
CS187 - Science Gateway Seminar for CS and
Math

Fall 2013 – Class 3

Sep. 10, 2013



What is (not) Computer Science?

Network and system administration?

Playing video games?

Learning to use software packages?

Using and fixing computers?

Computer programming and code writing? (well, yes and no).

”Computer science is no more about computers than astronomy is
about telescopes” (attributed to Edsger Dijkstra, 1970)

Nurit Haspel CS187 - Science Gateway Seminar for CS and Math



What is it Really, Then?

The science of computation – theory and applications.

Theory – Algorithms, data structures, complexity,
computability.

Programming languages.

Software engineering and design.

Hardware design, compilers, operating systems, networks (this
is actually about computers!).

Application: Bioinformatics, robotics, computer vision,
graphics, databases...

Nurit Haspel CS187 - Science Gateway Seminar for CS and Math



A Brief History

What we know as modern computer science was formulated in
the 1930’s.

First electronic computers were built in the 1940’s.

Often computer science did not exist as an independent
department/school until fairly recently (at UMB – only since
2001).

The term ”Computer” was used to describe people until the
1920’s!

Humans used mechanical devices for calculations for
thousands of years.

Nurit Haspel CS187 - Science Gateway Seminar for CS and Math



Early History to 17th Century – First Mechanical Devices
and Theoretical Developments

Abacus, 2700–2300 BC – predating written
numbers, Middle East and Asia

John Napier (1550–1617), discovery of
logarithms, decimal points, ”Napier bones”
– a calculating instrument

Blaise Pascal (1623–1662), first
mechanical adding and subtracting device.

Gottfried Wilhelm Leibniz (1646–1716),
binary system, formal binary logic,
”stepped reckoner” – first mechanical
device capable of performing all 4
arithmetic operations.

Nurit Haspel CS187 - Science Gateway Seminar for CS and Math



19th Century – First Attempt at a ”Real” Computer

The ”difference engine” – a
mechanical computer for
tabulating polynomial
functions.

The ”analytical engine” – a
general-purpose mechanical
computer containing a logic
unit, conditional branching,
loops, and integrated
memory.

Punched cards provided the
input.

Designed, never fully built.

Charles Babbage (1791–1871), invented
the first computer.
Ada Lovelace (1815–1852), first computer
programmer.

Difference engine and analytical engine

Nurit Haspel CS187 - Science Gateway Seminar for CS and Math



Turing and the Birth of Modern Computer Science

1930’s – the ”Church-Turing
thesis” – formalization of
the algorithm, the notion of
computability.

Lambda calculus (Church) –
a framework for defining
functions.

The Turing machine
(Turing) – a theoretical
framework for a computer.

Alonzo Church (1903–1995)

Alan Turing (1912–1954)

Nurit Haspel CS187 - Science Gateway Seminar for CS and Math



The Turing Machine

A (hypothetical) device
representing a computing
machine.

Contains an infinite tape
with a (finite) set of symbols
from a finite alphabet – the
input.

A read/write head that can
move to the left or right.

A (finite) set of state,
including an initial state and
a set of final states.

A (finite) list of instructions
that tells us how to move
from one state to another:
Given a state qi and a
symbol si , move to state qj ,
write symbol sj and move
the head to the left or right.

Nurit Haspel CS187 - Science Gateway Seminar for CS and Math



Computability and the Universal Turing Machine

This is a very simple model... right?

Yet, it is as powerful as any computing device... even today.

As a matter of fact, any task can be computed (performed by
any computational device following a list of instructions, just
like any of today’s computer programs) if and only if it can be
performed by a Turing machine.

The Universal Turing machine – A Turing machine that can
simulate any Turing machine on any input.

This is the foundation of modern day computers.

Nurit Haspel CS187 - Science Gateway Seminar for CS and Math



Stored-Program Computers, the Von-Neumann
Architecture

A design that does not
require ”reprogramming” of
a computer for every new
task.

Instead, the programs and
instructions can be stored
inside the computer.

Sort of like the Universal
Turing Machine...

Modern computers are still
based on this architecture.

