Case Study: Percolation Problem
Outline

1 Percolation

2 Vertical Percolation

3 General Percolation
If we pour liquid on top of some porous material, will the liquid reach the bottom?

Percolation refers to the abstract process that models such situations

Some Applications
- Spread of forest fires
- Flow of electricity through a network of resistors
- Permeation of gas in a coal mine through a gas mask filter
- Studying Fermi’s paradox, the apparent contradiction between the high estimates of the probability of the existence of extraterrestrial civilizations and the lack of evidence for them
Percolation

Abstract model

• n-by-n grid of sites
• Each site is either blocked or open
• An open site is full if it is connected to the top via open sites

If sites are independently set to be open with vacancy probability p, what is the probability that the system percolates?

There is no known mathematical solution, so we take a computational (Monte Carlo simulation) approach

We use one n-by-n boolean matrix to store which sites are open, and another to compute which sites are full
import stdarray
import stddraw
import stdrandom
import sys

def random(n, p):
a = stdarray.create2D(n, n, False)
 for i in range(n):
 for j in range(n):
 a[i][j] = stdrandom.bernoulli(p)
 return a

def draw(a, which):
n = len(a)
stddraw.setXscale(-.5, n)
stddraw.setYscale(-.5, n)
 for i in range(n):
 for j in range(n):
 if a[i][j] == which:
 stddraw.filledSquare(j, n - i - 1, .5)

def main():
n = int(sys.argv[1])
p = float(sys.argv[2])
test = random(n, p)
draw(test, False)
stddraw.show()

if __name__ == '__main__':
 main()
Percolation

$ python3 percolationio.py 10 .8

$ python3 percolationio.py 10 .2

$ python3 percolationio.py 100 .6
Vertical Percolation

We start by solving an easier version of the problem, namely vertical percolation: Is there a path of open sites from the top to the bottom that goes straight down?

A site \((i, j)\) is full if it is open and site \((i - 1, j)\) is full.

To determine if a system vertically percolates, scan rows from top to bottom.
import stdarray
import stdio

def flow(isOpen):
 n = len(isOpen)
 isFull = stdarray.create2D(n, n, False)
 for j in range(n):
 isFull[0][j] = isOpen[0][j]
 for i in range(1, n):
 for j in range(n):
 if isOpen[i][j] and isFull[i - 1][j]:
 isFull[i][j] = True
 return isFull

def percolates(isFull):
 n = len(isFull)
 for j in range(n):
 if isFull[n - 1][j]:
 return True
 return False

def main():
 isOpen = stdarray.readBool2D()
 isFull = flow(isOpen)
 stdarray.write2D(isFull)
 stdio.writeln(percolates(isFull))

if __name__ == '__main__':
 main()
Vertical Percolation

```
$ more test8.txt
8 8
0 0 1 1 1 0 0 0
1 0 0 1 1 1 1 1
1 1 1 0 0 1 1 0
0 0 1 1 0 1 1 1
0 1 1 1 0 1 1 0
0 1 0 0 0 0 1 1
1 0 1 0 1 1 1 1
1 1 1 1 0 1 0 0

$ python3 percolationv.py < test8.txt
8 8
0 0 1 1 1 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
False
```
Vertical Percolation

visualizev.py: Accept integer \(n \), float \(p \), and integer \(\text{trials} \) as command-line arguments. Generate an \(n \times n \) random system with site vacancy probability \(p \). Compute the directed percolation flow, and draw result to standard draw. Repeat \(\text{trials} \) times.

```python
import percolationio
import percolationv
import stddraw
import sys

def main():
    n = int(sys.argv[1])
    p = float(sys.argv[2])
    trials = int(sys.argv[3])
    for i in range(trials):
        isOpen = percolationio.random(n, p)
        stddraw.clear()
        stddraw.setPenColor(stddraw.BLACK)
        percolationio.draw(isOpen, False)
        stddraw.setPenColor(stddraw.BLUE)
        isFull = percolationv.flow(isOpen)
        percolationio.draw(isFull, True)
        stddraw.show(1000.0)
    stddraw.show()

if __name__ == '__main__':
    main()
```

10 / 21
Vertical Percolation

$ python3 visualizev.py 20 .65 1

$ python3 visualizev.py 20 .60 1

$ python3 visualizev.py 20 .55 1
Vertical Percolation

estimatev.py: Accept integer n, float p, and integer $trials$ as command-line arguments. Create $trials$ random n-by-n systems with site vacancy probability p. Determine the fraction of them that percolate, and write that fraction to standard output.

```python
import percolationio
import percolationv
import stdio
import sys

def evaluate(n, p, trials):
    count = 0
    for i in range(trials):
        isOpen = percolationio.random(n, p)
        isFull = percolationv.flow(isOpen)
        if (percolationv.percolates(isFull)):
            count += 1
    return 1.0 * count / trials

def main():
    n = int(sys.argv[1])
    p = float(sys.argv[2])
    trials = int(sys.argv[3])
    q = evaluate(n, p, trials)
    stdio.writeln(q)

if __name__ == '__main__':
    main()
```

$ python3 estimatev.py 20 .65 1000
0.004
$ python3 estimatev.py 20 .60 1000
0.001
$ python3 estimatev.py 20 .55 1000
0.0
General Percolation

Given an n-by-n system, is there any path of open sites from the top to the bottom?

