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ABSTRACT We have previously presented a
building block folding model. The model postulates
that protein folding is a hierarchical top-down pro-
cess. The basic unit from which a fold is con-
structed, referred to as a hydrophobic folding unit,
is the outcome of combinatorial assembly of a set of
“pbuilding blocks.” Results obtained by the computa-
tional cutting procedure yield fragments that are in
agreement with those obtained experimentally by
limited proteolysis. Here we show that as expected,
proteins from the same family give very similar
building blocks. However, different proteins can
also give building blocks that are similar in struc-
ture. In such cases the building blocks differ in
sequence, stability, contacts with other building
blocks, and in their 3D locations in the protein
structure. This result, which we have repeatedly
observed in many cases, leads us to conclude that
while a building block is influenced by its environ-
ment, nevertheless, it can be viewed as a stand-
alone unit. For small-sized building blocks existing
in multiple conformations, interactions with sister
building blocks in the protein will increase the
population time of the native conformer. With this
conclusion in hand, it is possible to develop an
algorithm that predicts the building block assign-
ment of a protein sequence whose structure is un-
known. Toward this goal, we have created sequen-
tially nonredundant databases of building block
sequences. A protein sequence can be aligned against
these, in order to be matched to a set of potential
building blocks. Proteins 2003;51:203-215.
©2003 Wiley-Liss, Inc.*
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INTRODUCTION

Several models have been proposed to describe the
protein folding process. These include

(1) the framework model,
(i1) the nucleation and growth mechanism,
(iii) the diffusion-collision model,

© 2003 WILEY-LISS, INC.  *This article is a US government work
and, as such, is in the public domain in the United States of America.

(iv) the hydrophobic collapse, and
(v) the hierarchical model.

In the (i) framework model,> * secondary structure

formation is independent of tertiary interactions and
usually precedes these. If tertiary interactions occur first,
they are not necessarily native. In the (ii) nucleation and
growth® or nucleation-condensation mechanism,®” folding
initiates by formation of a “nucleus,” followed by its
extension. The model proposes that formation of such a
nucleus is dependent on contacts between key residues,
which have been conserved through evolution. This model
has led to searches for specific residue-conservation in
families of related proteins. In the third (iii) model, largely
preformed secondary structure elements assemble into
complete folds through random diffusion and collision.® If
favorable, they may lock to yield native conformations. In
contrast to these, the hydrophobic collapse (iv) model
highlights the hydrophobic effect.°~** In this scheme,
folding initiates by burial of extensive nonpolar surface
area. Secondary structure and specific interactions follow.
In the hierarchical model (v) pioneered by G. Rose almost
two decades ago,'? folding initiates locally, with folded
elements assembling step-wise to yield the native fold
(reviewed in Refs. 13 and 14). These models are not
necessarily exclusive of each other. The hierarchical model
may include elements of hydrophobic collapse in the
assembly of local folded elements. Optimization of the
specific (e.g., van der Waals, electrostatic, disulfide bonds)
interactions would follow. The hierarchical model may
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further include elements of nucleation and growth. Nucle-
ation does not necessarily have to be restricted to specific
residues. Similarly, in the framework model, we may
substitute single secondary structure element formation
by chain-linked local building block minima.

Since the first pioneering work,'? numerous articles
have appeared, substantiating the hierarchical folding
concept. The building block folding model also considers
folding as a hierarchical event.'%1¢

At the first step, local transient building block elements
fold. The conformations they obtain are not necessarily
stable, but they have higher population times than all
other, alternate conformations. In the next step, building
blocks associate, mutually stabilizing each other. The
association is via selection of favorable conformers, similar
to multi-molecular complex formation. Applying our proce-
dure, we progressively dissect native protein struc-
tures'®'® and proceed to create building block clusters
separately from all-a, a+, a/B, and all-B protein classes.
The clusters represent similar conformations [low root
mean squared distance (RMSD) between them]. We ana-
lyze the clusters with respect to their biological and
chemical characteristics: size, buried/exposed nature, sta-
bility, and fold location.

Our goal is to relate each building block cluster to a
characteristic “profile” that represents its typical se-
quence, super-secondary structure composition, hydropho-
bicity, and buried/exposed position. Because building blocks
constitute local minima on the polypeptide chain, they
may enable identification of building blocks on amino acid
sequences, help in following the protein folding process,
and be useful in modeling of local and global protein
structures.

