Project 2 (Global Sequence Alignment)
Clarifications and Hints
Project goal: write a program to compute the optimal sequence alignment of two DNA strings

The zip file (https://www.cs.umb.edu/~msolah/cs110_f18/project2.zip) for the project contains

- project specification (project2.pdf)
- starter files (edit_distance.py, alignment.py)
- test script (run_tests.py)
- test data (data/)
- report template (report.txt)

This checklist will help only if you have read the writeup for the project and have a general understanding of the problems involved. So, please read the project writeup before you continue with this checklist.
Problem 1 (*Calculating Edit Distance Using Dynamic Programming*) Write a program `edit_distance.py` that reads strings `x` and `y` from standard input and computes the edit-distance matrix `opt`. The program should output `x`, `y`, the dimensions (number of rows and columns) of `opt`, and `opt` itself.

Hints

- Read the sequences `x` and `y` from standard input, as strings
- Create an \((M + 1) \times (N + 1)\) edit-distance matrix `opt` with all elements initialized to 0, where `M` and `N` are the lengths of `x` and `y` respectively
- Set the bottom row of `opt` to \(2 \times (N - j)\) and its right column to \(2 \times (M - i)\), where \(0 \leq j \leq N - 1\) and \(0 \leq i \leq M - 1\)
- For example, if `x = 'HAM'` (\(M = 3\)) and `y = 'SPAM'` (\(N = 4\)), then the corresponding `opt` matrix after the above step is

```
  | 0 1 2 3 4
---|-----------------------
x\y | S P A M -
 0 H | 0 0 0 0 6
 1 A | 0 0 0 0 4
 2 M | 0 0 0 0 2
 3 - | 8 6 4 2 0
```
Problems

• Fill in the rest of the \texttt{opt} matrix, starting at \texttt{opt[M - 1][N - 1]} and ending at \texttt{opt[0][0]}, as follows: if \texttt{x[i]} and \texttt{y[j]} are the same, where \(0 \leq i \leq M - 1\) and \(0 \leq j \leq N - 1\), then

\[
\text{opt}[i][j] = \min(\text{opt}[i + 1][j + 1], \text{opt}[i + 1][j] + 2, \text{opt}[i][j + 1] + 2)
\]

and

\[
\text{opt}[i][j] = \min(\text{opt}[i + 1][j + 1] + 1, \text{opt}[i + 1][j] + 2, \text{opt}[i][j + 1] + 2)
\]

otherwise

• The \texttt{opt} matrix for the above example after the preceding step is

\[
\begin{array}{c|cccc}
\text{x/y} & S & P & A & M & - \\
\hline
0 & H & 3 & 1 & 2 & 4 & 6 \\
1 & A & 4 & 2 & 0 & 2 & 4 \\
2 & M & 6 & 4 & 2 & 0 & 2 \\
3 & - & 8 & 6 & 4 & 2 & 0 \\
\end{array}
\]

• Write the following output, each starting on a new line
 • String \texttt{x}
 • String \texttt{y}
 • Dimensions of the \texttt{opt} matrix separated by a space
 • Elements of \texttt{opt}; use format string ‘\%3d’ for elements \textit{not} on the last column, and ‘\%3d\n’ for the last-column elements
Problems

Problem 2 (Recovering the Alignment) Write a program alignment.py that reads from standard input, the output produced by edit_distance.py, ie, input strings x and y, and the opt matrix. The program should then recover an optimal alignment, and write to standard output the edit distance between x and y and the alignment itself.

Hints

• Read from standard input the sequences x and y as strings, and the matrix opt as a 2D array of integers

• Write the edit distance between x and y, ie, the value of opt[0][0]

• Recover and output the alignment, starting at opt[0][0] and ending at opt[M - 1][N - 1], as follows: if opt[i][j] equals opt[i + 1][j] + 2, then align $x[i]$ with a gap and penalty of 2, and increment i by 1; if opt[i][j] equals opt[i][j + 1] + 2, then align a gap with $y[j]$ and penalty of 2, and increment j by 1; otherwise, align $x[i]$ with $y[j]$ and penalty of 0/1 based on whether $x[i]$ and $y[j]$ match or not, and increment both i and j by 1

Note: if one of the sequences is exhausted before the other, align a character from the other with a gap and penalty of 2

• For our running example, the optimal alignment produced by the previous step is

```
- H A M
S P A M
2 1 0 0 (edit distance = 3)
```
Be sure to test your programs thoroughly using the short test data files and actual genomic data files under the data directory; here are the optimal edit distances of several of the supplied files:

- ecoli2500.txt 118
- ecoli5000.txt 160
- fli8.txt 6
- fli9.txt 4
- fli10.txt 2
- ftsa1272.txt 758
- gene57.txt 8
- stx1230.txt 521
- stx19.txt 10
- stx26.txt 17
- stx27.txt 19
Epilogue

Your project report (use the given template, report.txt) must include

• time (in hours) spent on the project
• short description of how you approached each problem, issues you encountered, and how you resolved those issues
• acknowledgement of any help you received
• other comments (what you learned from the project, whether or not you enjoyed working on it, etc.)

Before you submit your files

• make sure your programs meet the input and output specifications by running the following command on the terminal

 $ python3 run_tests.py -v [<problems>]

 where the optional argument <problems> lists the problems (Problem1, Problem2, etc.) you want to test, separated by spaces; all the problems are tested if no argument is given

• make sure your programs meet the style requirements by running the following command on the terminal

 $ pycodestyle <program>

• make sure your report isn’t too verbose, doesn’t contain lines that exceed 80 characters, and doesn’t contain spelling/grammatical mistakes