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The Protein Folding Problem

Protein folding is the translation of
primary sequence information into
secondary, tertiary and quaternary
structural information

Don’t forget post-translational
modifications.

They change the chemical nature
of the primary sequence and thus
affect the final structure
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Relationship Between Structure and Function

H. Wu, 1931: First formulation of the protein folding problem
on record

Mirsky and Pauling 1936:

Chemical and physical properties of protein molecules
attributed to amino-acid composition and structural
arrangement of the amino-acid chain
Denaturing conditions like heating assumed to abolish
chemical and physical properties of a protein by “melting
away” the protein structure

The relationship between protein structure and function was
under significant debate until the revolutionizing experiments
of Christian Anfinsen and colleagues at the National Institute
of Health (NIH) in the 1960s

Nurit Haspel CS612 - Algorithms in Bioinformatics



Anfinsen’s Experiments: Spontaneous Refolding

Experiments by Christian B.
Anfinsen showed that the small
ribonuclease enzyme would
re-assume structure and enzymatic
activity after denaturation

This ability to regain both structure
and function was confirmed on
thousands of other proteins.

It seemed to be an inherent property
of amino-acid chains

After a decade of experiments,
Anfinsen concluded that the
amino-acid sequence governed the
folding of a protein chain into a
“biologically-active conformation”
under a “normal physiological
milieu”

He received the Nobel prize in
chemistry for his formulation of this
relationship between the amino acid
sequence and the biologically-active
(functional) structure of a protein

The telegram that I received from the Swedish Royal
Academy of Sciences specifically cites “...studies on
ribonuclease, in particular on the relationship between the
amino acid sequence and the biologically active
conformation...”
“Studies on the Principles that Govern the Folding of
Protein Chains”
Nobel Lecture, Dec. 11, 1972
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From Anfinsen’s Experiments to Simulations

Let the 3D spatial arrangement of
atoms constituting the protein chain
be referred to as a conformation

How does the amino-acid sequence
determine the biologically-active
conformation?

If one knows the answer to the
above, one can formulate
instructions for a computer
algorithm to compute the
biologically-active conformation

There are many conformations
(possible arrangements of the chain)
of a protein chain

What makes the biologically-active
conformation different from the rest?

Can this information be used to
“guide” a computer algorithm to this
special conformation?

The telegram that I received from the Swedish Royal
Academy of Sciences specifically cites “...studies on
ribonuclease, in particular on the relationship between the
amino acid sequence and the biologically active
conformation...”
“Studies on the Principles that Govern the Folding of
Protein Chains”
Nobel Lecture, Dec. 11, 1972
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The Thermodynamic Hypothesis

Anfinsen’ experiments made the case for the thermodynamic
hypothesis:

This hypothesis states that the three-dimensional structure of
a native protein in its normal physiological milieu (solvent,
pH, ionic strength, presence of other components such as
metal ions or prosthetic groups, temperature, etc.) is the one
in which the Gibbs free energy of the whole system is lowest.

That is, that the native conformation is determined by the
totality of inter-atomic interactions and hence by the amino
acid sequence, in a given environment.

[Anfinsen′s Nobel Lecture, December 11, 1972]
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Case Study... What Happens When it All Goes Wrong

Eligibility criteria for blood donation, from the red cross website:

”You are not eligible to donate if:

From January 1, 1980, through December 31, 1996, you spent
(visited or lived) a cumulative time of 3 months or more, in the
United Kingdom (UK), or From January 1, 1980, to present, you
had a blood transfusion in any country(ies) in the (UK) or France.”
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Case Study... What Happens When it All Goes Wrong

A bovine epidemic struck the UK
in 1986, 170,000 cows appeared
to be mad: they drooled and
staggered, were extremely
nervous, or bizarrely aggressive.
They all died. As the brains of
the dead “mad” cows resembled a
sponge, the disease was called
bovine spongiform
encephalopathy, or BSE.

Other examples of spongiform
encephalopathy are scrapie which
develops in sheep,
Creutzfeld-Jacob Disease (CJD)
and its variant (vCJD) which
develop in humans.