Some building blocks are “more important” for correct
folding than others.'®'” If a critical building block is cut
out of the protein structure, the remaining building block
fragments collapse to yield a non-native stable 3D fold. On
the other hand, removal of a noncritical building block
leads to a structure more similar to the native fold.
Consequently, we further analyze the building blocks with
respect to their “criticalness,” i.e., their locations, type, and
extent of interactions in the protein. We investigate
whether they have a typical 3D fold and their relative
stability.

Our results suggest that building blocks can be viewed
as stand-alone protein fragments, with conformations
repeating between different families, regardless of the
overall structures and sequences.

This is reminiscent of protein folds. Nevertheless, on
their own small building blocks with low stabilities may
have multiple preferred conformations, with low popula-
tion times. In such cases, the native conformation is
stabilized by interactions with sister building blocks in the
protein, similar to two-state complexes. These findings
lend support to folding schemes, which are based on
hierarchical concepts.

They further help in visualization of dynamic folding
pathways and intermediate (mis-associated) states. With
regard to critical building blocks, we find that the higher
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their “criticalness” score, the less stable. This makes
inherent sense, because it enables large interfaces be-
tween building blocks in the protein core, while still
keeping down protein size.

METHODS
The Building Block Cutting Algorithm

The algorithm'®!® uses a scoring function that mea-

sures the relative conformational stability of a candidate
building block. The stability score for a given building
block is defined as:
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where Z is compactness, H hydrophobicity, and I isolated-
ness. Each of the components is calculated as the deviation
from the average value of known protein structures. The
average and standard deviation of these quantities were
calculated from a nonredundant dataset of 930 representa-
tive single-chain proteins from the PDB.!° Terms with
superscript 1 were determined with respect to fragment
size and those with superscript 2 as a function of the
fraction of the fragment size to the whole protein.

First we define the ASA (the solvent accessible surface
area) of the fragment, which is calculated numerically.2%:2!
The three components are described elsewhere.'®

All candidate fragments with minimum length are tested
for their stability score. Local minima are candidate
building blocks. This process continues iteratively until
the building blocks can no longer be dissected. The result-
ing tree outlines the most probable folding routes. The
different levels are referred to as cutting levels.

The Critical Building Block Finding Algorithm

The algorithm'”'® uses a scoring function (¢-score)

based on the contacts the building block has with other
building blocks.'® Consider a building block j that inter-
acts with two different building blocks, 2 and [. The
differential contacting surface area for building block j is
defined as:

Diffcontsa (j) = contsa(j,k) + contsa (j,]) — contsa (k,I)

where contsa(j, k) is the surface area buried between
building blocks j and k. Consider the following cases:

1. Diffcontsa(j) < 0. The interactions between % and [ are
stronger than the sum of their interactions with j,
Diffcontsa(y) is set to zero.

2. Diffcontsa(j) > 0. The interactions between %k and [ are
weaker than the sum of their interactions with j,
Diffcontsa(j) is multiplied by different weights, so that
greater weight is assigned to building blocks that
mediate the interactions between building blocks that
are not in direct contact.
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The critical building block index [CIndex(j)] for a build-
ing block j is the sum of diffcontsa(j) computed for all
combinations of £ and [ divided by the total surface area of
building block j, totsa(y):

Clndex(j) = Y.diffcontsa(j) = totsa(j)

The total surface area of a building block has two terms:
the surface area buried by the rest of the protein ([prot-
burysa(j)] and the surface area exposed to the solvent
[solvexpsa(j)]. The critical building block index is modifed
to give more weight to building blocks that are largely
buried:

Clndex(j) = Clndex(j) — protburysa(j)/solvexpsa(j)

At each cutting level, the average and standard deviation
of the CIndex values are computed. The statistical signifi-
cance of each building block is measured by its Z-score:

Zyeorej) = (CIndex(j) — p)/o,

where  is the average building block CIndex value and o
is the standard deviation. A building block is considered
critical if it satisfies the following criteria:

(1) it is found at most levels below hydrophobic folding
unit,
(ii) it has a consistently high CIndex at different levels,
and
(iii) its CIndex is significant by at least two standard
deviations in at least one hierarchical level of the
protein anatomy.

Creating the Building Block Databases

The building block database was created using the data
collected by Tsai et al.'® (available at http:/
protein3d.nciferf.gov/tsai). We created 24 different data-
bases, separately clustered from four protein classes, all-«,
a+pB, a/B, and all-B. For each class we created a database
for each cutting level (first to sixth). Not all proteins can be
cut down to the sixth level, and a database of a higher
cutting level contains fewer proteins than of a lower level.
The coordinates of each building block were taken from the
PDB, assuming that the native building block conforma-
tion is the most populated in solution.

