strategy of the TSP algorithm and are thus not

considered. The mean runlengths were measured separately for the 15 stimuli

belonging to each of the three levels of color clustering (no clustering, weak clus-

tering, or strong clustering respectively). Additionally, the empirical runlengths

for these levels are shown as lines of reference.

We �nd the TSP runlengths to increase approximately linearly with the dis-

tance factor with higher levels of clustering leading to steeper runlength slopes.

Surprisingly, we cannot select a certain value of the distance factor to yield the

�best� runlengths. For each of the clustering levels, the intersection between the

runlength of the TSP Model and the subjects' runlength occurs at a di�erent

distance factor. These are the values 1.11 for the �no clustering� condition, 1.23

for �weak clustering�, and 1.33 for �strong clustering�. Loosely speaking, the

subjects seem to apply higher distance factors with increasing color clustering in

the display.
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Figure 10.5: Color runlength generated by the TSP Model as a function of the

type of stimulus and the introduced distance factor between items of di�erent

colors

It is both important and interesting to investigate whether the adjustment

of color runlengths goes along with increased similarity of the TSP paths to the

empirical scanpaths. Figure 10.6 shows a diagram of similarity which corresponds

to Figure 10.5. Here, the lines of reference indicate the optimal similarity that is

possible for the respective level of clustering. With an increasing level of cluster-

ing, these values diminish and hence signify a higher variability of scanpaths. This

�nding contradicts one of our initial hypotheses: We assumed the occurence of

feature clusters to decrease the variability of scanpaths. However, the wide range

of individual strategies (compare Figure 10.4) leads to substantial di�erences be-

tween scanpaths, especially with respect to large color clusters.

With the TSP Model, we �nd distinct maxima of similarity to the empirical

scanpaths for the di�erent levels of clustering. The �no clustering� level has its

maximum at a distance factor of 1.09, for �weak clustering� it is 1.16, and �strong

clustering� leads to a maximum plateau between 1.24 and 1.36. These values

(except for the �strong clustering� condition) are slightly lower than those for

the runlength intersections shown in Figure 10.5, but their relationship is clearly
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Figure 10.6: Similarity between empirical and TSP paths as a function of the

type of stimulus and the distance factor

compatible with the runlength results.

Looking at the data obtained so far, we must consider if the introduction

of a distance factor as described above is an adequate method of modelling the

color e�ects. Since it needs di�erent distance factors depending on the type of

stimulus, we have to pose the question whether this approach is really plausible.

An alternative idea consists in using a distance factor for sequences of transitions

rather than for single transitions. Starting with the value 1.0, the distance factor

for a whole group of successive transitions within the same color decreases linearly

with the number of items in that group. This arrangement makes the choice of

longer color runs increasingly attractive to the TSP algorithm. However, the

results turn out to be in some way inverse to the previous ones: For increasing

levels of color clustering, the alternative method needs decreasing �rewards� for

long color runs in order to produce scanpaths of good similarity to the empirical

ones.

In order to solve this problem, we could try to combine the two approaches or

to use more complex functions to determine the relevant distances between items.

A basic rule of modelling is, however, to use as few freely adjustable parameters



10.4 Modelling Human Scanpaths 181

0

0.05

0.1

0.15

0.2

0.25

0.3

1 2 3 4 5 6 7 8 9 10

re
la
ti
v
e
fr
eq
u
en
cy

color runlength

subjects 3

3
3

3

3
3

3

3
3

3

3

TSP +

+
+

+ +
+

+

+

+
+

+

Color TSP 2

2 2
2

2 2

2

2

2

2

2

Figure 10.7: Histogram of color runlength in paths of subjects, TSP, and Color

TSP in strongly clustered stimuli

as possible, because the more of these parameters are integrated into a model, the

more likely it is to yield reasonable results even without being adequate. There-

fore, we should keep our desired model, which we could call Color TSP Model, as

simple as possible. An acceptable idea is to extend our initial approach to derive

this model. Figures 10.5 and 10.6 suggest a linear dependence of the required

distance factor on the strength of color clustering. We remember that the three

levels of color clustering correspond to the values 1.0, 1.3, and 1.7 respectively, of

the cluster measure. An optimization algorithm discovers the parameters of this

linear relationship to yield paths of best similarity to the subjects' scanpaths:

TSP distance factor = 0:264� color clustering + 0:799 (10.1)

Some example paths generated by the resulting Color TSP Model are shown

in the lower row of Figure 10.2. In fact, some subtle di�erences to the TSP paths

(middle row) can be found that indicate a better correspondence to the empirical

paths (upper row). This impression is re�ected in the similarity values: While the

TSP Model yields paths of the value 19.18, the Color TSP Model reaches 19.51.

At this point, it is interesting to take a look at the distribution of color run-

lengths. In the conditions of no or weak color clustering, the di�erences between

the subjects, the TSP Model, and the Color TSP Model are rather small. Figure

10.7 presents the respective histograms for the condition of strong color cluster-

ing. We �nd that the runlengths one to six are overemphasized by the TSP Model,

whereas the Color TSP Model gets closer to the empirical frequencies. The most

obvious di�erence between the two models can be found at runlength ten, which

is almost neglected by the TSP Model, but strongly represented in the paths of
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Figure 10.8: Similarity between the empirical scanpaths of Experiment H and

those yielded by the di�erent models

the subjects as well as in the Color TSP Model.

Finally, we should adapt the Clustering Model which was described in the con-

text of the �rst study. This can easily be achieved by implementing the stimulus-

dependent distance factor for both the �rst phase (calculation of clusters) and

the second phase (cluster-based TSP) of the Clustering Model. The functional

relationship between distance factor and color clustering in the stimulus which

has been applied in the Color TSP Model (Equation 10.1) leads to optimal results

for the Clustering Model as well. However, the Clustering Model does not yield

better similarity to the empirical paths (19.03) than the Color TSP Model or

even the TSP Model.

Figure 10.8 shows a survey of similarity values with regard to the empirical

data, based on the similarity of 840 generated paths of each model to the 840 mea-

sured empirical scanpaths. Additionally, an analysis of variance was calculated.

The Clustering Model turns out to yield a signi�cantly higher value (19.03) than

the Greedy heuristic (17.28) (F (1; 839) = 327:49; p < 0:001), whereas its dif-

ference to the TSP Model (19.18) does not reach signi�cance. The Color TSP

Model, though, reveals a signi�cantly higher value (19.51) than the TSP Model

(F (1; 839) = 28:09; p < 0:001). The optimal value (20.65), however, is still sig-

ni�cantly better than the Color TSP value (F (1; 839) = 197:96; p < 0:001). All

other contrasts are signi�cant as well.

