
CS187 - Science Gateway Seminar for CS and
Math

Fall 2013 – Class 3

Sep. 10, 2013



What is (not) Computer Science?

Network and system administration?

Playing video games?

Learning to use software packages?

Using and fixing computers?

Computer programming and code writing? (well, yes and no).

”Computer science is no more about computers than astronomy is
about telescopes” (attributed to Edsger Dijkstra, 1970)

Nurit Haspel CS187 - Science Gateway Seminar for CS and Math



What is it Really, Then?

The science of computation – theory and applications.

Theory – Algorithms, data structures, complexity,
computability.

Programming languages.

Software engineering and design.

Hardware design, compilers, operating systems (this is actually
about computers!).

Application: Bioinformatics, robotics, computer vision,
graphics, databases...

Nurit Haspel CS187 - Science Gateway Seminar for CS and Math



A Brief History

What we know as modern computer science was created in
the mid-20th century.

Often computer science did not exist as an independent
department/school until fairly recently (at UMB – only since
2001).

The term ”Computer” was used to describe people until the
1920’s!

Humans used mechanical devices for calculations for
thousands of years.

Nurit Haspel CS187 - Science Gateway Seminar for CS and Math



Early History to 17th Century – First Mechanical Devices
and Theoretical Developments

Abacus, 2700–2300 BC – predating written
numbers, Middle East and Asia

John Napier (1550–1617), discovery of
logarithms, decimal points, ”Napier bones”
– a calculating instrument

Blaise Pascal (1623–1662), first
mechanical adding and subtracting device.

Gottfried Wilhelm Leibniz (1646–1716),
binary system, formal binary logic,
”stepped reckoner” – first mechanical
device capable of performing all 4
arithmetic operations.

Nurit Haspel CS187 - Science Gateway Seminar for CS and Math



19th Century – First Attempt at a ”Real” Computer

The ”difference engine” – a
mechanical computer for
tabulating polynomial
functions.

The ”analytical engine” – a
general-purpose mechanical
computer containing a logic
unit, conditional branching,
loops, and integrated
memory.

Punched cards provided the
input.

Designed, never fully built.

Charles Babbage (1791–1871), invented
the first computer.
Ada Lovelace (1815–1852), first computer
programmer.

Difference engine and analytical engine

Nurit Haspel CS187 - Science Gateway Seminar for CS and Math



Turing and the Birth of Modern Computer Science

1930’s – the ”Church-Turing
thesis” – formalization of
the algorithm, the notion of
computability.

Lambda calculus (Church) –
a framework for defining
functions.

The Turing machine
(Turing) – a theoretical
framework for a computer.

Alonzo Church (1903–1995)

Alan Turing (1912–1954)

Nurit Haspel CS187 - Science Gateway Seminar for CS and Math



The Turing Machine

A (hypothetical) device
representing a computing
machine.

Contains an infinite tape
with a (finite) set of symbols
from a finite alphabet – the
input.

A read/write head that can
move to the left or right.

A (finite) set of state,
including an initial state and
a set of final states.

A (finite) list of instructions
that tells us how to move
from one state to another:
Given a state qi and a
symbol si , move to state qj ,
write symbol sj and move
the head to the left or right.

Nurit Haspel CS187 - Science Gateway Seminar for CS and Math



Computability and the Universal Turing Machine

This is a very simple model... right?

Yet, it is as powerful as any computing device... even today.

As a matter of fact, any task can be computed (performed by
any computational device following a list of instructions, just
like any of today’s computer programs) if and only if it can be
performed by a Turing machine.

The Universal Turing machine – A Turing machine that can
simulate any Turing machine on any input.

This is the foundation of modern day computers.

Nurit Haspel CS187 - Science Gateway Seminar for CS and Math



Stored-Program Computers, the Von-Neumann
Architecture

A design that does not
require ”reprogramming” of
a computer for every new
task.

Instead, the programs and
instructions can be stored
inside the computer.

Sort of like the Universal
Turing Machine...

Modern computers are still
based on this architecture.

Nurit Haspel CS187 - Science Gateway Seminar for CS and Math



What Are Algorithms, Anyway?

A set of instructions/procedures to solve a given problem.

Nurit Haspel CS187 - Science Gateway Seminar for CS and Math



What Are Algorithms, Anyway?

A set of instructions/procedures to solve a given problem.

Input Algorithm Output

Nurit Haspel CS187 - Science Gateway Seminar for CS and Math



What’s in an Algorithm

Must be unambiguous, solve the
problem and terminate.

One starting point and (one or
more) end point(s).

Input and output (both optional).

Control flow – we follow the
instructions (not necessarily in the
order of their appearance) and at
any stage we’re at some ”block”.

Conditional branching – if...then...
(else...).

Loops – repeat some actions for a
certain number of times or until
some condition is filled.

Nurit Haspel CS187 - Science Gateway Seminar for CS and Math



More (CS/Math Relevant) Examples

1 Print ”Hello, world!” on the screen.

2 Given a sequence of integers in no particular order, (-2, 17,
36, 29, 100, 10), find the smallest.

3 Given a sequence of integers, sort them from the smallest to
the biggest.

4 Given a sequence of integers, calculate their sum.

How can you relate (2) and (3)?

Nurit Haspel CS187 - Science Gateway Seminar for CS and Math



Use Smaller Building Blocks to Build a Larger Algorithm

Nurit Haspel CS187 - Science Gateway Seminar for CS and Math



Use

1 Print ”Hello, world!” on the screen.

2 Given a sequence of integers in no particular order, (-2, 17,
36, 29, 100, 10), find the smallest.

3 Given a sequence of integers, sort them from the smallest to
the biggest.

How can you relate (2) and (3)?

Nurit Haspel CS187 - Science Gateway Seminar for CS and Math



Can Anything be Computed?

No. It can be mathematically shown that some problems are
undecidable.

In other words – There are problems for which no algorithm
can be constructed that will always answer yes/no.

This concept is related to the Incompleteness theorems,
stating that there cannot be a non-trivial, self-consistent set
of mathematical axioms.

Any non-trivial axiomatic system will always contains
unprovable theorems.

Nurit Haspel CS187 - Science Gateway Seminar for CS and Math



Computer Science is (also) About Computers

Nurit Haspel CS187 - Science Gateway Seminar for CS and Math



Acknowledgements and Sources

Wikipedia

Ikea catalog

Kevin Amaral, CS department.

Nurit Haspel CS187 - Science Gateway Seminar for CS and Math


