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ABSTRACT. The problem of counting the number of monomer-dimer coverings of a lattice
comes from the field of statistical mechanics. It has only been shown to be exactly solved for
the special case of dimer coverings in two dimensions ([2], [9]). In earlier work, Stanley [8]
proved a reciprocity principle governing the number N(m,n) of dimer coverings of an m by
n rectangular grid (also known as perfect matchings), where m is fixed and n is allowed to
vary. As reinterpreted by Propp [5], Stanley’s result concerns the unique way of extending
N(m,n) ton < 0so that the resulting bi-infinite sequence, N(m,n) for n € Z, satisfies a linear
recurrence relation with constant coefficients. In particular, Stanley shows that N(m,n) is
always an integer satisfying the relation N(m, —2 —n) = €m,n N(m, n) where €, = 1 unless
m = 2(mod 4) and n is odd, in which case €m,n = —1. Furthermore, Propp’s method was
applicable to higher-dimensional cases.

This paper discusses similar investigations of the numbers M (m,n), of monomer-dimer
coverings, or equivalently (not necessarily perfect) matchings of an m by n rectangular grid.
We show that for each fixed m there is a unique way of extending M (m,n) to n < 0 so that
the resulting bi-infinite sequence, M (m,n) for n € Z, satisfies a linear recurrence relation with
constant coefficients. We show that M (m,n), a priori a rational number, is always an integer,
using a generalization of the combinatorial model offered by Propp. Lastly, we give a new
statement of reciprocity in terms of multivariate generating functions from which Stanley’s
result follows.

1. INTRODUCTION

The problem of counting the number of monomer-dimer coverings of a lattice has been exam-
ined for many years in the field of statistical mechanics (see [3]), and has applications in biology,
chemistry and physics. The closely related dimer problem, where the number of monomers is
zero, was exactly solved for two dimensional lattices by Kasteleyn [2] and Temperley and Fisher
[9]. While we cannot offer an exact solution to the monomer-dimer problem, we can express a
symmetry relationship between the numbers of coverings of certain families of lattices; the base
case being a rectangular grid of fixed height and varying width. Our results are not limited to
two dimensions, however our families are classified by their growth in only one dimension.

Rather than use the language of statistical mechanics (monomers and dimers on lattices),
we will refer to matchings of graphs where we define a matching of a graph G = (V, E) to
be a collection of both edges of G, no two of which share a vertex, and all the vertices that
are not incident with those edges.! Edges correspond to dimers, isolated vertices correspond
to monomers. A matching is called perfect if it is composed entirely of edges, as in the dimer
problem. If we consider the number of matchings of a rectangular grid-graph of fixed height m,
and varying width n, we obtain an integer sequence, {a,}. For example, when m = 1, we obtain
the Fibonacci sequence:

1,2,3,5,8,...

This sequence satisfies a linear recurrence, namely a, = a,—1 + a,—2. So we can always obtain
the value of a term based on the two terms to the left of it. But similarly, we can obtain the

L Another equivalent terminology would be to speak of tilings of planar regions where the tile set consists of a
domino (2 by 1 rectangle) and a square (1 by 1 rectangle).
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value of a term by the two terms to the right of it, e.g. 3 = 8-5, or a,, = ap42 — apy1. In this
way we can extend the Fibonacci sequence to the left and get values for a,, when n < 0:

...—8,5,-3,2,-1,1,0,1,1,2,3,5,8, ...

So we see that we now have a doubly infinite integer sequence, and that it is symmetric up to
sign, i.e. a, = £a_,_2. Some natural questions arise: Does this symmetry mean something?
Do the values of a,, for n < 0, being integers, count something? If so, can we extend the result
to larger values of m?

The answer to all the questions is yes. In [5], Propp considered integer sequences N (m,n),
generated by perfect matchings of rectangular grid graphs of fixed height, and how they extend
to values for n < 0.2 He came up with a unified combinatorial object and a way of counting
signed matchings of these objects that allowed him to show that any half-infinite sequence given
by the number of perfect matchings of a fixed-height grid graph extends to a bi-infinite sequence
that does three things:

e [t satisfies a linear recurrence relation of finite degree with constant coefficients.

e The numbers obtained when going backwards are unique and are always integers.

e The bi-infinite sequences have a special kind of symmetry, or reciprocity, stated roughly
as |N(m,n)| = |N(m,—n — 2)| for any m > 0.