As a conclusion, we can state that our Color TSP Model is a clear improvement

over the standard TSP Model. Moreover, it constitutes the best scanpath model

for items with color and form attributes that has resulted from our research;

nevertheless, it does not yield optimal paths. It uses just two parameters that
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have been chosen in accordance with empirical data. The same is true for the

Clustering Model, which does not yield better paths than the �color-blind� TSP

Model. The di�culties encountered in surpassing the plain TSP Model indicate

that the geometrical optimization of scanpaths is the main common principle of

human strategies, even if additional color and form information is provided.
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Chapter 11

The Three-Level Model of

Comparative Visual Search

11.1 Requirements for an Adequate Model

As shown in Chapter 8, the direct reproduction of low-level eye-movement pa-

rameters is insu�cient for a complete simulation of comparative visual search.

Although immediate replication of statistical properties of eye-movement vari-

ables can tell us to what extent these variables determine the subjects' gaze

trajectories, it does not allow us to test our interpretations of empirical �ndings.

It would clearly be more comprehensible to use a model that incorporates only

these interpretations instead of the raw empirical data. This model should gen-

erate �xations and saccades on the basis of assumed mental processes and their

parameters (strategies, visual acuity, attention, working memory etc.) derived

from the results of Experiments A to H. If the model is able to produce scan-

paths that are similar to the empirical ones, it supports our interpretations and

hypotheses, otherwise these have to be revised.

Which of the empirical results obtained in Experiments A to F should be

replicated by our model? The desirable set of simulated e�ects includes all �ndings

that have contributed to the main conclusions about perceptive and cognitive

processes during comparative visual search. The following list shows all e�ects to

be modelled as well as the corresponding interpretations to be tested:

Reaction time (RT): The empirical distribution of RT, in particular the char-

acteristic plateau between approximately three and ten seconds, should

be reproduced. Supported by the results of the Random-Walk Model, this

plateau can be considered an indicator for structured search strategies. More-

over, the relative changes of mean RT between experiments are important

to be replicated as well. Although in many cases mean RT values are not sig-

ni�cant (e.g. see Chapters 4 and 6), they can indicate di�erences in search

e�ciency between experiments as well as between color and form search.

Except for Experiment D, RT should be shorter for color search than for

form search.
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Fixation duration (FD): FD should depend linearly on the local item density

at the �xation point, while it should not show any dependence on the local

color or form entropy. These important �ndings have been viewed as evi-

dence for two distinct visual subsystems (localization versus identi�cation,

see Chapter 3), contributing to the search process in di�erent ways. FD

should not vary between experiments or between color and form search, be-

cause no such e�ects have been found. Obviously, a constant mean duration

of about 200 ms leads to optimal search e�ciency, regardless of the variant

of comparative visual search. The situation is di�erent for three-dimensional

stimuli (Experiment G). However, since the current model is restricted to

two dimensions, we can consider mean FD a fundamental, invariant param-

eter of comparative visual search. Finally, FD should be considerably longer

in the �nal phase of detection and veri�cation than in the phase of search

and comparison.

Saccade length (SL): Increasing local item density at the saccade's starting

point should decrease SL, because higher local concentration of information

requires shorter saccades for its inspection. If subjects are informed about

the relevant dimension for target detection (Experiments B to D), SL is

slightly longer during color search than during form search. Speci�c color

search enables the subjects to perceive and process the information of more

items within a single �xation. Furthermore, SL should be longer in the sim-

ulation of Experiment E than of Experiments A to D because the mirror

symmetry between the hemi�elds goes along with partially longer distances

between corresponding items. These longer distances, in turn, cause impre-

cise saccades and long within-hemi�eld corrective saccades which increase

SL. Additionally, the distribution of SL with regard to stimuli of trans-

lational symmetry (cf. Figure 3.5) and mirror symmetry (cf. Figure 5.6)

should be reproduced. During the veri�cation phase, SL should be shorter

than during the search phase.

Number of successive �xations (FW): FW should decrease with increasing

local item density at the �rst �xation point after switching between the

hemi�elds. This e�ect is complementary to the �ndings concerning FD: In

regions of higher item density, more information can be perceived within

single �xations, hence �xations become longer. Assuming a constant capac-

ity of working memory, fewer �xations are necessary to ��ll up� working

memory, i.e. FW declines. During speci�c search (Experiments B to D), FW

is signi�cantly higher for form search than for color search. Conceivably, less

information per �xation can be processed during form search, demanding

more �xations to reach optimal memory usage. Since FD remains constant,

the processing of form information seems to take longer than the processing

of color information, which is compatible with the results obtained in the

pre-studies (see Chapter 2). Finally, the FW values should be lower in the

veri�cation phase than in the search phase.
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Area coverage per �xation (AC): Corresponding to SL, AC should decrease

with increasing local item density and local color and form entropy. These

e�ects are stronger for AC than for SL, because SL is only an indirect

measure of search e�ciency. Saccades of the same length can cover small or

large areas, depending on the angles between them. AC, however, directly

corresponds to the size of the area being processed within a �xation. In

Experiments B to D, where subjects know the relevant target dimension, AC

should be smaller for form search than for color search, which is compatible

with SL as well. Moreover, the �double stairway� shape of AC with regard

to cluster sizes one to six in Experiment F should be replicated. This �nding

was interpreted as evidence for three items being the optimal cluster size

applied in comparative visual search.

Speed of processing (SP): In Experiment A, SP should not present a di�er-

ence between color and form search, since subjects are not informed about

the type of mismatch. The SP value for form search does not change from

Experiment A to Experiments B and C, while SP considerably increases

with respect to color search. This �nding suggests that color processing is

faster than form processing and that form processing may imply color pro-

cessing to some extent (see Chapter 4). Moreover, SP should be lower in

Experiments D and E in comparison to the corresponding Experiments B

and A respectively. The increased task complexity in Experiments D and E

forces the subjects to memorize fewer items at a time, resulting in reduced

SP. Compatible with the requirements for AC, SP should present a �double

stairway� appearance in Experiment F.

Probability of missing the target (PM): PM should decrease with increas-

ing local item density at the target items. This e�ect, which is observed in

all experiments, can be attributed to the increased memory load in regions

of high item density. The fewer items are memorized at the same time, the

easier it is for subjects to detect a possible target. In Experiment D, color

targets induce higher PM than do form targets, in all other experiments

the situation is reversed. Generally, the feasibility of holistic comparison of

local information leads to high search e�ciency and low PM for speci�c

color search (Experiments B and C). Experiment D allows speci�c search

as well, however, the detection of matches is substantially more di�cult

than the detection of mismatches. Under these conditions, subjects seem to

overestimate their own capacities, because they still proceed faster during

color search which causes increased PM.

