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Abstract. The Selective Tuning Model is a proposal for modelling visual 
attention in primates and humans. Although supported by significant biological 
evidence, it is not without its weaknesses. The main one addressed by this paper 
is that the levels of representation on which it was previously demonstrated 
(spatial Gaussian pyramids) were not biologically plausible.  The motion 
domain was chosen because enough is known about motion processing to 
enable a reasonable attempt at defining the feedforward pyramid. The effort is 
unique because it seems that no past model presents a motion hierarchy plus 
attention to motion. We propose a neurally-inspired model of the primate visual 
motion system attempting to explain how a hierarchical feedforward network 
consisting of layers representing cortical areas V1, MT, MST, and 7a detects 
and classifies different kinds of motion patterns. The STM model is then 
integrated into this hierarchy demonstrating that successfully attending to 
motion patterns, results in localization and labelling of those patterns. 

1 Introduction 

Attentive processing is a largely unexplored dimension in the computational motion 
field. No matter how sophisticated the methods become for extracting motion 
information from image sequences, it will not be possible to achieve the goal of 
human-like performance without integrating the optimization of processing that 
attention provides. Virtually all past surveys of computational models of motion 
processing completely ignore attention. However, the concept has crept into work 
over the years in a variety of ways.   

One can survey the current computer vision literature and realize that 
attentive processing is not much of a concern. Many recent reviews of various aspects 
of motion understanding have not made any mention of attentive processing of any 
kind [1, 2, 3, 4, 5]. The review by Aggarwal and Cai  [6] includes one example of 
work that uses motion cues to segment an object and to affix an attentional window 
on to it. This is a data-directed attentional tool. Gavrila's review [7] includes one 
example of where vision can provide an attentional cue for speech localization. Most 



of these cited papers make the claim that little or no work had been done on the topic 
of high level motion understanding previously (see [8] for a review that refutes this).  

 Many authors do not consider attention simply because of assumptions that 
eliminate the issue. An example of the kinds of assumptions that are typically made 
even in the best work follows [9]. The input to this system must satisfy the following: 
a) all frames in a given movie must contain the same number of figures; b) the figures 
in each frame must be placed in a one-to-one correspondence with figures in adjacent 
frames; and, c) the system must be given this correspondence as input. Others, such as 
in [10], assume that their algorithm starts off by being given the region of interest that 
corresponds to each object that may be moving.  The processing that ensues is 
perhaps the best of its kind currently, but the algorithm critically depends on 
reasonable regions of interest and is not designed to find that region of interest either 
independently or concurrently as it processes the events in the scene.  In a third 
example the values for the sensors are manually extracted by watching a video of the 
action and further, even determine the interval where every action and sub-action 
occurs [11]. The problem is not that any one effort makes these assumptions; the 
problem lies in the fact that it is now almost universal to assume the unreasonable. 
We are not trying to be critical of these authors; rather, the correct conclusion to draw 
from these comments is that we suggest a more balanced approach to the problem 
across the discipline, where at least some researchers study the attentive issues 
involved in a more general solution. 

 Attentive components have been included in systems not only through 
assumptions. At least three tools have appeared: the detection of salient tracking 
points/structures; search region predictions; and, Kalman filters and their extensions. 
Many examples have appeared [12, 13, 14, 15]. All are clearly strategies that help 
reduce search however, the overall result is an ad hoc collection of domain-specific 
methods.  

 A similar survey of computational neuroscience literature reveals many 
interesting motion models and better interest in motion attention. More discussion on 
these efforts appears later. 

2. The Selective Tuning Model 

Complexity analysis leads to the conclusion that attention must tune the 
visual processing architecture to permit task-directed processing [16].  In its original 
definition, [16], the Selective Tuning Model (STM), selection takes two forms: 
spatial selection is realized by inhibiting task-irrelevant locations in the neural 
network, and feature selection is realized by inhibiting the neurons that represent task-
irrelevant features. When task constraints are available they are used to set priorities 
for selection; if not available, then there are default priorities (such as ‘strongest 
response’). The two cornerstones of spatial and feature selection have since been 
experimentally supported [17, 18]. Only a brief summary is presented here since the 
model is detailed elsewhere  [19].  