Matchings in general (of the graphs we will classify) satisfy the same sort of linear recurrence
(as we will explain in section 3). But even given that a covering problem satisfies a linear
recurrence, integrality is not ensured when running the recurrence backwards.® For example,
consider covering a 2-by-n grid with the following five objects: a monomer, two dimers sharing a
vertex giving an “L” shape, and the three rotations of the “L” tile by 90, 180, and 270 degrees.
The number of such coverings is governed by

Ay = Ap_1 + 4an_o + 2a,_3.
Upon observing that a; = 1, as = 5, and a3 = 9, we can generate the half-infinite sequence
1,5,9,31,...
To work the sequence backwards, we invert the recurrence:

Up+4+3 — Gp42 — 4an+l

ap = 5
to generate the bi-infinite sequence
7
e — 5,2,071,579,31,...
For n = —2 we cease to observe integrality. However in the case of monomer-dimer tilings,

we can guarantee integrality of the sequences by showing they can be generated by counting
matchings of certain graphs for all values of n.

The objects we will present not only ensure integrality, but also give a direct proof of the
paper’s main idea: a reciprocity statement for general matchings. This claim would appear to
be the least obvious judging by the numerical evidence. Indeed, consider the integer sequence
M (2,n), the number of matchings of a 2-by-n rectangular grid graph. The sequence is governed
by the recurrence

M2,n) =3M2,n—1)+M(2,n—2)—M(2,n—3)

2His first nontrivial case, N(2,n) is also the Fibonacci sequence.

34 priori the numbers obtained from running a linear recurrence in reverse need only be rational. If the
recurrence is of the form an, = c1an—1 + c2an—2 + -+ + cra,_x, then to push the sequence backwards we solve
An—C1Gn_1—"—Ch—10n—k+1

for the smallest term to get a,,_ = o
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with initial ‘natural’ values M (2,1) =2, M (2,2) =7, and M (2,3) = 22, allowing us to generate
the bi-infinite sequence

...14,11,2,3,0,1,0,1,2,7,22,71,228, ...

Although we get integers when going backwards, we seem to lack the symmetry that Stanley
and Propp were able to observe for perfect matchings. However section 4 will reveal that there
is a symmetry hidden in these numbers.

Why there should be symmetry in integer sequences as above is explained in the answer to the
question: what do the numbers, M (m,n) for n < 0, count? Propp had an answer for the case of
perfect matchings, but it doesn’t directly translate to general matchings. Section 2 outlines the
dilemma and gives a solution by way of objects called “empty vertices”. In Propp’s article [5],
weights were not given to isolated vertices, simply because there were none. But when examining
matchings as we've defined them (a monomer-dimer model), isolated vertices do have weights,
giving rise to the need for empty vertices to explain the observed phenomenon and tell the
“proper” combinatorial story. By incorporating empty vertices we will obtain a combinatorial
model whose number of signed matchings is M (m,n) for all n. Looking at the signed matchings
we can see the symmetry hidden in the terms above:

...121-107,41—30,12—10,5—2,1—1,1,0,1,1+ 1,5+ 2,12 + 10,41 + 30, 121 + 107, . ...

The properties exhibited by the numbers M (m,n) and the objects they count can also be
seen in terms of the generating function F, (¢, 2,y,2) = > o, fa(@,y, 2)t". Here x is the weight
given to horizontal edges, y is the weight given to vertical edges, and z is the weight given to
vertices. The polynomial f,(z,y,z) encodes all of the matchings of an m by n grid graph. We
will show

(1) Fpn(t,1,1,1) =37, M(m,n)t"

(2) Fon(t,1,1,0) =307 N(m,n)t"

(3) Fn(t,z,y,2) ~ —Fp,(1/t,x, -y, —2)
The second item in the list shows how perfect matchings may be extracted from general match-
ings. The last item in the list is a heuristic expression of reciprocity that will be made precise
in section 4.2.