Clustering the Building Blocks

Clustering was based on structural similarity. Each of
the databases (corresponding to a different class and level)
was clustered separately. The clustering algorithm is:

1. Each cluster has representative members (one or more),
assuming members are similar enough so a building
block that matches the representatives, matches all
members.

2. For each building block: Run over all existing clusters
an algorithm that finds the best rigid matching between
the candidate building block and the cluster representa-
tive building block, provided that the size of each of the
two building blocks is at least 70% of the other building
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block. The rigid matching algorithm is geometric-
hashing based.?2

3. If the two building blocks match (within RMSD of 1.8 A
at most for cutting levels 1 and 2, 1.5 A for levels 3 and
4, and 1.8 A for levels 5 and 6, and the match size is at
least 70% the size of the smallest protein) assign the
building block to this cluster.

4. If, at the end of the procedure, the building block does
not match any cluster representative, open a new
cluster with this building block as the representative.
The cluster representative is simply the first building
block that has opened this cluster. This is an approxima-
tion that can save computational time, but may also be
inaccurate because building blocks in the same cluster
may only match the representative, but not one an-
other. Averaging over the cluster members’ coordinates
for a representative is more accurate. However, recalcu-
lating the coordinates of a representative would take
time proportional to the length of the building block
(because such a calculation is executed for each CA,
repeated each time a new building block is added to the
cluster). Additionally, not all cluster building blocks are
identical in length.

Clustering has two stages:

1. Classifying the building blocks according to their origi-
nal SCOP?? protein family and clustering within the
family. The motivation for this stage is that proteins
from the same family almost always give very similar
building blocks; therefore, clustering proteins within
families reduces the number of building blocks at the
next stage and saves computational time. This stage is
relatively very fast, because the number of building
blocks for each family is small and they cluster well, so
the number of the resulting clusters is also small.

2. Merging the initial clusters, with the representative of
each initial cluster now representing all cluster mem-
bers. This step does not reduce the clustering accuracy,
because the initial clusters contain very similar, nearly
identical building blocks. If such a cluster is merged
with another cluster, the initial representatives of the
two clusters become the representatives of the new
cluster. In such cases, a cluster may have more than one
representative.

The complexity of the clustering stage is, in the worst
case:

O(The number of building blocks * The number of clusters).

However, in practice, after running the first, initial stage,
the complexity is closer to:

O(The number of clusters?).

Figure 1 gives a schematic illustration of the clustering
process.
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A schematic illustration of the clustering process. The circles at the top represent the clusters. The

building blocks below them are their representatives. In this figure there are 3 clusters. The bottom left building
block is a candidate for clustering. It is trial-matched against the representatives of the clusters until a match is
found (in this case, a match is obtained with the representative building block of cluster 2. The match is shown
in the square at the bottom center). Consequently, the candidate building block is joined to cluster 2 and is not

tested against the other cluster representatives.

Creation of the Sequence Databases

Next, we created a sequentially nonredundant sequence
database that represents each clustered database the
following way:

1. For each cluster, the sequences of the cluster members
were extracted to a FASTA format file.24

2. Within each cluster, the sequences are clustered using
the utility blastclust (in the BLAST Package®®) with
default parameters. Thus, each structural cluster can
be associated with a nonredundant group of sequences
that give a local structural pattern.

3. All the nonredundant sequence groups of all structural
clusters are gathered and reclustered using blastclust.
The goal of this stage is to eliminate all redundancies
among clusters, caused by similar sequences that fall in
different structural clusters. Ideally, this should not
occur, because similar sequences almost always give
similar structures and should be in the same cluster.
However, because of our clustering method, if there are

similar structural clusters, a building block that can
match both clusters will be assigned to the first one it
encounters. The goal of this stage is to compensate for
such cases.

The result of this procedure is a sequentially nonredun-
dant database that represents the whole structural data-
base by means of sequences. Each item in that database is
associated with a specific structural cluster, such that a
structural cluster can be represented by more than one
sequence.

The cutting and clustering programs were written as a
library of C-shell, perl and C+ + programs and were run on
a two processor Red Hat 6.1 Linux machine. The statistical
analysis was performed using Matlab, version 6.