In 1982 the infectious agents
responsible for transmitting
spongiform encephalopathy were
defined and named prions
(Stanley Prusiner, 1982).
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The Mad Cow... What Happens When it All Goes Wrong

Prions are proteins that are found
in the nerve cells of all mammals.
Many abnormally-shaped prions
are found in the brains of
BSE-infected cows and vCJD or
CJD patients.

The difference in normal and
infectious prions may lie in the
way they fold.

Evidence indicates that the
infectious agent in transmissible
spongiform encephalopathy is a
protein.

The normal protein is called PrPC
(for cellular). Its secondary
structure is dominated by alpha
helices.

The abnormal, disease producing
protein called PrPSc (for scrapie),
has the same primary structure as
the normal protein, but its
secondary structure is dominated
by beta conformations.
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The “Kiss of Death” or ”Attack of the Zombies”

The abnormally-shaped prion gets absorbed into the
bloodstream and crosses into the nervous system.

The abnormal prion touches a normal prion and changes the
normal prion’s shape into an abnormal one, thereby destroying
the normal prion’s original function.

Both abnormal prions then contact and change the shapes of
other normal prions in the nerve cell.

The nerve cell tries to get rid of the abnormal prions by
clumping them together in small sacs.

Because the nerve cells cannot digest the abnormal prions,
they accumulate in the sacs that grow and engorge the nerve
cell, which eventually dies.

When the cell dies, the abnormal prions are released to infect
other cells. Large, sponge-like holes form where many cells die.
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Prion Misfolding

The Prion Hypothesis suggests
that diseases like mad cow and
human CJD are caused by the
misfolding of a protein known as
PrP that most cells contain.

Once a few copies of the protein
become misfolded ), they cause
other PrPs to misfold, leading to
an accumulation of insoluble
proteins in the cell.

misfolded proteins cause cell death
and damage the nervous system.
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Not Only Cows: Human Prion Diseases

Creutzfeldt-Jakob disease (CJD) is a rare fatal brain disorder
that usually occurs in late life and runs a rapid course.

No known treatment or cure.

Most CJD cases are sporadic (not hereditary).

It can also be acquired through contact with infected brain
tissue (iatrogenic CJD) or consuming infected beef

About 5 to 10% of cases are due to an inherited genetic
mutation associated with CJD (familial CJD)

The mutation makes the prion protein more susceptible to
misfolding.

How and why? Still not entirely clear...
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Similar yet Different: Huntington’s Disease

A (usually) hereditary
disease that causes death of
brain cells

Autosomal dominant
inheritance pattern

Symptoms: Mood disorders,
uncoordinated movements,
eventually dementia

Typical age at onset: 30-50

Life expectancy: 15-20 years
from diagnosis

Woody Guthrie, 1912 – 1967

Dr. Remy Hadley (”13”), House MD
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Trinucleotide Repeat Disorder

The length of a repeated section of a gene exceeding a normal
range

The HTT gene contains a sequence of CAG– repeated
multiple times (i.e. ... CAGCAGCAG ...)

This sequence codes to Glutamine (GLN, Q)

Number of repeats varies normally in the population

This creates a sequence of Glutamines, called PolyQ
(polyglutamine chain).

An abnormally large number of CAG repeats in the HTT gene
causes HD.

Repeat count Classification Disease status Risk to offspring
<26 Normal None None
27–35 Intermediate None Elevated but << 50%
36–39 Reduced Penetrance Maybe 50%
40+ Full Penetrance Will be affected 50%
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Trinucleotide Repeat Disorder

A sequence of 36 or more glutamines results in the production of a
protein which has different characteristics.

The PolyQ regions appears to adopt a β-sheet structure

This altered form, called mutant huntingtin (mHTT), increases the decay
rate of certain types of neurons.

The huntingtin protein interacts with over 100 other proteins, and
appears to have multiple biological functions.

Enzymes in the cell often cut the elongated protein into fragments, which
form abnormal clumps inside nerve cells, and may attract other, normal
proteins into the clumps (Sounds familiar?)
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Computational Modeling of Protein Folding

Problem definition: Given the amino acid sequence, compute
the correct 3-D arrangement (folded structure) of the protein.

3D coordinates representing locations of atoms.