The theory of empty vertices is applicable to more general situations than simply matchings
of rectangular grid graphs. We will prove results for matchings of graphs of the form G x P,,
where G is an arbitrary finite graph and P, is the path graph of length n. We will refer to such
graphs as “generalized rectangles”. Notice that an m by n rectangular grid graph is G x P,
where G = P,,. If M(n) is the number of matchings of G x P,, we can show that there are
objects whose number of matchings is M(—n), i.e. a definition for G x P_,. By extension,
this implies that the same symmetry will exist for the entire family of generalized rectangles.
Throughout most of the paper, our proofs will be for generalized rectangles, but examples will
usually involve grid graphs.

2. SIGNED GRAPHS AND SIGNED MATCHINGS

Let us try to deduce the nature of m by n rectangular grid graphs for all n, not concerning
ourselves with matchings at all. In Figure 1, denote the 2 by 3 grid graph by G(2,3). The graph
G(2,4) is obtained from G(2, 3) by adding two horizontal edges, a vertical edge, and two vertices
as shown. Likewise, we can obtain G(2,2) by removing the same set of edges and vertices from
the right of G(2,3). Then we get G(2,1) and G(2,0) inductively. But what are we to make of
G(2,0)7 It has no vertices, and two “anti-” horizontal edges. How many matchings should this
have? What about G(2,—-1)? G(2,—-2)7

The definitions that Propp created for G(m,n) with n < 0 look quite similar to the pictures
in Figure 1, except that his horizontal lines are solid and there are vertices on the endpoints of
the horizontal edges where there are none above (see Figure 2).
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FIGURE 2. Propp’s model for G(2,—1).

We will retain the convention of having only one type of horizontal edge. However, the tips
of the graphs that are “empty” of vertices are defined and interpreted below.

Plain Anti Empty

Vertices (] O O
|
|
Vedges I
l
Hedges _
FI1GURE 3. Basic components of a signed graph.

Define graphs more generally. Let G = (V, E) be a graph in the usual sense, i.e. a set of
vertices and edges between them, except that there is more than one kind of edge and more
than one kind of vertex (see Figure 3). There are plain, anti-, and empty vertices, plain and
anti-vertical edges (vedges), and plain horizontal edges (hedges). For now, plain components are
given weight 1, anti-vertices and anti-vedges are given weight -1, and empty vertices have weight
zero.t

Define a signed matching of a graph G to be a collection of non-adjacent edges of G and all
the vertices not incident with those edges. The weight of the matching is the product of the
weights of the components in the matching. Note that this means all the matchings with empty

4Later we will attach formal variables to edges and vertices, but empty vertices will still have weight zero.
Thinking of monomer-dimer coverings, empty vertices represent positions in the lattice that may not be occupied
by a monomer.
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vertices vanish. In practice, it helps to think of empty vertices as being needy. For any nonzero
matching, empty vertices need to have one of their incident edges included.

FIGURE 4. Pictures of graphs G(2,2), G(3,—-3), and G*(2,2).

Define a regular signed graph, G(m,n) = P,, x P, in the following way. If n > 0, G(m,n)
is just a rectangular grid graph, i.e., a graph with mn plain vertices arranged into m rows of n
vertices each, with plain edges adjoining horizontal and vertical neighbors. Define the conjugate
graph of GG, dentoted G*, to be the graph obtained by replacing all of the vertices and vedges
of G with their anti-counterparts (assuming that an anti-anti-vertex is a plain vertex, etc.).
Under this definition, (G(m,n))* = G*(m,n) is a graph with mn anti-vertices arranged into m
rows of n vertices with hedges adjoining horizontal neighbors and anti-vedges adjoining vertical
neighbors. Then for n < 0, G(m,n) is defined to be a copy of G*(m,n) with a column of m
empty vertices on the left and m empty vertices on the right. Each empty vertex is connected
(with a hedge) only to the anti-vertex horizontally adjacent to it (see figure 4).

For fixed m > 0 and any integer n, we define the numbers M(m,n) = M(G(m,n)) to be
the sum of the weights of the signed matchings of G(m,n). In general, M(G) is the sum of the
weights of all of the signed matchings of G. Some examples are given in figure 5.