The spatial role of attention in the image domain is to localize a subset of the 
input image and its path through the processing hierarchy such as to minimize any 
interfering or corrupting signals.  The visual processing architecture is a pyramidal 



network composed of units receiving both feed-forward and feedback connections.  
When a stimulus is first applied to the input layer of the pyramid, it activates in a 
feed-forward manner all of the units within the pyramid to which it is connected.  The 
result is the activation of an inverted sub-pyramid of units and we assume that the 
degree of unit activation reflects the goodness-of-match between the unit and the 
stimulus it represents.  

Attentional selection relies on a hierarchy of winner-take-all (WTA) 
processes. WTA is a parallel algorithm for finding the maximum value in a set of 
variables, which was first proposed in this context by Koch and Ullman [20]. WTA 
can be steered to favor particular stimulus locations or features but in the absence of 
such guidance it operates independently.  The processing of a visual input involves 
three main stages.  During the first stage, a stimulus is applied to the input layer and 
activity propagates along feed-forward connections towards the output layer. The 
response of each unit depends on its particular selectivities, and perhaps also on a top-
down bias for task-relevant qualities.   During the second stage, a hierarchy of WTA 
processes is applied in a top-down, coarse-to-fine manner. The first WTA process 
operates in the top layer and covers the entire visual field at the top layer: it computes 
the unit or groups of contiguous units with the largest response in the output layer, 
that is, the global winner.  In turn, the global winner activates a WTA amongst its 
input units in the layer immediately below.  This localizes the largest response within 
the receptive field of the global winner.  All of the connections of the visual pyramid 
that do not contribute to the winner are pruned (i.e., attenuated). This strategy of 
finding the winner within each receptive fields and then pruning away irrelevant 
connections, is applied recursively through the pyramid, layer by layer. Thus, the 
global winner in the output layer is eventually traced back to its perceptual origin in 
the input layer. The connections that remain (i.e., are not pruned) may be considered 
the pass zone of the attentional beam, while the pruned connections an inhibitory zone 
around that beam.  A final feedforward pass then allows the selected stimulus to be 
processed by the network without signal interference from surrounding stimuli. This 
constitutes a single attentive processing cycle. 

The processing exhibits serial search for displays with multiple objects using 
a simple inhibition of return mechanism, that is, the pass zone pathways are inhibited 
for one processing cycle so that in the next feedforward pass the second strongest 
responses form the global winner and the WTA hierarchy focuses in on the second 
strongest item in the display. The processing operates continuously in this manner 

The selective tuning model was developed with the dual goals of 
computational utility and biological predictive power. The predictions (appearing 
mostly in [16, 19]) and supporting evidence are briefly described. 

• An early prediction was that attention is necessary at any level of processing 
where a many-to-one mapping between neural processes is found. Further, attention 
occurs in all the areas in a coordinated manner. The prediction was made at a time 
when good evidence for attentional modulation was known for area V4 only [21]. 
Since then, attentional modulation has been found in many other areas both earlier 
and later in the visual processing stream, and that it occurs in these areas 
simultaneously [22]. Vanduffel et al. [23] have shown that attentional modulation 
appears as early as the LGN. The prediction that attention modulates all cortical and 
even subcortical levels of processing has been borne out by recent work from several 
groups [23, 24, 25].  



• The notions of competition between stimuli and of attentional modulation of 
this competition were also early components of the model and these too have gained 
substantial support over the years  [17, 22, 27]. 

• The model predicts an inhibitory surround that impairs perception around the 
focus of attention a prediction that seems to be gaining support, both 
psychophysically and neurophysiologically [23, 26, 28, 29, 30, 31]. 

 • A final prediction is that latency of attentional modulations decreases from 
lower to higher visual areas. Although controversial, it seems that attentional effects 
do not appear until 150 ms after the onset of a stimulus in IT cortex  [32] while in V1 
they appear after 230 ms [33].  