An energy function representing physical interactions.

It should model how atoms interact with each other.

Tells us how physically favorable is a given arrangement of
atoms in space (conformation).

We should able to compute it for every given conformation.

Thermodynamics states that a molecule aims to fold into its
minimum energy conformation.

Exploration of the dynamics of proteins → search in the space
spanned by the possible structures, guided by the energy
function.
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Degrees of Freedom (DOFs)

Definition (Degrees of Freedom)

The degree of freedom (DOF) is the set of independent parameters
that can be varied to define the state of the system

Examples:
The location of a point in a 2-D cartesian system has two
independent parameters – its (x , y) coordinates.

x

y
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Degrees of Freedom (DOFs)

Definition (Degrees of Freedom)

The degree of freedom (DOF) is the set of independent parameters
that can be varied to define the state of the system

Examples:
An alternative representation – (r , θ), distance from the origin and
rotation about the origin, respectively.

r
θ r

θ

r cos θ

r sin θ

a

b

dist(a,b)=r
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Degrees of Freedom (DOFs)

Definition (Degrees of Freedom)

The degree of freedom (DOF) is the set of independent parameters
that can be varied to define the state of the system

Examples:

The location of a point in a 2-D cartesian system has two
independent parameters – its (x , y) coordinates.

An alternative representation – (r , θ), distance from the origin
and rotation about the origin, respectively.

A molecule with n atoms can be represented by a set of 3×N
cartesian coordinates, so it has 3× N DOFs...

Or does it?

The actual number of DOFs is smaller, since distance and
angle constraints restrict the atomic movement.
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Representation by Internal Coordinates

When trying to manipulate the structure internal coordinates
may be easier to work with.

The internal coordinates represent bond length, angles and
dihedrals.

Remember that we treat bond lengths and planar angles as
fixed, but we still need them.

They help us infer the connectivity of the structure and switch
between representations.
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Representation by Internal Coordinates

Representing protein conformations with the dihedral angles
as the only underlying degrees of freedom is known as the
idealized or rigid geometry model.

Ignoring bond lengths and bond angles greatly reduces the
number of degrees of freedom and therefore the
computational complexity of representing and manipulating
protein structures.
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Representation by Internal Coordinates

As a reminder – there are two freely rotatable backbone
dihedral angles per amino acid residue in the protein chain: ϕ
is a consequence of the rotation about the bond between N
and Cα, and ψ , which is a consequence of the rotation about
the bond between Cα and C.

The peptide bond between C of one residue and N of the
adjacent residue is not rotatable.

The number of backbone dihedrals per amino acid is 2
(except the first and last), a total of 2N-2.

but the number of side chain dihedrals varies with the length
of the side chain. Its value ranges from 0, in the case of
glycine, which has no side chain, to 5 in the case of arginine.
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Representation by Internal Coordinates

One can generate different three dimensional structures of the
same protein by varying the dihedral angles.

There are 2N-2 backbone dihedral DOFs for a protein with N
amino acids, and up to 4N side chain dihedrals that one can
vary to generate new protein conformations.

Changes in backbone dihedral angles generally have a greater
effect on the overall shape of the protein than changes in side
chain dihedral angles (why?)
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Methane Example

An example of a Z-matrix representing the internal coordinates of
methane (CH4)

Atom Bonded Dist Angle Value Dihe Value

C
H 1 1.089
H 1 1.089 2 109.471
H 1 1.089 2 109.471 3 120.0
H 1 1.089 2 109.471 3 -120.0
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Methane Example

The Cartesian coordinate representation of Methane (CH4)

Atom X Y Z

C 0.000 0.000 0.000
H 0.000 0.000 1.089
H 1.027 0.000 -0.363
H -0.513 -0.889 -0.363
H -0.513 0.889 -0.363

We can switch back and forth between different representations,
up to an arbitrary rigid transformation (absolute position and
orientation in space). To move from internal to cartesian
coordinates we need the first three atoms, a, b, c .
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Methane Example

The first atom, a, represents the origin of the coordinate
systems. Set its three cartesian coordinates to (0, 0, 0).

The second atom, b, is at a fixed distance from the first one,
which is their bond distance.