RESULTS
Building Block Database Creation and Clustering

Figure 2 presents an example of the distribution (here
for a+p) of the number of clusters in the different cutting
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Fig. 2. The number of clusters at each cutting level (1-6) for a+8
proteins. Other protein classes exhibit a similar behavior.
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Fig. 3. The distribution of cluster sizes in level 5 of /B proteins. Other
protein classes behave in a similar manner.

levels. The average building block size hardly changes
beyond level 3. This is because at lower levels (5—6), the
proteins that were cut to short fragments and lowered the
average building block size can no longer be cut and
therefore are not included. This keeps the average size
quite constant at levels 4—6. Figure 3 shows the distribu-
tion of cluster sizes among level 5 of /B proteins as an
example. If our clustering parameters were more liberal,
there would be more large clusters, but their members
would be less similar. We preferred small clusters with
more similar members. Table I shows that the average
cluster size usually ranges between 3 and 6 building
blocks, and depends on the protein class.

General Cluster Analysis by Means of Sequence
and Structure

Clusters with nearly identical building blocks usually
derive from the same family. However, sequence conserva-
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tion changes considerably among clusters. Figure 4(a,b)
illustrates examples of clusters. The superpositioning has
been carried out using MUSTA, our multiple structure
comparison algorithm.?® In these examples, the cluster
members do not all belong to the same sequence family.
For clarity, building blocks that are nearly identical,
sequentially and structurally, were removed, with only
one (or two) from each sequence family shown here. Thus,
even though the sequence similarity is low, the structural
similarity is high. This phenomenon resembles whole
proteins, where the structure is better conserved than the
sequence. As expected, the structurally least conserved are
the building block ends, turns and loops, regardless of
their sequence conservation. The building blocks vary
from a nearly single secondary structure element (e.g., an
a-helix with a short loop attached to it) to an almost
independent protein domain.

The most frequent cases are of super-secondary struc-
ture elements, like two helices connected by a loop or two
strands and a loop.

Building block stability score analysis was calculated
from the distribution of the stability scores for nonredun-
dant building blocks in every cluster with over 15 building
blocks. The compactness component of the stability score
may differ within the cluster, because of loops and dan-
gling ends. The hydrophobicity depends both on the amino
acid composition of the building block and on its structure,
and the “isolatedness” depends on the composition and the
environment the building block is in, that is, on the rest of
the protein. Therefore, we expect building blocks from
different protein families (thus, different sequences and
environments) to have different stability scores. Figure 5
shows an example of a cluster with a broad stability
distribution, with the building blocks derived from pro-
teins that do not all belong to the same structural and
sequential families. Although some building blocks are
very similar to each other sequentially, others differ
substantially. This broad distribution was observed in
most clusters that contained building blocks from different
protein families. On the other hand, homogeneous clusters
exhibit a narrow stability distribution. Greater similarity
in the stability scores reflects higher similarity of the
original proteins and not only the structural similarity
between building blocks.

Do Different Proteins Contribute Building Blocks
to Different Clusters?

We expect the answer to be generally no. Proteins from
different families may share structural elements and some
of them may be local stable elements. On the other hand,
the probability that two dissimilar proteins will share
more than one such local substructure is low. For each of
our 24 building block cluster databases we created a
nonredundant subset of building blocks from proteins of
different families.

For each we calculated how many building blocks it
shares with all others. The results are presented in the
form of a matrix M, where M(i,j) is the number of building
blocks shared by proteins i and j. We expect most of the
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TABLE I. Details for Each Database’

Average

Protein Cutting No. of No. of No. of building Average
class level protein chains  buildingblocks  clusters  blocksize  cluster size
o/ 1 1514 2121 515 138.80 4.12
o/ 2 1514 5257 1286 58.83 4.09
o/ 3 1514 8013 1899 36.84 422
o/ 4 1495 7813 1727 29.25 4.52
o/ 5 1174 9944 2124 2741 4.68
o/ 6 595 5663 1402 27.16 4.04
a+fB 1 1619 2491 379 101.95 6.57
a+f 2 1616 5445 828 4747 6.58
a+B 3 1558 7454 1199 31.82 6.22
a+pB 4 1339 7702 1285 26.65 5.99
a+f 5 520 4361 1089 26.20 4.00
a+B 6 153 1606 628 26.75 2.56
all-a 1 870 1419 405 81.93 3.50
all-a 2 870 3181 751 4247 4.23
all-a 3 794 3858 830 31.14 4.65
all-a 4 594 2971 727 27.09 4.09
all-a 5 263 2662 707 26.52 3.77
all-a 6 9 1299 466 27.73 2.88
all-8 1 1313 1757 428 109.90 4.10
all-8 2 1311 3814 1049 51.16 3.64
all-g 3 1299 5815 1566 34.87 3.7
all-8 4 1132 4683 1456 29.80 3.22
all-8 5 523 4068 1283 28.22 3.17
all-g 6 167 1914 729 28.75 2.63