Nurit Haspel CS187 - Science Gateway Seminar for CS and Math



What Are Algorithms, Anyway?

A set of instructions/procedures to solve a given problem.

Nurit Haspel CS187 - Science Gateway Seminar for CS and Math



What Are Algorithms, Anyway?

A set of instructions/procedures to solve a given problem.

Input Algorithm Output

Nurit Haspel CS187 - Science Gateway Seminar for CS and Math



What’s in an Algorithm

Must be unambiguous, solve the
problem and terminate.

One starting point and (one or
more) end point(s).

Input and output (both optional).

Control flow – we follow the
instructions (not necessarily in the
order of their appearance) and at
any stage we’re at some ”block”.

Conditional branching – if...then...
(else...).

Loops – repeat some actions for a
certain number of times or until
some condition is filled.

Nurit Haspel CS187 - Science Gateway Seminar for CS and Math



Smaller Building Blocks to Build a Larger Algorithm

Step 1: Go to the
supermarket

Step 2: Buy apples Step 3: Use in a
recipe

step 1 → step 2 is common to all recipes. We can write a program
called “get apples” and use it as a “black-box“ inside all three.

Nurit Haspel CS187 - Science Gateway Seminar for CS and Math



More (CS/Math Relevant) Examples

1 Print ”Hello, world!” on the screen.

2 Given a sequence of integers in no particular order, (-2, 17,
36, 29, 100, 10), find the smallest.

3 Given a sequence of integers, sort them from the smallest to
the biggest.

4 Given a sequence of integers, calculate their sum.

How can you relate (2) and (3)?

Nurit Haspel CS187 - Science Gateway Seminar for CS and Math



Use Smaller Building Blocks to Build a Larger Algorithm

One way to sort a sequence of numbers is using the following
algorithm:

Algorithm 1 Sort (list L of N numbers)

1: Repeat steps (2-4) N times:
2: m = Minimum(L)
3: print(m)
4: Remove m from L

Algorithm 2 Minimum(list L of M numbers)
1: tmpmin = first element in L
2: for Each of the remaining elements in L do
3: i = Next element in L
4: if i < tmpmin then
5: tmpmin = i
6: end if
7: end for
8: return tmpmin

Nurit Haspel CS187 - Science Gateway Seminar for CS and Math



Computational Complexity

Given a problem with an input of size N, how long will it take
to compute it as a function of N?

Sometimes the choice of the right algorithm can make the
difference between hours and seconds.

Some problems are computable but their computation takes
so much time that it is impractical.

Example: You work for a delivery company and have to visit a
number of destinations, each exactly once, and go back to
your starting point. What is the shortest way to do it?

Nurit Haspel CS187 - Science Gateway Seminar for CS and Math



Can Anything be Computed?

In other words – can any problem be formulated as an
algorithm?

No! And it can be shown mathematically.

As a matter of fact, in every non-trivial axiomatic
formulations in mathematics, there are undecidable
propositions (statements that are impossible to prove).

It is called “incompleteness”.

Example – the halting problem: Given any program and any
input, will the program ever stop?

Turns out you can’t tell, in the general case!

Nurit Haspel CS187 - Science Gateway Seminar for CS and Math



The Halting Problem

Let’s say we can tell whether a program stops on an input.

Algorithm 3 Halt (program, input)
1: if program stops on input then
2: return It Stops!
3: else
4: return It Doesn’t stop!
5: end if

Now let’s look at this program:

Algorithm 4 smartass (program)
1: if Halt(program,program) then
2: Go into an infinite loop
3: else
4: return It doesn’t stop! I’m stopping now!
5: end if

What happens if we call smartass(smartass)?

Nurit Haspel CS187 - Science Gateway Seminar for CS and Math



Acknowledgements and Sources

Wikipedia

Ikea catalog

http://www.cgl.uwaterloo.ca/ csk/halt/

http://www.gmtel.net/web/windowshelp/algorithm.htm

Kevin Amaral, CS department.

Nurit Haspel CS187 - Science Gateway Seminar for CS and Math