Fix the z axis as the axis lying on the bond between the two
atoms. b’s coordinates are therefore (0, 0, d) where d is the
distance.

The third atom, c , makes an angle with a and b and a bond
with a.

We can define the x − z plane as the plane defined by the C
atom and the first two hydrogens (every three non-collinear
points define a plane).

These two constraints and set the y coordinate to zero. Let
rac be the distance between atoms a and c .

Nurit Haspel CS612 - Algorithms in Bioinformatics



Methane Example

The x , z coordinates can be inferred by
converting from polar to cartesian
coordinates using the following formula:

z = rac ∗ cos(θ) = −rac cos(180− θ)
x = rac ∗ sin(θ) = rac sin(180− θ)

In our example:

z = −1.089 ∗ cos(70.529) = −0.363
x = 1.089 ∗ sin(70.529) = 1.027

Now that we have the x , z plane, the y
axis can be extracted by a cross product
between the two vectors ||b − a|| and
||c − b||, after normalization.

z

x

θ

C H

H
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Methane Example

If H3 were on the x − z plane, it would make a 109.471◦

angle with C-H1 in the opposite direction, so its projection on
the x − z axis would be {−1.027, 0.000,−0.363}.
However, it has a dihedral angle of 120◦ with the C-H1-H2
plane, so we should rotate it by 60◦ around the z axis.
z coordinate is unchanged, and x , y values are:

x = −1.027 ∗ cos(60) = −0.513
y = −1.027 ∗ sin(60) = −0.889

Similarly, H4 creates a dihedral angle of −120◦ with the
C-H1-H2 plane, so we rotate it by −60◦ around the z axis:

x = −1.027 ∗ cos(−60) = −0.513
y = −1.027 ∗ sin(−60) = 0.889
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3D Rotation

O

ρ

x

y

z

rθ

φ
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Methane Example

Re-orientating the molecule leads to Cartesian coordinates that
make the symmetry more obvious:

Atom X Y Z

C 0.000 0.000 0.000
H 0.629 0.629 0.629
H -0.629 -0.629 0.629
H -0.629 0.629 -0.629
H 0.629 -0.629 -0.629
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Computational Modeling of Protein Folding

What does the thermodynamic hypothesis suggest a näıve
computer algorithm can do?

The basic search involves enumeration of conformations

Exhaustive, brute-force search

To be able to enumerate, the algorithm needs to have a way
to first represent and then compute new conformations

Modeling, degrees of freedom

To determine that some conformations are more relevant than
others, the interatomic interactions need to be summed over
to associate an energy estimate with each computer
conformation

Energy function, scoring, ranking
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Enumeration and Cyrus Levinthal’s Paradox

Consider the backbone
dihedral angles as the only
source of flexibility

Also consider that this bond
can be in a limited number
of configurations

Back-of-the-envelope calculation:

A small protein chain of 51
amino acids has 100 such
rotatable bonds

Assume there are only 3
configurations available to
each rotatable bond

Then there are of 3100

conformations available to
the protein chain
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Enumeration and Cyrus Levinthal’s Paradox

Levinthal’s Paradox:

Can a protein or algorithm enumerate 3100 conformations?

Assuming a rate of 1013 conformations per second, it would
take 1027 years for a protein sample all conformations

Conclusion: This is NOT how proteins fold! [in the lab,
proteins fold in milliseconds/microseconds]
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The Non-paradoxical Levinthal’s Paradox

Levinthal’s paradox serves to
illustrate that proteins do
NOT sample conformations
randomly and somehow
stumble across the
lowest-energy one

There is method to the
madness!

Proteins fold faster than
random trial suggests

Then there must be an
energetic bias that “guides”
the protein towards the
biologically-active
conformation without going
through unnecessary
conformations

What does the energy
landscape look like?

What does this mean for
how proteins actually fold?
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Pathway vs. Landscape

Maybe there are
specific
pathways

Information on
which pathways
the protein takes
is encoded
somehow in the
unfolded states

Each state is seen
as a conformational
ensemble

The energy
landscape shows
that the range of
states becomes
more limited with
lower energy

The landscape view
encompasses the
“preferred”
pathways
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Framework vs. Collapse

Since proteins do not seem to fold at random, there must be an
order of events that drives the folding of a protein chain.