"The data here were calculated only from the representatives of the clusters, to avoid bias toward large

families that contain nearly identical building blocks.

matrix to consist of 0 and 1, and only a few indices with
more than 2. Figure 6 shows matrices constructed from
nonredundant building block databases representing the
four folds, all-«, all-B, o/B, and a+p, at level 3. o/B, a+B,
and all-B matrices mostly consist of 0’s with small “isles” of
1’s and few isles of larger numbers (see color bar). This
leads us to conclude that the building blocks in proteins
from different families are largely independent and that
two unrelated proteins usually do not share more than one
building block of similar structure. This conclusion is more
profound than the simple fact that two unrelated proteins
usually do not share many structural elements. The
building blocks are different from other structural ele-
ments in the sense that they are structurally stable and
can exist independently in solution. This conclusion fur-
ther supports our assumption that the building blocks are
independent units. The all-a matrix illustrates that these
proteins have a higher likelihood of sharing more than one
building block, probably because the number of ways
helices can combine to yield local stable elements is
smaller.

Critical Building Block Analysis
Relative position of the critical building blocks
in the protein

Because critical building blocks tend to be buried, being
able to identify critical blocks in protein sequences may
provide a clue about the 3D location of the fragment.
Consequently, we are interested in features that make a
building block critical.

Critical building blocks are frequently unstable. Never-
theless, the native conformation is likely to prevail, similar
to the situation in other building blocks. Their instability
implies low population times; however, through their
binding to other building blocks, the native conformations
are greatly stabilized, leading to population shifts toward
the native conformations. Kumar et al.'® have suggested
that the critical building blocks tend to appear at the
N-terminal part of the protein sequence. This was sup-
ported by both the locations of the proregion and by
analysis of dihydrofolate reductase'” and adenylate ki-
nase.'® Critical building blocks can be viewed as intramo-
lecular chaperon-like fragments, except that they are not
cleaved and remain an integral part of the protein. Here
we have carried out an analysis of all critical building
blocks, and the results are summarized in Table II, with a
typical distribution shown in Figure 7. Critical building
blocks can appear anywhere along the sequence, but they
have a tendency toward the termini, with a slight prefer-
ence toward the C-terminus. Figure 8 shows an example of
a building block that has been identified as critical by the
algorithm. The critical building block (at the C-terminus,
8th in level 3) is darkened with the rest of the protein in a
lighter shade.

Characteristic size and shape of a critical
building block

Our analysis did not detect characteristic sizes and
shapes of critical building blocks. Sequence alignments of
nonredundant sets of critical building blocks from differ-
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Fig. 4. Two examples of clusters. The figures show multiple structural alignments of the cluster members
and the legends depict the pdb18 codes of each building block member, and its range of residues. (A) 6ldh,
apo-lactate dehydrogenase from dogfish; 1avo, apo duck ovotransferrin; 1gnd, guanine nucleotide dissociation
inhibitor, alpha-isoform from cow. (B) 1bbhA, cytochrome ¢ from Chromatium vinosum, chain A; 1cgn,
cytochrome ¢ from Alcaligenes denitrificans; 1cpr, cytochrome ¢ from the purple phototropic bacterium,
Rhodobacter capsulatus; 1jsw, native |-aspartate ammonia lyase from Escherichia coli, chain B; 1rcp,
cytochrome c from R. capsulatus; 2fuoA, fumarase c with bound citrate from E. coli, chain A.

ent folds and at different levels did not reveal any signifi-
cant sequence similarity. Critical building blocks have
different sizes and secondary structure composition and
folds and cannot be characterized by their sequences. This
was expected, because the “criticalness” does not depend
on the details of the shape, but on the position inside the
protein. However, the frequency of hydrophobic residues is
considerably higher than in other parts of the protein. The
difference gets larger at lower levels. A x* test of the

frequency differences between critical and noncritical build-
ing blocks is very significant, in the majority of the cases
with a p-value close to 0.