 Additional predictions of the selective tuning model concern the form of 
spatial and temporal modulations of visual cortical responses around the focus of 
attention, and the existence of a WTA circuit connecting cortical columns of similar 
selectivity.  The selective tuning model offers a principled solution to the fundamental 
problems of visual complexity, a detailed perceptual account of both the guidance and 
the consequences of visual attention, and a neurally plausible implementation as an 
integral part of the visual cortical hierarchy.  Thus, the model "works" at three distinct 
levels  - computational, perceptual, and neural - and offers a more concrete account, 
and far more specific predictions, than previous models limited to one of these levels.  

Previous demonstrations of the Selective Tuning Model were not without their 
weaknesses. The main one addressed by this paper is that the levels of representation 
shown in [19] were not biologically plausible.  Here, the motion domain is chosen in 
order to demonstrate that STM can indeed operate as desired with realistic 
representations because enough is known about motion processing to enable a 
reasonable attempt at defining the feedforward pyramid. In addition, the effort is 
unique because it seems that no past model presented a motion hierarchy plus 
attention to motion [34, 35, 36, 37, 38, 39, 40, 41, 42]. The remainder of this paper 
will focus on this issue. 

3 The Feedforward Motion Pyramid 

We propose a neurally-inspired model of the primate motion processing hierarchy. 
The model aims to explain how a hierarchical feed-forward network consisting of 
neurons in the cortical areas V1, MT, MST, and 7a of primates detects and classifies 
different kinds of motion patterns. At best, the motion model is a first-order one with 
much elaboration left for future work. Indeed, some of the previous motion models 
offer better sophistication at one or another level of processing; however, none cover 
all these levels and incorporate selective attentional processes. The primary goal is to 
demonstrate that the STM functions not only as previously demonstrated on Gaussian 
pyramids but also on a more biologically realistic representation. 

Cells in striate area V1 are selective for a particular local speed and direction of 
motion in at least three main speed ranges [43]. In the model, V1 neurons estimate 
local speed and direction in five-frame, 256x256 pixel image sequences using 
spatiotemporal filters (e.g., [44])1. Their direction selectivity is restricted to 12 
                                                           
1 The choices of parameters for sizes of representations, filters, etc. are mostly for convenience 

and variations in them has no effect on overall results intended by this demonstration. 



distinct, Gaussian-shaped tuning curves. Each tuning curve has a standard deviation 
of 30º and represents the selectivity for one of 12 different directions spaced 30º apart 
(0º, 30º, …, 330º). V1 is represented by a 60x60 array of hypercolumns. The receptive 
fields (RFs) of V1 neurons are circular and homogeneously distributed across the 
visual field, with RFs of neighboring hypercolumns overlapping by 20%.  

In area MT a high proportion of cells are tuned for a particular local speed and 
direction of movement, similar to direction and speed selective cells in V1 [45, 46]. A 
proportion of MT neurons are also selective for a particular angle between movement 
direction and spatial speed gradient [47]. Both types of neurons are represented in the 
MT layer of the model, which is a 30x30 array of hypercolumns. Each MT cell 
receives input from a 4x4 field of V1 neurons with the same direction and speed 
selectivity.  

Neurons in area MST are tuned to complex motion patterns: expand or approach, 
contract or recede, rotation, with RFs covering most of the visual field [48, 49]. Two 
types of neurons are modeled: one type selective for translation (as in V1) and another 
type selective for spiral motion (clockwise and counterclockwise rotation, expansion, 
contraction and combinations). MST is simulated as a 5x5 array of hypercolumns. 
Each MST cell receives input from a large group (covering 60% of the visual field) of 
MT neurons that respond to a particular motion/gradient angle. Any coherent 
motion/gradient angle indicates a particular type of spiral motion. 

Finally, area 7a seems to involve at least four different types of computations [50]. 
Here, neurons are selective for translation and spiral motion as in MST, but they have 
even larger RFs. They are also selective for rotation (regardless of direction) and 
radial motion (regardless of direction). In the simulation, area 7a is represented by a 
4x4 array of hypercolumns. Each 7a cell receives input from a 4x4 field of MST 
neurons that have the relevant tuning. Rotation cells and radial motion cells only 
receive input from MST neurons that respond to spiral motion involving any rotation 
or any radial motion, respectively. 

Fig. 1 shows the resulting set of neural selectivities that comprise the entire 
pyramidal hierarchy covering visual areas V1, MT, MST and 7a. It bears repeating 
that this should only be considered a first order model. 