Important question: what drives the folding of a protein chain?

Local interactions drive folding

There is an order of events:

Secondary structures form first

Once formed, they stay that way

The stable secondary structures then
self-assemble in the native tertiary
structure (folded conformation)

Non-local interactions drive folding

Proposed by Ken Dill in 1985

Global collapse drives the secondary
structure formation and not the
reverse

Folding code resides mainly in global
patterns of contact interactions that
are non-local
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Funnel Landscape View of Protein Folding

If proteins search for conformations, they do
so on an energy landscape similar to a
multidimensional funnel

The slope of the funnel guides the protein
down towards the energy minimum, where
the native state resides

The “folding funnel” leads to increase in
rates of protein folding compared to expected
rates for random diffusion processes

The folding funnel also largely prevents
entrapment of partially folded states

The funnel view of protein folding was
simultaneously proposed by Ken Dill and
Peter Wolynes

This energy landscape view of protein folding

Has been confirmed in experiment
Is now well accepted
Drives the logic/rules behind many
computer algorithms that fold
sequences in silico
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The Landscape Encompasses the Pathways

As more sections of the native structure
fall into place, the protein achieves lower
energy, with the final folded native
structure at the bottom of the funnel

The landscape view allows thinking of
multiple molecules rolling down the
pathways of successive local minima until
they all converge to the global minimum

This process closely resembles the
experiment, where measurements are
obtained over multiple protein molecules
– multiple replicas

Width of the funnel (cross-section) gives
the entropy – a measurement of how
many different conformations achieve
similar energy value

As a protein folds, the free energy goes
down – what is free energy?

The (Gibbs) free energy G = E -
TS

E = potential energy
(interatomic interactions)

T = temperature (on which
folding happens)

S = entropy (measures
degeneracy of a state)
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Landscape View and Assisted Folding

Some experiments suggest that folding does
not always lead to a unique state or structure
corresponding to the overall free-energy
minimum

Kinetic hypothesis: a protein may get
trapped in a local minimum in a really rugged
energy landscape

Some proteins are assisted in their folding by
chaperones (other proteins that oversee and
correct the folding process)
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Folding With a Computer
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Folding With a Computer

Protein folding tries to answer the
how together with the what:

Given a random conformation, how
does the protein find its
lowest-energy (native) state and
what does this state look like

Interested in both the final answer
and in the actual manner the answer
is obtained

Protein Structure Determination
addresses mainly the what:

Given the amino-acid sequence, what
is the native state (one structure, an
entire ensemble of native-like
conformations)?

Computational methods that
consider the how are categorized as
folding methods.

Methods that address the what are
categorized as structure
determination/prediction methods.
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Challenges for a Computer Scientist

Modeling – how are protein conformations represented

If all atoms are explicitly modeled and followed in space, this
puts a lot of computational burden on a search algorithm. If
not all atoms are explicitly modeled, how does one determine
which ones to model?
Example: Focus on spatial arrangements of the backbone first
Are the modeled atoms allowed to move anywhere in space?
Example: Force atoms to be on a lattice – brings enumeration
into the realms of feasible computation
Coarse-grained (not all atomic detail) vs. all-atom modeling is
an important decision
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Challenges for a Computer Scientist

Exploration/Search algorithm to traverse the conformational
space

Trajectory-based exploration is one strategy to search the
protein conformational space
Probabilistic Exploration that does not generate conformations
in a trajectory is another

Scoring – Energy function to determine whether a
conformation is of low or high energy

Practical functions are empirical AND there are many of them
Very important to design functions that can accurately score
coarse-grained conformations
Evaluation of an energy function on an all-atom representation
is quite expensive
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Representation of Protein Conformations

Discrete atoms in a
lattice – realm of
enumeration.

Continuous – off-lattice models.

Coarse-grained
modeling

Fine-grained modeling
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Energy of Protein Conformations

Empirical force-fields to measure potential energy AMBER ff*,
CHARMM, GROMACS, knowledge-based, ...
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Launching Trajectories To Sample the Basin

Trajectory-based exploration:
1. Start with a conformation
2. Generate a next one
3. Continue until ...