Relative stability of critical building block

Is there a correlation between the criticalness score and
building block stability? It is reasonable to assume a
negative correlation, i.e., the more critical the building
block, the less stable it will be. The overall contact area
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Fig. 5. An example of a stability score distribution in a cluster of a+8
proteins, level 3, where the building blocks belong to various protein
families and the stability score distribution is broad (mean: —4.843; SD:
2.63). The sequence alignment (not shown) illustrates weak similarity.

between a critical building block and all other building
blocks is large. On the other hand, critical building blocks
are relatively small. Small building blocks usually have
lower stability, because they do not have a large hydropho-
bic core. Combined, large interfaces and small size argue
for low stability. In solution, on their own, critical building
blocks are likely to persist in a disordered state. To be
stable, with such an extended surface area necessitates
considerably larger fragment sizes. However, that would
be counterproductive to the cell, as it would inflate protein
sizes.2” This explanation is further supported by the fact
that the criticalness score gets higher with the level of the
cutting. Thus, although the critical building blocks tend to
be relatively unstable, they are still considered building
blocks, with higher population time than other conforma-
tions. Figure 9 plots the stability against the criticalness
score (¢-score), for all building blocks from o/B, a+, all-a,
and all-B proteins, at level 3. The linear fit of the two data
series is also plotted. The correlation coefficients are given
in the Figure 9 legend. Note that the main stability score is
less than zero. This results from the way the hydrophobic-
ity score is calculated, as a linear extrapolation instead of
the number of standard deviations. The correlation coeffi-
cient is very significant statistically (p-value ~ 0 using
t-test).

Next we examined whether members of the same clus-
ters tend to have similar criticalness scores. We expected
the criticalness score to be less dependent on the building
block itself and more on its environmental context, consis-
tent with our finding that there is no typical critical
building block structure. Because members of the same
cluster have similar 3D structures but may be located in
different areas of their proteins, they are likely to have
different criticalness scores. In contrast, building blocks
derived from similar proteins have similar criticalness
scores. This is likely to occur not because these building
blocks are similar, but because proteins from the same
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family tend to be cut at similar locations. Therefore,
building blocks from proteins of the same family would not
only be very similar in sequence and structure, but also be
in similar 3D environments within their proteins. Figure
10 shows an example of the distributions of the criticalness
scores within large building block clusters of proteins from
different families. The criticalness scores distribute broadly
within the clusters. Within families, they distribute nar-
rowly.

Previously we have compared in detail sequences and
structures of building blocks within the same family. We
found'”1® that both are more conserved in critical building
blocks than in other building blocks. This may be under-
stood when we consider the instability of the critical
building blocks. Even small changes in sequence can shift
the energy landscape, leading to misfolded proteins. It is
intriguing that at least for the cases we have examined,
building blocks critical for folding are also critical for
function. Currently, we are exploring further this poten-
tial folding-function inter-relationship.

DISCUSSION
Hierarchical protein folding schemes and the
building block folding model

There are a number of strategies that have been adopted
in protein folding schemes.?® These range from “real” ab
initio folding, to threading and homology modeling. The
first is currently impractical for chains sizes over 40-50
residues. On the other hand, success in modeling is a
function of the similarity between the target and se-
quences whose structures are available. In-between are
hierarchy-based schemes.?973!

These pre-pick chain pieces and fold them through
modeling of numerous short, overlapping, fixed-sized frag-
ments. A well-known example is that of Baker et al.,?%33
who studied short sequences that folded into known 3D
local substructures by shifting an eight-residue window
along the sequence. Oliva et al.?* classified loop structures.
Other methods search the conformational space on the
energy landscape.?*~3® Combined with multiple sequence
alignments and ensemble-clustering schemes, these signifi-
cantly improve structural prediction.?*~*2 Alternatively,
cutting the target sequence into fragments and sampling
space through parallel tempering (replica exchange) en-
ables overcoming barriers between local minima, fre-
quently associated with rough energy landscapes. Here,
multiple (MC, MD) trajectories are run at given tempera-
ture intervals, switching conformations at specified steps.
Hence, “folding by parts” with subsequent combinatorial
docking, appears a practical promising approach.

Here, we provide validation of hierarchical schemes. In
contrast to previous algorithms,?®~3! our size independent
scoring function enables generating longer fragments,
whose size is neither arbitrary nor fixed. Through analysis
of the protein fragments, we show that chain segments
may fold independently of their surroundings. Our heuris-
tic energy function for the calculation of local minima has
obvious deficiencies; for example, it does not include
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Fig. 6. Matrices representing the number of building blocks shared by nonrelated proteins of a nonredundant building block database representing
the proteins classes, level 3. The color bars on the right hand-side represent the coloring scheme. White areas represent proteins that do not share any
building blocks, and red dots represent proteins that share one building block, etc.

electrostatics; it is based solely on nonpolar buried surface
area, compactness, and fragment “isolatedness”; and it
accounts only for the native state.