To visit all sites reachable from site (i, j), do depth first search (DFS)
- If (i, j) already marked as reachable, return
- If (i, j) not open, return
- Mark (i, j) as reachable
- Visit the four neighbors of (i, j) recursively

Percolation solution
- Run DFS from each site of top row
- Check if any site in bottom row is marked as reachable
import stdarray
import stdio

def _flow(isOpen, isFull, i, j):
 n = len(isFull)
 if (i < 0) or (i >= n):
 return
 if (j < 0) or (j >= n):
 return
 if not isOpen[i][j]:
 return
 if isFull[i][j]:
 return
 isFull[i][j] = True
 _flow(isOpen, isFull, i + 1, j)
 _flow(isOpen, isFull, i, j + 1)
 _flow(isOpen, isFull, i, j - 1)
 _flow(isOpen, isFull, i - 1, j)

def flow(isOpen):
 n = len(isOpen)
 isFull = stdarray.create2D(n, n, False)
 for j in range(n):
 _flow(isOpen, isFull, 0, j)
 return isFull
```python
def percolates(isFull):
    n = len(isFull)
    for j in range(n):
        if isFull[n - 1][j]:
            return True
    return False

def main():
    isOpen = stdarray.readBool2D()
    isFull = flow(isOpen)
    stdarray.write2D(isFull)
    stdio.writeln(percolates(isFull))

if __name__ == '__main__':
    main()
```
General Percolation

```bash
$ more test8.txt
8 8
0 0 1 1 1 0 0 0
1 0 0 1 1 1 1 1
1 1 1 0 0 1 1 0
0 0 1 1 0 1 1 1
0 1 1 1 0 1 1 0
0 1 0 0 0 0 1 1
1 0 1 0 1 1 1 1
1 1 1 1 0 1 0 0

$ python3 percolation.py < test8.txt
8 8
0 0 1 1 1 0 0 0
0 0 0 1 1 1 1 1
0 0 0 0 0 1 1 0
0 0 0 0 0 1 1 1
0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 1
0 0 0 0 1 1 1 1
0 0 0 0 0 1 0 0
True
```
import percolation
import percolationio
import stddraw
import sys

def main():
 n = int(sys.argv[1])
 p = float(sys.argv[2])
 trials = int(sys.argv[3])
 for i in range(trials):
 isOpen = percolationio.random(n, p)
 stddraw.clear()
 stddraw.setPenColor(stddraw.BLACK)
 percolationio.draw(isOpen, False)
 stddraw.setPenColor(stddraw.BLUE)
 isFull = percolation.flow(isOpen)
 percolationio.draw(isFull, True)
 stddraw.show(1000.0)
 stddraw.show()

if __name__ == '__main__':
 main()
General Percolation

$ python3 visualize.py 20 .65 1

$ python3 visualize.py 20 .60 1

$ python3 visualize.py 20 .55 1
General Percolation

estimate.py: Accept integer \(n \), float \(p \), and integer \(trials \) as command-line arguments. Create \(trials \) random \(n \)-by-\(n \) systems with site vacancy probability \(p \). Determine the fraction of them that percolate, and write that fraction to standard output.

```python
import percolation
import percolationio
import stdio
import sys

def evaluate(n, p, trials):
    count = 0
    for i in range(trials):
        isOpen = percolationio.random(n, p)
        isFull = percolation.flow(isOpen)
        if (percolation.percolates(isFull)):
            count += 1
    return 1.0 * count / trials

def main():
    n = int(sys.argv[1])
    p = float(sys.argv[2])
    trials = int(sys.argv[3])
    q = evaluate(n, p, trials)
    stdio.writeln(q)

if __name__ == '__main__':
    main()
```

$ python3 estimate.py 20 .65 1000
0.868
$ python3 estimate.py 20 .60 1000
0.557
$ python3 estimate.py 20 .55 1000
0.222
percplot.py: Accept integer n as a command-line argument. Plot to standard draw a graph that relates site vacancy probability (control variable) to percolation probability (experimental observations) for a n-by-n system.

```python
import sys
import stddraw
import estimate

def curve(n, x0, y0, x1, y1, trials = 10000, gap = .01, err = .0025):
    xm = (x0 + x1) / 2.0
    ym = (y0 + y1) / 2.0
    fxm = estimate.evaluate(n, xm, trials)
    if (x1 - x0 < gap) or (abs(ym - fxm) < err):
        stddraw.line(x0, y0, x1, y1)
        stddraw.show(0.0)
        return
    curve(n, x0, y0, xm, fxm)
stddraw.filledCircle(xm, fxm, .005)
stddraw.show(0.0)
curve(n, xm, fxm, x1, y1)

def main():
    n = int(sys.argv[1])
    stddraw.setPenRadius(0.0)
    curve(n, 0.0, 0.0, 1.0, 1.0)
stddraw.show()

if __name__ == '__main__':
    main()
```
General Percolation

$ python3 percplot.py 10

$ python3 percplot.py 20

$ python3 percplot.py 30