Systematic Search – Molecular
Dynamics (MD)

Probabilistic Walks – (Metropolis)
Monte Carlo (MC)

In MD, consecutive conformations in
the trajectory are generated by
following the gradient of the energy
function.

In MC, moves are sampled from a
move set to generate the next
conformation in the trajectory.

The generated conformation is then
accepted according to the Metropolis
criterion.
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Trajectory-based Search of the Native State

Systematic Search: Molecular Dynamics (MD)

Uses Newton’s laws of motion

Employs thermodynamics and statistical mechanics to
simulate the folding process

Detailed simulations follow the motion of each atom in space

MD simulations demand a lot of computer time to simulate a
few nanoseconds of the folding process

Reveal detailed information about the folding process
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The Conformational Space is Vast

Conformational space is
high-dimensional: many atoms to
follow in space

Energy surface associated with
conformational space [Onuchic
J.N., Luthey-Schulten Z., and
Wolynes P.G. Annu. Rev. Phys.
Chem. 48, 1997]

Evolution has “guided” native state
(in naturally-occurring proteins) to
be lowest free-energy state [Unger
R. and Moult, J. Bull. Math. Biol.
55, 1993]
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Locating the Basin of the Funnel with MD

1 evaluate forces on each atom

2 move atom according to force
numerical update: x(t + dt) = x(t)
+ dt * f(x(t)) + ...

3 go back to 1.

Numerical update is the bottleneck

dt needs to be small for accuracy
(1-2 fs)

Generates a single trajectory

Results depend on initial
conditions, since MD is essentially
a local optimization technique.
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Trajectory-based Search of the Native State

Random (Probabilistic) Search: Monte Carlo (MC)

Conducts biased probabilistic walks

At each point in time (iteration), a move is made that is not
necessarily physical or representative of what the protein does
to transition between conformations

A conformation resulting from a move is accepted with the
Metropolis criterion based on its potential energy

The paths taken to the native state may be actually
impossible for a protein to follow

By computing conformations through moves, MC exhibit
higher sampling efficiency – they can make big jumps in
conformational space
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Locating the Basin of the Funnel with MC

Metropolis Monte-Carlo (MMC)

1 Start with a random/extended
conformation Ccurr ← Cstart

2 Make a move (change Ccurr ) which
results in a new conformation Cnew

3 Give a value to one of the
parameters considered example:
rotate a bond

4 If E (Cnew ) < E (Ccurr ) then
Ccurr ← Cnew

5 else dE = E (Cnew)− E (Ccurr)
Ccurr ← Cnew with prob.
e−dE/scaling factor

6 Goto 2.
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Pros and Cons of MD and MC

Both MD and MC launch trajectories in conformational space

The end-point of these trajectories depend to an extent on the
initial conditions (conformations from which the trajectories
were initiated)

Both MD and MC are local optimization techniques aimed at
sampling the global minimum in the energy landscape

While MD gives physical trajectories, MC’s trajectories may
not correspond to a sequence of moves that a protein actually
follows

There may be nothing physical about the moves/parameters
chosen to generate consecutive conformations

This gives MC the ability to make bigger jumps in
conformational space and sample the space faster than MD
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Lattice Models – The Simplest Model

The conformational space is vast

So, let’s restrict positions in space
for an amino acid to a lattice
(cubic or diamond)

This simple model allows to
enumerate all possible
conformations (on a short chain)

The model can actually help
answer the following question:

Possible question 1: Which
sequences lead to a stable native
conformation? (protein design)
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Lattice Models – The Simplest Model

The conformational space is vast

So, let’s restrict positions in space
for an amino acid to a lattice
(cubic or diamond)

This simple model allows to
enumerate all possible
conformations (on a short chain)

The model can actually help
answer the following question:

Possible question 2: Given a
sequence, what is its most stable
configuration? (protein folding,
structure prediction)
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Lattice Based Models

Potential course of action:

1 Enumerate possible amino-acid sequences

2 Twenty amino acids is too many, so we will have certain
“representative” classes of amino acids

3 For each sequence, we will compute/enumerate the number of
conformations on the lattice

4 We will then rank (through a ranking/scoring energy function)
the enumerated conformations to determine the good folds

Hopefully we will find out which sequences yield good folds
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HP Lattice Model: Ranking Sequences and Folds

There are only two types of amino acids – H
(red) for hydrophobic, P (blue) for polar
(hydrophilic)

H units repel water, P units attract water

The energetic forces acting between the units

are reduced to a single rule:

H’s like to stick together (P units are
inert, neither attracting nor repelling)
This is a very simplified model.
The chain folds on a lattice laid out on
graph paper.