To some extent, this list does not only include the main aspects of results we

expect our model to reproduce, but it also contains information about important

perceptive and cognitive processes to be modelled. In the following section, we

will combine the list with further considerations in order to derive an appropriate

structure for our improved model.
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11.2 The New Concept of Modelling

First of all, a fundamental decision with regard to our model has to be made.

In Section 8.1 we discussed the distinction between neural and phenomenological

models. Which of these types is favorable with respect to our improved model?

In order to test the assumed interactions of di�erent mental processes during

comparative visual search, a phenomenological model seems to be su�cient. If we

want to test the physiological, i.e. neural, plausibility of our assumptions, however,

a neural model is inevitable. Since only a few speculations about processes on

the neural level have been made in this work, it is reasonable to start with a

phenomenological model. The investigation and modelling of neural processes

will be achieved in future research.

As argued in Chapter 8, di�erent levels of processing during comparative visual

search have to be distinguished. In addition to the rather schematic processes of

perception, memorization, comparison etc., a higher cognitive level must be taken

into account which is responsible for global planning processes. This means that

an adequate model should incorporate a vertical organization of mental processes,

i.e. a hierarchical scheme of functional modules, corresponding to the human

�brain architecture� as far as we know it (see Velichkovsky, 1990).

The main shortcoming of the Random-Walk Model is the exclusion of high

levels, leading to unstructured search behavior. In contrast, the subjects use a

self-avoiding global scanpath which helps them optimize their search e�ciency.

Another inadequacy of the Random-Walk Model is its restriction to the cen-

ters of items as possible �xation points. Only a small proportion of empirical

�xations is located close to the center of an item. Nevertheless, is the assump-

tion of item-to-item scanpaths really implausible? The discussion of strategies

applied in Experiment A (Chapter 3) suggests a possible dissociation between

attentional scanpaths and gaze trajectories. As mentioned in the introduction

(Section 1.2) and tested in one of our pre-studies (Chapter 2), shifts of attention

can be performed without moving the eyes. This e�ect was studied in many dif-

ferent experiments (Posner, 1980; Wright & Ward, 1994), indicating that, during

a �xation, attention can be moved with a certain velocity. One of the authors

(Tsal, 1983) proposed a constant velocity of one degree per eight milliseconds,

however, his experiments were based on rather coarse measurement and were not

perfectly consistent, so this result should be viewed with discretion.

Consequently, it is reasonable to assume that attention is shifted between

single items. The eye movements, however, do not exactly correspond to these

attentional movements. In general, the fovea, i.e. the measured gaze position,

follows the focus of attention in order to provide su�cient visual acuity for item

recognition. If two or more items are located close to each other, it is not necessary

to successively �xate each of them. Rather, a single �xation near the center of the

item group enables subjects to perceive all relevant information. While �xating

this point, subjects shift their attention between all items in the group in order to

memorize them or to compare them to the memorized ones. This method has the

advantages of avoiding a time-consuming execution of multiple, short saccades
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Figure 11.1: Scheme of the Three-Level Model. The example stimulus contains

only eight items per hemi�eld for the bene�t of a clearly arranged illustration.

and providing a stable perceived image during the processing of information.

Hence, in most cases single �xations do not correspond to single items, although

the attentional scanpath visits all items in a serial, regular fashion.

These considerations motivate a further re�nement of the aforementioned ver-

tical organization of mental processes involved in comparative visual search. The

proposed lower level should be split up into two distinct levels, one containing the

attentional processes including the use of working memory, the other consisting

of those processes that realize the eye movements.

Figure 11.1 presents the structure of our resulting Three-Level Model. On

the upper level, the global strategy is planned and realized. Presumably, one of

the hemi�elds is used as a reference with respect to this purpose; hence, the

global scanpath is plotted only in the left hemi�eld. The intermediate level is

concerned with shifts of attention and processes of memorization and comparison.

While the global course of processing is determined by the upper level, the local

attentional shifts within and between the hemi�elds, needed for memorization and

comparison of item features, are conducted on this intermediate level. Finally, the

lower level is responsible for executing eye movements. The gaze position always

follows the attentional focus in order to provide appropriate visual acuity for the

processing of information. Fixation points are chosen in such a way that the next

group of items to be inspected can be memorized or compared employing as few

�xations as possible.
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It is di�cult, however, to model the �nal veri�cation phase in the context of

these levels of processing. Since there is only little empirical information available,

it does not seem reasonable to speculate about the processes underlying this

veri�cation phase in the context of the Three-Level Model. Thus, the simulation of

this phase is adopted from the Random-Walk Model. Since this model is an exact

statistical reproduction of empirical low-level data distributions (saccade length,

�xation duration etc., see Chapter 8), the parameters during the veri�cation phase

are disregarded in the analysis of scanpaths provided below. Further investigations

on the relation between the search phase and the veri�cation phase will have to

be carried out in order to re�ne the Three-Level Model in this respect.

The integration of the three individual levels into a single model is described

in the following sections.

11.2.1 The Upper Level: Global Strategy

The model's global scanning strategy is based on the Color TSP Model developed

in Chapter 10. Thus, the value of color clustering for the left hemi�eld � serving

as a reference � is calculated in order to determine the appropriate distance factor

for the Color TSP with the help of Equation (10.1).

Which item should be chosen as the starting item? Since most subjects tend

to start their search at the top of the display, it seems adequate to consider

the �ve items with the uppermost positions in the left hemi�eld as relevant.

Another cognitively plausible requirement for the starting item is to allow the

construction of a short scanpath, because the results of Experiment H suggest

that minimal length is the most important criterion for the choice of empirical

scanpaths. Consequently, the Three-Level Model calculates a Color TSP path

within the left hemi�eld for each of the �ve relevant starting items. The path of

minimal length is chosen as the model's global scanning strategy for comparative

search.

As a matter of course, the assumption of a complete item-by-item scanpath

to be developed immediately after stimulus onset is implausible. In contrast,

subjects are likely to start searching with a very coarse strategy in mind and

to re�ne it �on-line� to a locally item-based scanpath. The resulting scanpath,

however, might be the same in both cases. We do not understand the dynamic

development of global scanpaths so far, but we know some features of the static

results. This knowledge constitutes the basis for the Color TSP Model and we

assume it to be transferable to comparative search. Hence, it is legitimate to

anticipate the generation of global scanpaths in the Three-Level Model.

11.2.2 The Intermediate Level: Shifts of Attention

Attention is modelled in such a way that the sequence of items speci�ed by the

global strategy is strictly followed. Starting in a randomly chosen hemi�eld, at-

tention is shifted between the hemi�elds during search in order to reproduce
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processes of memorization and comparison (see below). When the focus of at-

tention reaches the last item in this sequence without the target items being

detected, a new global scanpath is calculated (cf. Section 11.2.1) with the item

in focus serving as the starting item. The search process, as described in this

section, continues, guided by the new scanpath. This procedure is repeated until

the detection of the target.