Nevertheless, the computational cutting procedure has
been shown to be consistent with experimental limited
proteolysis for a number of cases for which experimental
data are available (a-lactalbumin, thermolysin, hen egg
white lysozyme, cytochrome ¢, ribonuclease A apomyoglo-
bin).*® Combined with the finding that structurally similar
building blocks are obtained from overall different protein
structures with different sequences, it suggests that we
can adopt hierarchical strategies for protein folding.

Furthermore, this general agreement with experiment
and the results from our cluster analysis suggest that
rather than try all fixed-window sized fragments along the
chain, a strategy to consider is focusing on local minima.

We note, however, that to determine if a building block
is really stable, it is insufficient to obtain a score of a single
conformation as we have done here. Its native conforma-
tion needs to be compared to alternative ones. The only
way to achieve this goal this is through molecular simula-
tions. Such simulations, using the parallel tempering
method, are currently underway.

Building Blocks Often Can Be Viewed
as Stand-alone Units

Can then building blocks be referred to as stand-alone
units, independent of their environmental context? Does a
building block exhibit similar properties—tertiary and
secondary structure and stability—if'its sequence is placed
within another protein and therefore in a different environ-
ment?
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TABLE II. Relative positions of critical building blocks
inside the protein structures’

Protein Cutting Five most common positions
class level (percent, in descending order)

o/ 1 (56-10),(15-20),(65-70),(85-90),(90-95)
o/ 2 (90-95),(85-90),(5-10),(70-75),(20-25)
o/ 3 (75-80),(5-10),(70-75),(90-95),(85-90)
o/ 4 (75-80),(30-35),(70-75),(5-10),(10-15)
o/B 5 (30-35),(75-80),(5-10),(60—65),(70-75)
o/ 6 (75-80),(30-35),(65-70),(55—60),(5-10)
a+p 1 (20-25),(15-20),(40-45),(50-55),(5-10)
a+B 2 (15-20),(80-85),(70-75),(85-90),(40—45)
a+B 3 (80-85),(85-90),(15-20),(25-30),(50-55)
a+p 4 (80-85),(85-90),(15-20),(70-75),(65-70)
a+B 5 (70-75),(60-65),(15-20),(65—-70),(80-85)
a+B 6 (70-75),(5-10),(65-70),(85-90),(60-65)
all-a 1 (85-90),(80-85),(10-15),(20-25),(15-20)
all-a 2 (70-75),(85-90),(80-85),(60-65),(10-15)
all-a 3 (80-85),(10-15),(85-90),(70-75),(35—40)
all-a 4 (10-15),(80-85),(85-90),(70-75),(90-95)
all-a 5 (60-65),(80-85),(85-90),(50-55),(10-15)
all-a 6 (65—70),(15-20),(55-60),(85-90),(35—40)
all-g 1 (10-15),(95-100),(65-70),(50-65),(70-75)
all-g 2 (85-90),(80-85),(5-10),(15-20),(65-70)
all-g 3 (80-85),(10-15),(85-90),(30-35),(15-20)
all-g 4 (80-85),(10-15),(35-40),(60-65),(65-70)
all-g 5 (30-35),(10-15),(35—40),(60-65),(5-10)
all-g 6 (30-35),(10-15),(3540),(60—65),(5-10)

"The position inside the protein was calculated as:

Building block midpoint residue number

100

Total protein length

]
(4]

—_
[y

Frequency of occurence

0 20 40 60 80 100
Relative position

Fig. 7. Distribution of the critical building blocks with respect to their
relative positions in a-proteins, level 3 (mean: 53.896; SD: 28.65).