H’s and P’s are placed at the grid points of
the 2D lattice

The peptide bonds are lines drawn on the grid

Confinement on the lattice keeps the number
of conformations finite (amenable to
enumeration)

Several lattice geometries are possible in both
2D and 3D
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HP Lattice Model: Self-avoiding Walks

We can ask ourselves two related
questions:

Given an n-aa chain of H’s and P’s
– How many sequences are there?

Given a specific sequence of H’s
and P’s – How many
conformations are there?

This translates to the number of
self-avoiding walks on the 2D
lattice on the right

A self-avoiding walk is a path on
the 2D grid that does not cross the
same grid point more than once

Remember course of action:

Enumerate all possible HP
sequences

For each sequence,
enumerate the number of
conformations (self-avoiding
walks) on the 2D lattice

Collect statistics on which
sequences give good folds
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HP Lattice Model: Self-avoiding Walks

How many shortest self-avoiding
walks of length n-1 are there on
the 2D grid?

Walks of length 1: four possible
directions: North, West, South,
East [4 walks]

Walks of length 2: From the ends
of the walk of length 1, three
choices (remember self-avoiding) [3
x 4 = 12 walks]

Walks of length 3: 36

... Walks of length 51: 1022

Remember course of action:

Enumerate all possible HP
sequences

For each sequence,
enumerate the number of
conformations (self-avoiding
walks) on the 2D lattice

Collect statistics on which
sequences give good folds
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HP Lattice Model: Good and Bad Folds

What makes a fold good?

Low Gibbs free energy G = E - TS

Low potential energy, high entropy

An extended chain has high E but low S

E is high because amino acids that
“want” to be close together are forced to
be apart

S is low because the extended chain is
highly ordered

Folding the chain should bring it back
into a shape with a low overall value for G

How do we model G here?

Approximation: count only the
number of H-H contacts (dashed
lines)

This should reflect the tendency of
hydrophobic amino acids to go
towards the core of the protein to
avoid water

Low G is now maximum number of
H-H contacts – this is our scoring
function
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Finding Best 2D Lattice Folds of HP sequences

12 of the 107 most stable folds of 80 21-aa sequences: Red H’s form stabilizing
contacts (dotted white lines) when nearest neighbors blue P beads have no
interactions (not counted in the G function)

There are 117,676,504,514,560 possible folds of 21-aa sequences. The 5 shown
here are selected at random.
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Monte Carlo to Sample the Conformational Space

On long chains, enumeration is impractical: Monte Carlo
could compute self-avoiding walks in the lattice

Given an HP chain of length N

Start with a random self-avoiding walk on the N × N grid

For i = 1 to Ncycles

Propose a move to obtain a new self-avoiding walk from the
current one
Estimate the G value of the proposed walk with the ranking
H-H score and compare it to the G value of the current walk
If the difference in energy meets the Metropolis criterion
accept the new walk and resume the next cycle from it
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Monte Carlo on Off-lattice models

Lattice models are a crude approximation of the real conformational
space of proteins

How would you apply Monte Carlo to a backbone chain of atoms in
3D (off-lattice models)?

Your parameters (movable set) are the ϕ, ψ angles of the chain

Where would you draw values from to attempt moves?

Suggestion 1: random angle values from -π to π
Suggestion 2: angle values sampled from the Ramachandran
map of an amino-acid

What energy function would you implement to score the new
conformations?