First, the model memorizes a number of items. This number is limited by the

capacity of working memory. As suggested by the results of Experiment F, the

maximum number of objects to be memorized at a time is set to three for most

experiments (see below). This maximum number can only be reached as long

as the group of simultaneously memorized items can be perceived at the same

time. The empirical data show that subjects generally memorize spatially small

groups of items at a time, conceivably in order to execute holistic comparisons (see

Chapter 5). Thus, the Three-Level Model assumes a speci�c radius of attention.

All items to be memorized must �t into a circle of this radius, which is the same

for both unspeci�c search and form search. According to an estimation based on

the empirical area coverage per �xation measured in Experiment A, the radius

was set to 30 pixels. The radius for speci�c color search was de�ned as 37 pixels,

as suggested by the di�erences in e�ciency measures between color and form

search in Experiment B.

In the case of item clusters (Experiment F), another constraint is imposed on

the model's maximum number of items to be memorized: It is not possible to

memorize items of di�erent clusters at the same time. This restriction leads to a

clusterwise scanning strategy.

After memorization, the model ideally shifts its attention to the other hemi-

�eld, compares the stored information with the corresponding items in the same

order, and starts memorizing a new group of items unless the target has been

detected (see below). In most cases, however, more than one saccade between the

hemi�elds is necessary to accomplish the comparison of two corresponding sets of

items. The results of Experiment F indicate that the number of required between-

hemi�eld saccades strongly depends on the number of memorized features. The

number of memorized features is the number of di�erent colors plus the number

of di�erent forms contained in the set of items that are currently stored in mem-

ory. Memorizing three green triangles at the same time, for instance, means two

memorized features, while memorizing a green triangle and a yellow square at

the same time corresponds to four memorized features. Moreover, the asymmetry

between color and form processing indicated by Experiments B and C suggests

form information to be less relevant for color search than is color information

for form search. Simplifying this asymmetry, form features are not added to the

number of memorized features in the case of speci�c color search, whereas color

features are added in any case. Approximating the data obtained in Experiment

F, the number of between-hemi�eld saccades is determined by the following linear

equation:

number of saccades = 0:225 + 0:3875 � number of memorized features (11.1)
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The resulting values are rounded by a weighted random function. A result of

1.775, for example, is rounded to 2 with a probability of 77.5% and rounded

to 1 with a probability of 22.5%. This number of between-hemi�eld saccades is

integrated into the process of comparison at random points in time.

In accordance with Tsal's (1983) results, the speed of attentional shifts was

chosen: It is constant at one degree of visual angle per eight milliseconds. The

pre-tests (see Sections 2.2.2 and 2.2.3) indicated that the processing of color

may be accomplished faster than the processing of form. Consequently, we can

assume attention to be focused on an item for a shorter span during speci�c color

search than during form search or unspeci�c search. Since it is impossible to

derive precise quantitative information about this span from the empirical data,

we adjusted it in such a way that the resulting �xation duration is similar to the

empirical one. According to this adjustment, the processing of an item's color

requires 70 ms, while the processing of an item's form � or its form and color at

the same time � requires 85 ms.

In order to model the e�ects of the factors experiment and type of target, we

introduced two parameters that characterize the in�uence of these factors:

Memory load: This is a measure of the di�culty to compare local groups of

items between the hemi�elds. The memory load is set to 1 for Experiments

A, B, C, and F, because all of them allow for holistic comparison of local

information, i.e. no mental transformation is required. For Experiments D

and E, the information di�ers between the hemi�elds in these situations.

Hence, we assumed the memory load to be twice as high as in the other

experiments and accordingly set the memory load to 2.

Target detectability: Basically, the detectability of a mismatch depends on its

dimension. According to the empirical probability of missing the target,

the target detectability is set to 3.3 for color mismatches and to 2.7 for

form mismatches. Mirror symmetry between the hemi�elds (Experiment E)

impaires the target detectability, as indicated by the empirical data. As

a consequence, the values of target detectability are reduced by 30% in

Experiment E (2.31 and 1.89 respectively). Match detectability, however,

does not seem to depend on the relevant dimension. Target detectability in

Experiment D is thus set to 1.89 both for color and form matches.

What e�ects do these parameters have on the modelled shifts of attention?

Target detectability exerts only one e�ect: It determines the probability of target

detection. Additionally, this probability depends on the number of memorized

features (see above) at the moment of comparing the target items to each other,

i.e. scanning one of the target items while the other is kept in memory. As in-

dicated by the results of Experiment F, the number of memorized features is

closely related to the usage of working memory. Of course, the more features are

memorized at the same time, the lower should be the probability of target detec-

tion. In the model, the probability of target detection is simply de�ned as target

detectability divided by the number of memorized objects.
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The other experiment-dependent parameter, memory load, determines the

amount of information to be processed at a time. The maximum number of items

to be memorized at a time is divided by the memory load which means that,

in the case of memory load 2, this maximum number varies randomly between

1 and 2. Furthermore, the radius of attention is divided by the memory load.

These two de�nitions make the model memorize smaller bits of information in

situations of higher memory load, re�ecting our interpretation of the respective

empirical �ndings discussed in Chapter 5. In turn, the span of attention spent

on a single item is multiplied by the memory load, because we assume processes

of comparison to require more time if the memory load increases. Additionally,

this adjustment is important for the invariance of �xation duration to the factors

experiment and type of target which is one of the main empirical �landmarks� in

comparative visual search.

11.2.3 The Lower Level: Eye Movements

As explained above, the eye movements are assumed to follow the shifts of atten-

tion in order to provide su�cient visual acuity in the currently attended region of

the display. In the simulation, the maximum distance between the gaze position

and an item to be processed is given by the radius of attention (see above). If the

model directs its attention to an item outside this radius, a saccade is initiated.

The target of a saccade is the next item to be inspected, if the next but

one item cannot be processed within the same �xation due to a long distance

separating the two items; this distance might be estimated by extrafoveal vision.

Otherwise, the center point between these two items is chosen as the target of the

saccade. Such a behavior is qualitatively indicated by the empirical eye-movement

patterns; it is a reasonable way to increase search e�ciency.

Since the situation of mirror symmetry in Experiment E leads to longer within-

hemi�eld saccades than does translational symmetry in Experiment A, the prob-

ability of a saccade to be imprecise is assumed to increase with the distance to be

covered by the saccade. Accordingly, a statistical standard deviation between the

intended target of the saccade and the actual end point of the saccade (�saccadic

noise�) is de�ned in such a way that an increasing distance to be covered causes

higher saccadic noise. The following simple equation was found to yield values of

saccadic noise that resemble the empirical data:

saccadic noise =
distance3

1:2 � 10
6 pixels2

(11.2)

Interestingly, neither the assumption of a linear nor a quadratic dependence of

the saccadic noise on the distance is able to explain the empirically hypothesized

e�ects of saccadic noise.

