- A greedy technique that actually works well
- Starting from a certain vertex \(v_0 \), we set up a Map to hold all the running min costs \(D_i \) from \(v_0 \) to various destinations \(v \).
- Like the unweighted case, we have an “eyeball” that indicates what node we are visiting.
- We move the eyeball to a new node \(v \), the one with the least cost from \(v_0 \) that has not been visited by the eyeball.
We compute the min cost D_w from v_0 to various destinations w following any path through the visited node v

- $D_w = \min\{D_w, D_v + c_{vw}\}$
- c_{vw} = cost for edge $v \rightarrow w$ (these are all constant positive numbers)

Repeat by moving the eyeball to another node which has the lowest cost and has not been visited.
Adjust D_w

The eyeball is at v and w is adjacent to v, so D_w should be lowered from 8 to 6.

Figure 14.23
The eyeball is at v and w is adjacent, so D_w should be lowered to 6.
Running Example, Starting From V_0
Running Example, Starting From V_0
Path with Minimum Weights from \(V_0 \)

![Graph Image]

<table>
<thead>
<tr>
<th>eyeball</th>
<th>(D_0)</th>
<th>(D_1)</th>
<th>(D_2)</th>
<th>(D_3)</th>
<th>(D_4)</th>
<th>(D_5)</th>
<th>(D_6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-)</td>
<td>0</td>
<td>(\infty)</td>
</tr>
<tr>
<td>(V_0)</td>
<td>—</td>
<td>2</td>
<td>(\infty)</td>
<td>1</td>
<td>(\infty)</td>
<td>(\infty)</td>
<td>(\infty)</td>
</tr>
<tr>
<td>(V_3)</td>
<td>—</td>
<td>2</td>
<td>3</td>
<td>—</td>
<td>3</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>(V_1)</td>
<td>—</td>
<td>—</td>
<td>3</td>
<td>—</td>
<td>3</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>(V_4)</td>
<td>—</td>
<td>—</td>
<td>3</td>
<td>—</td>
<td>—</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>(V_2)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>(V_6)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>6</td>
<td>—</td>
</tr>
<tr>
<td>(V_5)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>final:</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>5</td>
</tr>
</tbody>
</table>
Pseudocode for Dijkstra’s Algorithm

Given a directed graph G and source node S.
Set up storage for a distance for each node, \(D_i \):
 For each node i, set \(D_i = c_{S,i} \)
 (cost of the edge from S to i)
Set up a data structure P for unvisited nodes and put all nodes except S in it.
Loop while P is not empty
 Choose a node v in P with minimum \(D_i \)
 Delete v from P
 (it’s now visited, and now the ‘‘eyeball’’ node)
Loop though nodes w adjacent to v and in P
 \(D_w = min(D_w, D_v + c_{vw}) \)
A simple implementation would mimic our manual processing of the D’s earlier:

- scan the D’s to choose a new eyeball, $O(|V|)$ for each node, or $O(|V|^2)$ in all, and then scan the edges from the eyeball node for D-updates, for each eyeball node, $|E|$ in all, so total $O(|V|^2)$, since $|E| < |V|^2$.

- Not too bad, but not great.

- But we need the minimal D each time. How can we do better?

Using Priority Queue to find min: Change from $|E|$ to Log$|E|$.

The are $|E|$ insertions to the PQ, thus $O(|E| \cdot \text{Log}|E|)$.