Having made all our definitions in terms of rectangular grid graphs, we’d now like to extend
them to apply to general rectangular regions. For any finite graph G, define the generalized
rectangle graph G x P, with n > 0 as follows: Picture n copies of G lined up side by side. Each
vertex in one copy of G is connected with an edge to its image in the copies of G to the left and
right of it. Define all the edges within G to be vedges, and the edges between copies of G to be
hedges. With this idea, we can define G x P_,, to be G* x P,, with m (= the number of vertices
in G) empty vertices to the left and to the right of it. Each empty vertex is connected to exactly
one of the vertices of G* with a hedge. We shall see that these definitions are necessary to prove
statements of reciprocity for more than just grid graphs.

3. ADJUNCTION

Although it seems there are separate definitions for G(m,n) (resp. G x P,) when n > 0 and
when n < 0, we will show they are actually the same object. In Propp’s words, they fit together
“seamlessly.” If they fit together this way, then it follows that for any G, the sequence M (G x P,,)
satisfies a linear recurrence of finite degree with constant coefficients. We will omit the proof as
it is given in [5]. The method of proof utilizes transfer matrix methods and the Cayley-Hamilton
theorem, and it requires only that the family of graphs satisfy the property detailed below.

We begin by making a natural observation about the half-infinite sequence M (G(m,n)), n > 0,
and then we will prove that it actually holds for any n. In doing so, we will be able to establish
that we do indeed have an appropriate definition for G(m,n) (resp. G x P,) with n < 0, and
all our desires for the doubly infinite sequence - integrality, uniqueness, and reciprocity - will be
fulfilled.

We first notice that for positive n1,n2, we can draw the graph G(m,n; + n2) by placing
G(m,n1) and G(m, n2) side by side and using hedges to connect the rightmost m vertices of one
to the leftmost m vertices of the other, as shown in figure 6. Call this operation adjunction. We
write the adjunction of G(m,n1) and G(m,ns) as G(m,n1)G(m, ng). Since G(m,n1)G(m,nz) =
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FIGURE 5. Pictures of signed matchings of G(2,2) and G(3, —3).

G(m,n1+ng), then naturally, M (G(m,n1)G(m,nz2)) = M(G(m,ni+ng)). We'd like to say this
is true more generally, as stated in the following:

Theorem 1 (Adjunction).
MG x P,))(G X Pp,) - (GxPy,,)) = M(G X Py, tny+tny)
for all integers ny,...,ng. In particular,
M(G(m,n1)G(m,ng) - G(m,ng)) = M(G(m,ny +na + -+ +ng))
for all integers ny,...,ng.
The proof of Theorem 1 will require the following two lemmas.

Lemma 1. Let G be a signed graph where two wvertices, a and b, are connected by the string
hedge-empty vertex-hedge-empty verter-hedge. Then G has same number of matchings as the
graph G', where G’ is identical to G except that a and b are connected with one hedge.

Proof. The claim made by Lemma 1 is most easily seen in Figure 7 where we see the immediate
bijection. When the hedge between the empty vertices is present in GG, then in any matching a
and b are not connected inwards. This corresponds to the case when the hedge between a and b
in G’ is not present.
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FIGURE 6. Pictures of two pairs of adjoined graphs.
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o O0—0 o «— o o

FIGURE 7. Proof of bijection between G and G’ in lemma 1.

On the other hand, any matching of G where the hedge between the empty vertices is not
present forces a and b to be connected inwards. This is equivalent to the hedge between a and
b being present in a matching of G'. (]

Lemma 2. Let G be a finite graph with all plain components. Then let H be the graph (G X
P,,)(G x P,,) forny >0 > ng. Then H has the same number of signed matchings as the graph
H/:(G X Pnlfl)(G X PTL2+1)'

Proof. We begin by examining what happens at each vertex, see Figure 8. Consider the plain
vertex a of G connected to the anti-vertex a* of G* by the string hedge-empty vertex-hedge.
There are essentially two types of matchings of H. We’ll say type 1 matchings include the hedge
connecting a to the empty vertex and type 2 matchings include the hedge connecting a* to the
empty vertex. Most of the matchings of type 1 will cancel with most of the matchings of type 2.