Equation (11.2) is individually applied to both the horizontal and the vertical

distance to be covered by a saccade. Subsequently, a random value is calculated on

the basis of a Gaussian random distribution with the obtained value of saccadic

noise taken as its standard deviation. This random value is subtracted from the
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ideal saccade length, i.e. the length that would move the gaze position exactly

onto the intended item. This implementation of imprecise saccades is, of course,

not plausibe in that the lengths of saccades tend to be too short and can never

be too long. Nevertheless, this model of saccadic noise re�ects to some extent the

properties of empirical saccades: They are likely to be shorter than the distances

between corresponding items.

In the situation of item clusters (Experiment F), saccades can be assumed to

be more precise than in the other experiments due to the additional structural

elements in the display. Accordingly, in Experiment F the saccadic noise is set to

50% of its value de�ned by Equation (11.2).

If a saccade does not enter the radius of attention of the intended item or any

of the items to be compared, another, corrective saccade is executed aiming at

the same target. This procedure may be repeated until a valid gaze position is

reached. Between the saccades of this kind, orientational �xations are executed

which have a random duration between 90 and 110 ms.

The saccadic noise allows us to easily integrate another empirical observation

into the Three-Level Model, namely the fact that sometimes subjects seem to

compare the memorized items in reverse order for the bene�t of a shorter saccade

between the hemi�elds. In the model, the order of items to be compared is reversed

if the �rst �xation point in the relevant hemi�eld � due to saccadic noise � is closer

to the last item than to the �rst item in the intended sequence of comparisons.

Thus, we model the inversion of the steps of comparison as a result of saccadic

noise. The empirical data do not tell us whether this view is correct.

The duration of saccades is modelled as a linear function of the respective

saccade length (see Equation (8.1) in Chapter 8).

Finally, the empirical error in the spatial eye-movement measurement is sim-

ulated as well. The eye-movement data are randomly shifted in accordance with

the average error of OMNITRACK1 (see Section 2.1.1). This feature of the Three-

Level Model improves the comparability between empirical and simulated gaze

trajectories.

11.3 Arti�cial Versus Empirical Scanpaths

Does the Three-Level Model meet the requirements listed in Section 11.1? In

order to answer this question, the model was �presented� with 10000 randomly

generated stimuli for each of the relevant Experiments A to F. This amount of sim-

ulation data is about ten times larger than the empirical database. Accordingly,

the standard error in the measurement of dependent variables is considerably

smaller, making it possible to rate the model's performance without calculating

analyses of variance. The eye-movement data-�les generated by the computer

implementation of the model have exactly the same format as those yielded by

the OMNITRACK1 system. Hence, the same programs for data extraction as in

Experiments A to F could be used.

First of all, we can take a look at some example scanpaths of the Three-
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Level Model. Figure 11.2 presents such an example with regard to Experiment A.

As can clearly be seen, this scanpath resembles the empirical ones more closely

than do the paths generated by the Random-Walk Model: Both a structured

search strategy (top-down scanning) and grouping processes (e.g. within �xations

number 14 to 16) can be observed. Neither of these important features could be

achieved with the Random-Walk Model.

Figure 11.2: Example scanpath generated by the Three-Level Model in the situa-

tion of Experiment A. Fixations are numbered; circle size corresponds to �xation

duration.

A di�erent stimulus geometry is provided by Experiment E, namely mirror

symmetry between the hemi�elds. Figure 11.3 shows a respective example scan-

path generated by the Three-Level Model. Again, the display is searched in a top-

down fashion. As a matter of fact, the lengths of saccades between hemi�elds are

adapted to the varying distances between corresponding items. Fixation number

12 demonstrates the occurrence of an imprecise saccade caused by a long distance

to be covered. Here, a corrective saccade has to be executed in order to focus on

the intended item. The lower part of this stimulus is not covered by the plotted

gaze trajectory, because the target is already detected after scanning about half

of the items.

Figure 11.4 illustrates an example scanpath on clustered items, i.e. in the

situation of Experiment F. The chosen stimulus contains six clusters of size four

and � since 30 cannot be divided by four � two clusters of size three. The model

starts scanning at the top of the display and wanders down cluster by cluster.

This strict clusterwise scanning, however, is not a result of modelled perceptive

in�uences of the connecting edges. The strategy is rather �forced� by making

all clusters �invisible� to the model, except for the currently processed cluster.
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Figure 11.3: Example scanpath generated by the Three-Level Model in the situ-

ation of Experiment E (mirror symmetry)

Nevertheless, the generated scanpaths are undoubtedly similar to the empirical

ones.

More important than this qualitative, super�cial inspection of scanpaths

yielded by the Three-Level Model, an extensive quantitative analysis is neces-

sary in order to rate the model's performance. In the following paragraphs, the

results of this analysis are shown in comparison to the corresponding empirical

data. It should be noted that the mean values of the same variable may slightly

vary between di�erent statistics due to di�erent designs of the respective analyses.

11.3.1 Reaction Time (RT)

Figure 11.5 shows the distribution of RT in Experiment A for both the subjects

and the Three-Level Model. As can clearly be seen, the plateau in the empirical

data between three and ten seconds is qualitatively replicated by the model, indi-

cating a structured search strategy that may be similiar to the subjects' strategies.

The decrease in the relative frequency after this plateau, however, seems to present

a steeper slope for the model data than for the empirical data. This �nding sug-

gests that the model does not su�ciently reproduce the considerable variability

of scanpaths between subjects, especially with regard to search e�ciency. Conse-

quently, the �noise� in the empirical data is higher, leading to slighter slopes in

the respective histograms.

As illustrated in Figure 11.6, the RT values for Experiments A to E are almost

identical for the subjects and the model. The only di�erence might be that the
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Figure 11.4: Example scanpath generated by the Three-Level Model in the situ-

ation of Experiment F (clustered items)
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Figure 11.5: Histograms of reaction time in Experiment A

model does not yield shorter RT for form search in Experiment B than in Exper-

iment A. In other words, the model does not take advantage of being informed

about the relevant dimension. Since the corresponding di�erence in the empir-

ical data does not reach signi�cance, however, it is not clear whether such an
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e�ect should be modelled. All in all, the RT results are in line with the speci�ed

requirements.

Figure 11.6: Reaction time in Experiments A to E

11.3.2 Fixation Duration (FD)

The diagram in Figure 11.7 shows FD as a function of local item density at the

�xation point in Experiment A. In fact, the simulated �xation duration increases

approximately linearly with item density. While this increase corresponds to the

empirical data for density values above 1.7, it is slightly steeper for lower density.