Suggestion 1: minimize the number of collisions - crude
approximation. Often works, not very accurate.
Suggestion 2: also reward atoms in specific distances from
each-other (van der Waals)
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Methods for Structure Prediction and CASP

Problems

Secondary structure prediction
Fold recognition
Tertiary structure prediction

Methods

Knowledge-based methods for secondary structure prediction
Tertiary structure prediction for single proteins
Protein complex prediction
Protein-ligand and Nucleic acid prediction

Quality assessment

For tertiary structures: RMSD, lRMSD, LGA
For binding sites: Shapes, Surfaces, Cavities
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CASP: History and Motivation

Critical Assessment of techniques for protein Structure
Prediction (CASP)

First held in 1994 on a biennial basis – 16 up to 2024.

Protein Structure Prediction Center:
http://predictioncenter.org/

A competition that pitches computational groups against one
another on their solutions to the structure prediction problem
on various proteins (whose experimental structures have just
become available but are temporarily withheld from deposition
in the PDB)

Problems addressed since 1994 (some of them discontinued
due to great success):

Secondary Structure Prediction – discontinued due to high
accuracy
Fold Prediction/Remote Homology Detection Method
Tertiary Structure Prediction
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CASP – The Process
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CASP16 (2024) – List of Addressed Problems

Single Proteins and Domains: Identify regions that fold
into “independent” compact structures

Protein Complexes: Correctly model subunit-subunit and
protein-protein interactions.

Accuracy Estimation: Submit accuracy estimates for
multimeric complexes and inter-subunit interfaces.

Nucleic acid (DNA and RNA) structures and complexes:
An RNA structure category was introduced in the previous
CASP and it appeared that deep learning methods were not
yet as effective as more traditional ones.

Nurit Haspel CS612 - Algorithms in Bioinformatics



CASP16 (2024) – List of Addressed Problems

Protein – organic ligand complexes: In addition to ligands
integral to protein targets, several target sets may be related
to drug design.

Macromolecular conformational ensembles: Following the
success of deep-learning methods for single structures, it is
increasingly important to assess methods for predicting
structure ensembles.

Integrative modeling: Deep learning methods combined
with sparse experimental data such as SAXS and chemical
crosslinking are now being used extensively to obtain the
structure of large marcomolecular complexes.
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CASP: Pushes State of In-silico Research

Human experts are allowed to have their submissions assessed
and ranked

The focus of CASP, however, is on assessing computational
approaches and methods

Another problem considered in CASP competitions is fold
recognition or prediction

Reason: even if one cannot obtain the precise details of the
tertiary 3D structure, one can at least recognize the fold from
the sequence
Use: tertiary structure details are easier to compute once the
overall fold is known

The main interesting problem in the last years is prediction of
tertiary structure from the amino-acid sequence
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CASP: Fold Recognition

http://www.rcsb.org (PDB)

New “fold” discovery is decreasing
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Approaches to In-silico Structure Prediction

Homology modeling: use information from known
structure(s) with similar sequence(s)

Main idea: knowledge-based approach, exploiting databases of
known protein structures
Applicability: if > 60% sequence identity, problem is (many
times...) solved
Challenge: < 30% sequence identity, poor results
Challenge: Loop regions are usually not very well conserved
Good for sequences that have close homologs with known
structures.

Nurit Haspel CS612 - Algorithms in Bioinformatics



Approaches to In-silico Structure Prediction

Ab-initio structure prediction: predict without prior
knowledge of other structures

Main idea: conformational sampling/searching combined with
optimization of an energy function
Conformational sampling includes trajectory-based exploration,
enhanced sampling, robotics-inspired methods, and more
Energy function can be physics-based (CHARMM, AMBER),
knowledge-based (obtained from statistics over database of
known structures), or have terms of both
Applicability: on proteins with < 30% sequence identity (or
more...)
Challenge: trajectory-based exploration methods may take too
long
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Approaches to In-silico Structure Prediction

Hybrid methods: combine ingredients from knowledge-based
and ab-initio methods

Hierarchical approaches, fragment-based assembly dominate at
CASP
Applicability: where just knowledge-based or just ab-initio are
inadequate
Challenge: extend applicability to longer protein chains and
multi-chain complexes
Even most sophisticated methods are still not very accurate.
Recently, deep learning has made significant progress
(AlphaFold + other learning based methods for contact
prediction)
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