Given a matching of type 1, there are only three cases for what can happen the anti-vertex
a* of G*: it can be isolated, it can have an anti-vedge incident with it, or it can have a hedge
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FIGURE 8. Proof of Lemma 2.

incident with it. Likewise for any matching of type 2, the vertex a can be isolated, incident with
a vedge or incident with a hedge. If there are k signed matchings of type 1 where a* is isolated,
then there are —k signed matchings of type 2 where a is isolated. Similar cancellation occurs
between matchings of type 1 where a* has an anti-vedge and matchings of type 2 where a has a
vedge (corresponding to the anti-vedge incident with a*).

The only remaining cases are those of type 1 and type 2 where a and a* both have hedges.
We claim that these matchings are in bijection with the graph where a,a*, all their incident
vedges, and the hedges and empty vertex between a,a* are all replaced with one empty vertex.
The correspondence is shown in Figure 8. Since a was any vertex of G, this can be done for
every vertex of G and the lemma holds. 0

With the lemmas proved, Theorem 1 is not difficult to show.

Proof of Theorem 1. Tt is easily verified that M ((G x Py)(G x P,)) = M(G x P,), so we may
assume all the n; are non-zero. We have that M ((Gx Py, )(G X P,,)) = M (G X Py, +r,) whenever
n; and no are negative by applying lemma 1 to each place where adjoining takes place. When
ning < 0, we can apply lemma 2 repeatedly. Upon each application of lemma 2 we change
neither the number of matchings nor the difference between the number of vertices and the
number of anti-vertices. ]
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FI1GURE 9. Picture of Theorem 1 using lemmas.

4. RECIPROCITY

4.1. Combinatorial Reciprocity. The combinatorial statement of reciprocity is rather obvi-
ous given the definition of G x P,, for n < 0 and the neediness of empty vertices:

Theorem 2 (Reciprocity (I)).
M(G x P_,_3) = M(G* x P,).

In particular,
M(G(m,—n —2)) = M(G*(m,n)).

Proof. On the left side of Figure 10 we have G(m, —n — 2). But since all the outside edges are
forced, the number of matchings of G(m, —n — 2) is clearly equal to the number of matchings of
G*(m,n). The situation for generalized rectangles is identical. O
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FI1GURE 10. Picture of Reciprocity for grid graphs.

This statement of reciprocity is the natural extension of the property of dimer coverings
observed by Propp [5]. Indeed, if we were to consider only the perfect matchings of grid graphs,
then the statement would be the same:

N(G(m,—n —2)) = N(G*(m,n)).

It is known that any dimer covering can be obtained from any other dimer covering by local
moves that leave the parity of vedges unchanged. That is, the sign of every perfect matching
of G*(m,n) is the same, so |[N(m,n)| = |[N*(m,n)|. With less-than-perfect matchings, this is
clearly not the case.

Perhaps the strength of this result is more obvious when we give all the edges and vertices
formal weights and derive a statement of reciprocity in terms of a generating function. Though
we could do so for any finite graph of the form G x P,,, we will only derive an explicit formula
for G(m,n).

4.2. The Generating Function. For convenience, let the weights of the vertices of G(m,n)
for n > 0 be indexed by N x N, read from left to right and top to bottom. Notice that the top
left vertex is 21,1 and the bottom right vertex is z, . Then z; ; is the weight given to the hedge
between z; ; and z; j1+1, and y; ; is the weight given to the vedge between z; ; and ;41 ;. To get
the weights for vertices of G(m,—n), we begin by giving the top right anti-vertex weight z; o
and we proceed analogously. The weights of G(2,3) and G(2,—5) are shown in Figure 11.

z(1,1) 7(1,2) 7(1,3)
x(1,1) x(1,2)
y(L.1) y(1.2) y(1.3)
2(2,1) 2(2,2) 2(2,3)
x(2,1) x(2,2)
z(l,—4)O Z(l;3b z(l,—Zb z(l,—lb z(l,()b
x(1,-5) | x(1,-4) | x(1,-3) | x(1,-2) | x(1,-1) | x(1,0)
1 y(1.-4) 1 y(1,-3) | y(1,-2) I y(1,-1) 1 y(1,0)
| | | | |
22.4) 0 2230 2220 22-1) 220
N A\ A\ N A\
X(2,-5) X(2,-4) X(2,-3) X(2,-2) X(2,-1) x(2,0)

FI1GURE 11. Picture of graphs weighted with formal variables.