It might be possible that there is a constant �basis duration� of empirical �xations

in addition to the duration caused by information processing. This would explain

why the duration of empirical �xations does not diminish as strongly at low local

information content as could be expected regarding the results of the Three-Level

Model.

Figure 11.8 presents FD in dependence on color and form entropy at the

�xation point in Experiment A. Obviously, simulated FD is neither signi�cantly

in�uenced by color entropy nor by form entropy; the same is true for empirical FD.

Hence, the structure of the Three-Level Model is compatible with the fundamental

parameters of information processing indicated by empirical FD.

As shown in Figure 11.9, FD does neither vary substantially between experi-

ments, nor between color and form search. This result is not surprising, since the

constancy of FD � as a �landmark� in comparative visual search � was taken as

a basis for the adjustment of some of the model's parameters.
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Figure 11.7: Fixation duration in Experiment A as a function of local item density
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form entropy respectively

11.3.3 Saccade Length (SL)

Figure 11.10 presents SL as a function of the local item density at the saccade's

starting point. The model data exhibit a close similarity to the empirical ones,

however, at very low density (< 0:5), the Three-Level Model generates longer

saccades than do the subjects. To some extent, this �nding corresponds to the
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Figure 11.9: Fixation duration in Experiments A to E

results of FD (see Figure 11.7): In both cases, the model replicates the empirical

data rather closely, but at low item density it seems to �exaggerate� the empirical

e�ects. With regard to SL, this suggests that there could be inhibitory cognitive

mechanisms that con�ne the within-hemi�eld saccades to a certain maximum

length even if only little information is provided by the currently inspected region

of the stimulus. Maybe such a con�nement is necessary in order to preserve a

structured scanning strategy.

Between the experiments, SL presents a pattern of results that resembles the

empirical data (see Figure 11.11): If the relevant dimension is known (Experi-

ments B to D), SL is longer for color search than for form search. Furthermore,

SL is longer in Experiment E than in Experiment A and the shortest SL is found

in Experiment D. However, loosely speaking, the model seems to overemphasize

some of these e�ects: The di�erences between color and form search in Exper-

iments B and C as well as the di�erence between Experiments A to C in com-

parison to Experiment D are greater than the corresponding empirical ones. This

�nding indicates the cognitive processes that determine SL to be in�uenced less

substantially by the experimental setting than are the simulated processes in the

Three-Level Model.

When analyzing saccade length, we should not disregard the between-hemi�eld

saccades. There are two di�erent experimental situations leading to distinct distri-

butions of between-hemi�eld saccade length: Translational symmetry (e.g. Exper-

iment A) and mirror symmetry (Experiment E). Figure 11.12 shows the respective

histograms for both the subjects and the simulation. Concerning Experiment A,

the model replicates the distribution of empirical saccade length nearly perfectly;

only the frequency �peak� at 350 pixels seems to be higher with the model than
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Figure 11.10: Saccade length in Experiment A as a function of local item density

Figure 11.11: Saccade length in Experiments A to E

with the subjects. This e�ect can be considered analogous to the one obtained in

the analysis of RT (Figure 11.5): The �noise� in the empirical data is higher than

in the model data, hence the empirical histograms are a�ected by stronger blur.

As to Experiment E, the almost homogeneous distribution of empirical saccade

length is closely reproduced by the Three-Level Model, although there seems to be

a higher proportion of short saccades (< 300 pixels) in the simulation data than

in the subjects' data. In particular, the model reproduces the frequency decay
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Figure 11.12: Histograms of between-hemi�eld saccade length in Experiment A

and in Experiment E respectively

for long saccades rather precisely. This can be taken as evidence for both the

occurrence of imprecise saccades and the subjects' tendency to execute saccades

between the innermost points of corresponding stimulus regions to be responsible

for the lack of saccades longer than 580 pixels in Experiment E. Altogether, the

Three-Level Model seems to simulate the basic eye-movement variable saccade

length in an adequate way.

11.3.4 Number of Successive Fixations within the Same

Hemi�eld (FW)

Figure 11.13 shows FW for di�erent item densities at the �rst �xation point in

Experiment A. Generally, the e�ect of item density on the model's FW is slightly

weaker than on the empirical FW, but the situation is reversed for low density

values: Here, the e�ect on the model data is stronger. As observed in the analyses

of FD and SL, the empirical e�ect of low item density is weaker than it could be

expected on the basis of the Three-Level Model. For most values of item density,

simulated FW is smaller than empirical FW.

This �nding is re�ected in Figure 11.14 which presents FW as a function of

the factors experiment and type of target. Although the range of simulated FW

values corresponds roughly to empirical FW, some shortcomings of the model can

be found: In Experiment B, FW does not meet the requirement of being lower

for color search than for form search. Moreover, in contrast to the empirical data,

simulated FW is higher in Experiment E than in Experiment D. All in all, the

results indicate that some basic factors that in�uence FW have been understood
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Figure 11.13: Number of successive �xations in Experiment A as a function of

local item density

� as suggested by the dependence of modelled FW on item density �, while the

role of other possible factors has to be reviewed.

Figure 11.14: Number of successive �xations in Experiments A to E
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11.3.5 Area Coverage per Fixation (AC)

The analysis of AC is of particular importance, because empirical AC is a�ected

both by local item density and by local color and form entropy. Figure 11.15

presents AC as a function of local item density at the �xation point. The den-

sity e�ect seems to be stronger for the data of the Three-Level Model than for

the empirical data. Again, low density values exert a stronger in�uence on the

simulated than on the empirical data.
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Figure 11.15: Area coverage in Experiment A as a function of local item density

As to color and form entropy, the e�ects on AC may be somewhat weaker

for the model than for the subjects. Figure 11.16 shows that, in contrast to low

item density, neither low color entropy nor low form entropy exerts particularly

strong e�ects on simulated AC. Hence, we can not assume �inhibitory� cognitive

processes to occur in low entropy regions as we do with regard to low density

regions. Although the entropy e�ects in modelled search are possibly weaker than

in empirical search, the factor entropy seems to be incorporated in the Three-Level

Model in a plausible way, as the results of FD and AC indicate.

The AC values for di�erent experiments and types of target look similar for

the subjects and the model, as shown in Figure 11.17. However, there is one

important discrepancy: The AC di�erences between color and form search in

Experiments B and C, i.e. the feature-speci�c e�ects of bottom-up and top-down

control of attention (see Chapter 4) do not match. Especially the empirical e�ect

of top-down control (Experiment C) seems to be inverted by the Three-Level

Model: In the simulation data, form search rather than color search bene�ts from

top-down control, as indicated by the empirical data. Hence, the role of AC in

the investigation of control of attention has to be examined more closely.
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Figure 11.16: Area coverage in Experiment A as a function of local color and form

entropy respectively

Figure 11.17: Area coverage in Experiments A to E

Do we �nd the �double stairway� pattern in the model's AC results for Experi-

ment F? Figure 11.18 allows us to compare the respective empirical and simulated

data. In fact, the Three-Level Model replicates the expected pattern rather closely.