Fig. 2 shows the activation of neurons in the model as induced by a sample 
stimulus. Note that in the actual visualization different colors indicate the response to 
particular angles between motion and speed gradient in MT gradient neurons. In the 
present example, the gray levels indicate that the neurons selective for a 90º angle 
gave by far the strongest responses. A consistent 90º angle across all directions of 
motion signifies a pattern of clockwise rotation. Correspondingly, the maximum 
activation of the spiral neurons in areas MST and 7a corresponds to the clockwise 
rotation pattern (90º angle). Finally, area 7a also shows a substantial response to 
rotation in the medium-speed range, while there is no visible activation that would 
indicate radial motion. 

Figures 3, 4, 5 and 6 provide additional detail required for explanation of Figures 1 
and 2. 
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Fig. 1. The overall set of representations for the different types of neurons in areas V1, MT, 
MST, and 7a. Each rectangle represents a single type of selectivity applied over the full image 
at that level of the pyramid. Large grey arrows represent selectivity for direction. Coloured 
rectangels represent particular angles between motion and speed gradient. The three rectangles 
at each direction represent the three speed selectivity ranges in the model. In this way, each 
single ‘sheet’ may be considered an expanded view of the ‘hypercolumns’ in a visual area. In 
area V1, for example, direction and speed selectivities are represented by the single sheet of 
rectangles in the figure. In area MT, there are 13 sheets, the top one representing direction and 
speed selectivity while the remaining 12 represent the 12 directions of speed gradient for each 
combination of speed and direction ranges (Fig. 4 provides additional explanation of the speed 
gradient coding). MST units respond to patterns of motion – contract, recede, and rotate. This 
figure emphasizes the scale of the search problem faced by the visual system: to determine 
which responses within each of these representations belong to the same event. 
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Fig. 2. The model’s response to a clockwise rotating stimulus (a). Brightness indicates 
activation in areas V1, MT, MST, and 7a (b to e). Each of the figures represents the output of 
one representational sheet as depicted in Fig. 1. As is clear, even with a single object 
undergoing a single, simple motion, a large number of neurons respond.  
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Fig. 3.  Detail from area V1 in Fig. 2. (a) A depiiction of the optic flow vectors resulting from 
the rotating motion. (b) The three speed selectivities for ‘upwards’ direction selectivity, the top 
being fast, the middle medium and the bottom low speed. The brightness shows responses 
across the sub-image due to the motion.  
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Fig. 4.  Detail from area MT in Fig. 2. (a)
optic flow is shown with blue arrows. The
activates the vertical motion selectivite neu
coding used for the different directions o
given by the gray arrow. (c) The partic
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Fig. 5. Detail from Fig. 2 for the neurons representing motion patterns in area MST. As is clear, 
the ‘brightest’ (strongest) responses occur in the representation of medium speed, clockwise 
rotation. There are many other responses some rather strong, through the sheet. It is the task of 
attentional selection to determine which responses are the correct ones to focus on in order to 
optimally localize the stimulus.  

 

 
 
 

 

 
 

 
Fig. 6. Two examples of speed gradient coding. (a) If the stimulus object is both rotating 
clockwise and receding, the responses in area MT are  coded blue. (b) If there are two objects 
in the image one rotating clockwise and the other counterclockwise, the responses in area MT 
will be coded light purple for the spatial extent of the former and light green for the spatial 
extent of the latter.  Neurons in area MST spatially group common MT responses. The attention 
system then segments one from the other based on strength of response and motion type. 

4  Using STM to Attend to and Localize Motion Patterns 

Most of the computational models of primate motion perception that have been 
proposed concentrate on feedforward, classical types of processing and do not address 



attentional issues. However, there is strong evidence that the responses of neurons in 
areas MT and MST are modulated by attention [51]. As a result of the model’s 
feedforward computations, the neural responses in the high- level areas (MST and 7a) 
roughly indicate the kind of motion patterns presented as an input but do not localize 
the spatial position of the patterns. The STM model was then applied to this 
feedforward pyramid, adding in the required feedback connections, hierarchical WTA 
processes, and gating networks as originally defined in [16, 19]. The result is that the 
model attends to object motion, whether it exhibits a single or concurrent motion, and 
serially focuses on each motion in the sequence in order of response strength. 