The weight of a matching with formal variables is not exactly like the weight as defined before,
as is seen in the following:
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Definition 1. If g is a matching of G(m,n), define the weight of g, w(g), as follows (where
sgn(t)=1 if t is positive, -1 otherwise):
(Hhedges n g xiaj) <Hvedges mn g sgn(j)yi,j> <H'uertices n g SQTL(j)Zi)j)

11 (1—sgn(5))/2
all hedges in G(m,n) “1i,j

w(g) =

Notice that for n < 0, there is a monomial denominator in the weights of matchings. By our
definition, the matchings shown in figure 12 have weights
T1,-3Y1,-1%22,-222,-3

T12Y1,1%2,2%2,3 and
T1,1%1,—201,-3%1,—4%2,—1T2, —2T2,—3%2,_4

x(1,2)
*—o
y(L1)
7(2,2) 2(2,2)
( ]
x(1,-4) x(1,-3) ? x(1,0)
| y(1,-1)
|
7(2,-3) 7(2,-2)
O O @) Oo———1
X(2,-4) x(2,0)

FIGURE 12. Picture of matchings weighted with formal variables.

With this new definition of weights, we define the matching polynomial. In the literature,
there are conventions for describing the matching polynomial of a graph. Our definition does
not adhere strictly to these conventions, though it is similar. Neither have we attempted any
analysis of the polynomials in the style of [?], [?], or [?].

Definition 2. The matching polynomial of G(m,n), fn(2ij, i, %), is given by

Fn(@i g, Yi gy 2i ) = > w(g).

all matchings of G(m,n)
wherei=1...m,j=1...nin>0,7=0,—-1...nif n<O0,

Strictly speaking, the matching polynomial is a Laurent polynomial. That is, a polynomial in
the variables x; ;, x;jl, Yij, 2i,j- Notice if we set all of the weights equal to 1 we get f(1,1,1) =
M (G(m,n)), the number of signed matchings. Similarly if we set all the x; j,y; ; equal to 1 but
set all the z; j equal to 0, then f,(1,1,0) = N(G(m,n)), the number of signed perfect matchings.

By construction the polynomials f, will satisfy a linear recurrence very similar to that which
governs M (G(m,n)). For example, if m = 1, then we get f,, = 21 nfn-1 + T1,n—1fn—2 for all n.
Likewise, there is a link between the polynomials f,, and f_,_2 for n > 0, seen most easily if we
let z;; ==, yi; =y, 2i,; = 2 for all 4, j:

(1) fn(ma —-Y, _Z) = x7n(n+1)f—77,—2(x7 Y, Z)
As mentioned in Section 3, for any fixed m, the numbers M(m,n), n € Z satisfy a linear

recurrence of finite degree with constant coefficients. Therefore there is a rational generating
function for the number of weighted matchings,

Fm(t,ﬂj,y72) = Z fn(ﬂf,y72’)tn.

n>0
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Given (1) it is an easy exercise (see for example [7], ch. 4) to state a reciprocity theorem for the
generating function:

Theorem 3 (Reciprocity(II)).

1
xthFm(t, x,Y,2) = _Fm< T, —Y, —2)-

tem’
This completes the main goal of the paper.

5. MORE ON LINEAR RECURRENCES AND RECIPROCITY

Having a reciprocity for generalized rectangle graphs is useful when examining matchings on
cylinders of fixed circumference and varying height, for example. We have also been able to use
a modified form of adjunction to build a model for the honeycomb graph of fixed height and
width n € Z, which isn’t of the form G x P,. Other graphs that we examined but were unable
to apply our methods include: cylinders with fixed height and varying circumference, Mobius
strips, tori, and projective planes. We do however feel that there may be a way of dealing with
such graphs.

In an unpublished paper [6], Speyer developed a matrix method for encoding perfect matchings
of a graph. With this method he was able to state theorems about recurrences and reciprocity
for a broader range of graphs than those we have handled here. In particular, he was able to
make a statement about the Mobius strip and projective plane. An adaptation of his method
to general matchings seems promising, though experimentation has shown it to be less than
straightforward.
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