The only di�erence to the empirical data is that the model's absolute values are

shifted towards higher AC. Nevertheless, this result supports our interpretation

of the �stairway e�ect�.
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Figure 11.18: Area coverage as a function of cluster size in Experiment F

11.3.6 Speed of Processing (SP)

The comparative diagram in Figure 11.19 shows that the empirical SP values

are almost perfectly reproduced by the Three-Level Model. Obviously, the only

divergence can be found in the fact that � as indicated by the di�erence be-

tween Experiment B and Experiment C � top-down control of attention leads

to an increase in SP in the model data, while it does not in the empirical data.

This situation corresponds to the AC results. It seems that the lower entropy

values in Experiment C, caused by one stimulus dimension being held constant,

�motivates� the Three-Level Model to generate higher AC and SP values during

form search. Undoubtedly, the question why these e�ects do not appear in the

empirical data deserves a closer investigation in future research.

Figure 11.20 presents the SP results for Experiment F. Again, the �double

stairway� characteristic is reproduced by the Three-Level Model. However, the

in�uence of cluster size seems to be weaker, i.e. the SP contrasts between neigh-

boring cluster sizes are smaller than they are in the empirical data. This suggests

that the cluster structure in the stimuli exerts additional perceptual in�uences

on the subjects, facilitating comparative search.

11.3.7 Probability of Missing the Target (PM)

As shown in Figure 11.21, there is a close correspondence between empirical and

modelled PM values. Interestingly, the simple formula for the calculation of PM

seems to be a plausible model for the human capability of target detection as a

function of memory load and task di�culty.

This view is supported by the analysis of PM in dependence on the local item
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Figure 11.19: Speed of processing in Experiments A to E

Figure 11.20: Speed of processing as a function of cluster size in Experiment F

density at the targets in Experiment A: In the simulation, PM is 11.4% for low

density and 17.2% for high density. This e�ect is similar to the empirical one

(10.5% versus 15.3%). All in all, the simulation data suggest that the factors

determining PM are understood to a reasonable extent.
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Figure 11.21: Probability of missing the target in Experiments A to E

11.4 Rating the Three-Level Model

All in all, the data of the Three-Level Model present for most variables a remark-

ably good correspondence to the empirical data. The basic as well as the derived

eye-movement variables and their dependence on local stimulus parameters are

replicated on the basis of simulated perceptive and cognitive processes. This can

be considered as a substantial improvement over the Random-Walk Model which

reproduced the low-level features of scanpaths directly with the help of experi-

mentally obtained distributions of the respective low-level variables.

In some of the eye-movement variables, however, there are slight deviations of

simulated from empirical data for regions of very low local item density. Here, item

density exerts a stronger in�uence on the simulated than on the empirical data.

On the one hand, this �nding suggests the participation of inhibitory processes

in comparative search which prevent subjects from �getting lost�, i.e. giving up

structured search during task completion. On the other hand, this discrepancy

could be caused by the higher variability found in empirical eye-movement data,

e.g. in the analysis of reaction time. Higher variability, in turn, may reduce the

signi�cance of measured e�ects. This point should be clari�eld by future research.

Summarizing, the results are well in line with the assumed vertical organiza-

tion of mental processes involved in the completion of comparative visual search.

Furthermore, the conclusions drawn from Experiments A to F are strongly sup-

ported, since it is possible to build a model incorporating these conclusions and

producing eye-movement patterns that are remarkably similar to the empirical

ones. This similarity is found with respect to each eye-movement variable in each

of the six experiments, presenting only few cases of deviations. Thus, the Three-
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Level Model successfully manages to integrate a considerable number of distinct

aspects investigated in di�erent experiments into a coherent framework of mental

processes and factors underlying comparative visual search.

Since the stimuli contained no semantic information so far, the algorithmic

simulation of empirical �ndings is suitable and its results can relatively easily be

interpreted. Advanced studies, however, will go along with the introduction of

semantic content, leading to di�culties with regard to modelling. Nevertheless,

the studies of computational models have proven to be especially insightful and

should thus be continued, even if the e�ort for their implementation increases.
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Chapter 12

Conclusions and Outlook

In the preceding chapters, we have demonstrated how the measurement of eye

movements for the task of comparative visual search can help to gain insight

about a considerable number of issues involved in the perception of 2D visual

displays. The results obtained with regard to the basis scenario (Experiment A)

have already demonstrated one of the essential advantages over conventional vi-

sual search and same-di�erent experiments, namely the possibility of investigating

perceptive and cognitive processes during a complex task. The rather simple sti-

muli and resulting short reaction times in standard visual search experiments as

well as the tachistoscopical presentation of items in same-di�erent tasks lead to

a limited set of results, i.e. reaction times and error rates depending on stimulus

features. The isolated investigation of these rather �atomic� tasks and the shallow

information content of the measured variables severely restrict insight into the

structure of underlying mental processes.

In comparative visual search, the brain can be �observed� while solving a more

structured task which demands a global search process as well as local steps of

memorization and comparison. The recorded eye-movement data have revealed

interesting aspects, for instance the linear dependence of �xation duration on

local item density and its complete independence from local color and form en-

tropy. These �ndings have enabled us to draw conclusions about the factors which

control the involved perceptive and cognitive activities (see Chapter 3).

Slight variations of the task (Experiment B) and the stimuli (Experiment C),

followed by the comparison of eye-movement variables between these experiments,

have unveiled di�erences in the processing of color and form: While irrelevant

form information can be disregarded quite e�ectively, this seems to be much

harder for irrelevant color information. The results suggest that form processing

might include color processing to some extent. Again, the conclusions are not

based on arti�cial reaction time measurements, but rather on eye-movement data

characterizing the �brain at work�.

The same holds for Experiments D and E, which have investigated further

experimental modi�cations. In Experiment D we have studied the task of match

detection instead of mismatch detection, leading to increased di�culties of task

completion and consequently to more thorough search strategies. Experiment E
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has examined the e�ects of applying mirror symmetry rather than translational

symmetry between the hemi�elds, presenting similar results as Experiment D.

In contrast to the situation in Experiments A to C, holistic comparison of local

information is impossible, hence �ad hoc� processing is ine�ective. Increasing

demands on working memory lead to a smaller amount of information being

memorized at the same time.

The role of working memory has been more closely investigated in Experiment

F. Additional line elements have been successfully used to �prescribe� certain

perceptual groups of items for the subjects, suggesting that the memorization of

three items at a time is the most e�cient strategy. Moreover, the e�ects of color

and form entropy on working memory have been established and even quanti�ed.