The integration of the STM into this feedforward network requires one additional 
component not previously described.  A motion activity map with the same size as a 
7a layer is constructed after the feedforward processing. The value of a node in the 
activity map is a weighted sum of the activations of all 7a neurons at this position and 
it reflects the overall activation across all motion patterns. A location-based weighted 
sum is required in order to correctly detect single objects exhibiting simultaneous 
multiple motion types. This is not the same as the saliency map of [20] since it is not 
based on point locations and does not solely determine the attended region. Second, 
the hierarchical described earlier finds the globally most active region. Then for this 
region, two separate WTAs compete among all the translational motion patterns and 
spiral motion patterns respectively and thus result in a winning region is each 
representation. The remainder of processing proceeds as described in Section 2.0 for 
each of the winning patterns. Although not described here, the model also includes 
processes for tracking translating objects and for detecting onset and offset events 
(start and stop). Figures 7 and 8 present a 3D visualization of the model receiving an 
image sequence that contains an approaching object and a counterclockwise rotating 
object.  

 
 
 
 
 
 
 
 

Fig. 7.  The first image of the sequence used as demonstration in the next figure. The 
checkerboard is rotating while the box (in one of the authors’ hands) is approaching the camera. 

 



 
 
Fig. 8. Visualization of the attentional mechanism applied to an image sequence showing an 
approaching object and a counterclockwise rotating object at the same time. First, the model 
detects the approaching motion and attends to it (a); the localization of the approaching object 
can be seen most clearly from below the motion hierarchy (bright area in panel b). Then, the 
pass zone associated with it is inhibited, and the model attends to the rotating motion (c and d). 

5. Discussion  

Due to the incorporation of functionally diverse neurons in the motion hierarchy, the 
output of the present model encompasses a wide variety of selectivities at different 
resolutions. This enables the computer simulation of the model to detect and classify 
various motion patterns in artificial and natural image sequences showing one or more 
moving objects as well as single objects undergoing complex, multiple motions. Most 
other models of biological motion perception focus on a single cortical area. For 
instance, the models by Simoncelli and Heeger [34] and Beardsley and Vaina [35] are 
biologically relevant approaches that explain some specific functionality of MT and 
MST neurons, respectively, but do not include the embedding hierarchy in the motion 
pathway. On the other hand, there are hierarchical models for the detection of motion 
(e.g., [36, 37]), but unlike the present model they do not provide a biologically 
plausible version of the motion processing hierarchy. 

Another strength of our model is its mechanism of visual attention. To our 
knowledge, there are only 2 other motion models employing attention for motion. The 
earlier one is due to Nowlan and Sejnowski [38]. There, processing that is much in the 



same spirit as ours but very different in form takes place. They compute motion 
energy with the goal of modelling MT neurons. This energy is part of a hierarchy of 
processes that include softmax for local velocity selection. They suggest that the 
selection permits processing to be focussed on the most reliable estimates of velocity. 
There is no top-down component nor full processing hierarchy. The relationship to 
attentional modulation that has been described after their model was presented of 
course is not developed; it does not appear to be within the scope of their model. The 
second one is from Grossberg, Mingolla, and Viswanathan [39], which is a motion 
integration and segmentation model for motion capture. Called the Formotion BCS 
model, their goal is to integrate motion information across the image and segment 
motion cues into a unified global percept. They employ models of translational 
processing in areas V1, V2, MT and MST and do not consider motion patterns. 
Competition determines local winners among neural responses and the MST cells 
encoding the winning direction have an excitatory influence on MT cells tuned to the 
same direction. A variety of motion illusions are illustrated but no real image 
sequences are attempted. Neither model has the breadth of processing in the motion 
domain or in attentional selection as the current work. 

Of course, this is only the beginning and we actively pursuing several avenues of 
further work.  The tuning characteristics of each of the neurons only coarsely model 
current knowledge of primate vision. The model includes no cooperative nor 
competitive processing among units within a layer. Experimental work examining the 
relationship of this particular structure to human vision is also on-going 
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