Experiment G has successfully explored the use of three-dimensional stimuli.

Spatial scanpaths demonstrate a higher variability than ��at� ones, because item

depth can be used for the alignment of scanpaths in addition to the two lateral di-

mensions. The detection of depth mismatches induces increased �xation duration,

which has been constant for color and form search within and between Exper-

iments A to F, suggesting the occurrence of fundamentally di�erent perceptual

processes. Apart from these �ndings, the interaction of vergence and conjugate

eye movements during search processes has been investigated, yielding even phys-

iologically relevant data.

The results of the �rst simulation of eye movements in comparative visual

search by the Random-Walk Model has exhibited that the data obtained so far

have not been su�cient to characterize human scanpath strategies. Accordingly,

we studied scanpath regularities being applied during the inspection of randomly

distributed dots. Based on the results of this study, Experiment H was conducted,

employing dots of di�erent colors and forms. While the form information did not

signi�cantly a�ect the subjects' scanpaths, the color attributes were partially used

to structure the gaze trajectories. The best scanpath model has been found to

be a simple �travelling salesman� algorithm with a tendency towards successive

scanning of equally colored items.

This knowledge has been used as the basis for an improved model, called

the �Three-Level Model�. It accounts for three di�erent levels of information

processing: the strategy level (referring in particular to Experiment H), the at-

tentional level (with parameters taken especially from Experiment F), and the

eye-movement level (mainly based on Experiments A to E). Shifts of attention are

assumed to be controlled by a global strategy, and eye movements are considered

as the result of moving attention. With only a few exceptions, the Three-Level

Model is capable of explaining the characteristics of gaze trajectories observed in

Experiments A to F, con�rming the overall consistency of empirical results and

their interpretation.

Which starting points for further research on this paradigm seem to be most

interesting and most important? One essential point will be the transition from

abstract items to more realistic stimuli involving perception on a higher level.

Since the basic characteristics of comparative visual search have been extensively
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Figure 12.1: Possible stimulus for the investigation of low-level versus high-level

perception during comparative visual search. Rotating the picture by 180o leads

to a switch between these two perceptual levels.

studied in this work, it seems reasonable to increase the complexity and realism

of the search pictures. The clustered items used in Experiment F can be consid-

ered as a �rst step in this direction. Single items were combined to item groups,

changing the subjects' perception of the stimuli. However, no modi�cations to-

wards ecologically more adequate scenes were introduced.

An immediate use of realistic stimuli as shown in Figure 1.7 would be too

drastic. Their high complexity and the in�uence of subjective, not quanti�able

parameters would make the interpretation of �ndings very di�cult if not impos-

sible. Although there have been studies on visual search proving that naturalistic

scenes can be reasonable stimuli (e.g. Henderson, 1992; Humphreys, Keulers &

Donnelly, 1994; Wolfe, 1994), a direct step from completely abstract to realistic

stimuli would lead to gaps in the theoretical background. Instead, we should grad-

ually increase the complexity of stimuli between experiments in order to always

maintain an adequate framework for the incorporation of new results. A suitable

pilot experiment could investigate the di�erences in eye movements between the

presentation of abstract and meaningful stimuli. Figure 12.1 shows an appropri-

ate kind of stimulus for this purpose. The geometrical, colored items have been

replaced with white items of irregular shape, but still the subjects' task is to �nd

the mismatching pair. In our example, the mismatch consists in one of the items

being turned around its center by 180 degrees, which is a possible standardization

of mismatches in this scenario.

What does the example stimulus have to do with meaningful information?
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Rotating Figure 12.1 to its upside-down position leads to the answer: Now, the

items are perceptually grouped to meaningful units, namely to a number of di�er-

ent faces. Strictly speaking, no faces are actually being shown, but the patterns

of black and white induce the perception of light and shadow as caused by facial

structures. This brilliant perceptual feat cannot be achieved in the case of upside-

down reversal, because human beings are almost exclusively trained to recognize

upright faces.

The idea behind this sort of stimuli � which could be called �Mooney� stimuli

due to the psychologist Mooney who �invented� them � is that we can use the

same material for the investigation of low-level and of high-level perceptual pro-

cesses. We just have to turn the stimuli around in order to switch between these

two levels. Conceivably, the eye-movement variables strongly depend on the ori-

entation of these stimuli and hence yield basic data on the di�erences which occur

when meaningful information is involved. Starting with this pilot experiment, the

way to the investigation of realistic stimuli could be paved.

As a matter of fact, the ecological adequacy of comparative visual search is

not only determined by the semantics of the utilized stimuli, but also by the

way of their presentation. Indicated by the results of Experiment G, the third

dimension plays an important role, strongly in�uencing the subjects' scanpath

strategies. Furthermore, scenarios of this kind allow us to study the interaction

between natural physiological processes (vergence movements and saccades) and

stimulus features. Although Experiment G can be viewed as a �rst approach to

three-dimensional stimuli, it still involves several �unnatural� points that should

be eliminated in future research:

� Due to the applied method of red-green images and glasses, the stimuli are

monochrome. With respect to further series of experiments, the technique

of shutter glasses should be used to include color information and to enable

unbiased vision.

� The third dimension is represented by only three distinct depth planes.

In order to provide an ecologically plausible situation and comparability

among the three dimensions, these planes have to be replaced by a depth

continuum.

� The items themselves should be three-dimensional as well. As a �rst ap-

proach, we could use various types of regular and irregular polyhedrons.

To achieve the natural appearance of these items, the location of a light

source has to be speci�ed and the resulting shades of item colors have to

be displayed.

� A realistic type of perspective should be integrated into the stimuli, which

basically means that the size of items decreases with their virtual distance

from the subject's eyes.

The semantic as well as the presentational steps towards higher ecological

adequacy should go along with corresponding �updates� of the Three-Level Model
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of comparative visual search. The major problem is assumed to be the integration

of perceptual processes on a higher level, for instance the recognition of faces. The

application of arti�cial neural networks seems to be a promising way of solving

this problem. The arti�cial neural networks are able to learn the components of

faces and their geometrical relationships from a database of example faces. If they

are combined with an appropriate simulation of attentional mechanisms, they

should be capable of imitating human perceptual processes on the corresponding

stage. As demonstrated in the present work, the future experiments and models

should go hand in hand in order to provide a valid and detailed understanding of

the interacting processes that participate in comparative search performance.

Undoubtedly, the work in hand has successfully established �rst landmarks in

the wide and merely untouched �eld of comparative visual search. The results of

the described experiments and models have revealed fruitful aspects for empirical

research as well as for computer simulations of mental processes. A huge amount

of interesting work is still waiting to be done, and maybe the present �ndings

will motivate scientists of related �elds to participate in the exploration of this

promising paradigm.
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