The main tool used to address these questions is the
building block clusters that contain large amounts of
data. These vary considerably from one another. Al-
though some clusters contain a single building block and
others contain only building blocks from the same
protein family, still other clusters contain building
blocks derived from different families, varying in their
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Fig. 8. An example of a critical building block for prokaryotic gluta-
thione synthetase (pdb: 1gsh). The critical building block is located at the
C-terminus of the protein. (A) The critical building block (dark) inside the
protein. (B) The critical building block in secondary structure drawing.

sequences, stability scores, and criticalness. Such clus-
ters are the most interesting ones. These clusters show
that there are structural motifs that recur across differ-
ent protein families and are relatively stable in each
one. The fact that we have many such clusters shows
that this is probably not an incident. If it is generally
true that building blocks are independent units, then it
should be possible to at least partially assign a set of
building blocks with known structures to a target se-
quence, even if the sequence does not belong to any
known structural family. This assignment is based on
local sequence resemblance, relative stability, and possi-
bly other properties such as secondary structure. If the
assignment is correct, it would considerably reduce the
complexity of structure prediction, because structures of
building blocks are at least partially known and are
preserved for this sequence, independent of the global
sequence environment. We have already developed a
prototype of an assignment algorithm that, given a
protein sequence, finds the “optimal” building block
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Fig. 10. An example of a broad distribution of criticalness scores
among members of one cluster of o/B proteins. The sequence similarity
(not shown) is weak (mean: 0.330; SD: 3.334).

assignment. The assignment is carried out by an align-
ment of that sequence against the building block data-
base, followed by finding a set of matching building
blocks, using a graph theoretic algorithm. Description of
the algorithm will be presented elsewhere. The next,

combinatorial assembly problem, involving putting these
together in an optimal way, is the computationally most
complex part of a hierarchical folding scheme.

Critical Building Blocks

Critical building blocks are largely buried. They play a
critical role in correct folding and in maintaining the
native structure. Because mutations may critically affect
the structure, Ma et al.!” and Kumar et al.'® have pro-
posed that critical building blocks tend to be more con-
served, sequence and structure-wise, than other building
blocks in the protein.

We find that critical building blocks may appear any-
where along the protein sequence, but they have a propen-
sity toward the N and C termini. This is understandable
given their role in protein folding. Remarkably, for all fold
types, we find that critical building blocks are considerably
less stable than other building blocks. This finding is not
surprising. Though quite small, critical building blocks
have extensive interfaces with other building blocks. Hence,
on its own, a critical building block may be expected to be
in a disordered protein state. This situation resembles that
observed in a functional dimer. The two monomers are
intertwined, with extensive interface. Yet, each monomer
is relatively small. Pulling apart two-state dimers leads to
disordered states. To have extensive interfaces and be
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stable, a substantial increase in size would be required.
This is counterproductive to the cell.

Additionally, their lower stability may reflect more
hydrophobic residues on their surfaces. In the limited
number of cases we have studied in detail, we have
observed that building blocks that are critical for folding
are also critical for function. Consistently, Luque and
Friere** have observed that binding sites contain both
stable and unstable areas. Elcock*® has recently noted
that charged residues in protein binding sites are mostly
destabilizing. Instability at binding sites may be advanta-
geous. The larger range of conformations at the site may be
complementary to different enzymes, receptors, or ligands.
This may explain both the preference of cleavage by a
variety of proteases at certain sites*® and the different,
diverse ligands binding at the same site.*” We have now
undertaken a large-scale study of the potential relation-
ship between folding and function. Our current results
support this conservation for folding and for function
paradigm. In proteins where critical building blocks have
been identified, residues that are critical for protein func-
tion appear to be frequently located in critical building
blocks.

Although critical building blocks may be more conserved
than other building blocks within a protein family, there is
no universal sequential or structural pattern for critical
building blocks. Different protein families have critical
building blocks with different secondary structure compo-
sition, conformations, and sequence patterns. However,
because they are buried, they share a propensity for
hydrophobic amino acids. Criticalness does not depend on
the building block conformation, because building blocks
from the same cluster (thus with similar conformations)
have different criticalness scores. Finally, identification of
a critical building block in a target sequence can reduce
the complexity of the combinatorial assembly process in
structure prediction. Given that critical building blocks
are largely buried, if the assignment algorithm predicts
that a certain fragment along the protein chain is a critical
building block, we may have a clue to its 3D location.

CONCLUSIONS

Recently we have shown that results obtained by our
computational building block cutting algorithm yield frag-
ments that are in agreement with those obtained experi-
mentally by limited proteolysis.*3

Here our analysis indicates that building blocks are
often stand-alone fragments, with folds repeating among
different families, regardless of the overall structures, and
with different protein sequences.

This leads us to conclude that the building block unit is
frequently independent of the surrounding protein environ-
ment. Nevertheless, although a small building block also
has a preferred conformation, we cannot rule out the
possibility of multiple such conformations. Under such
circumstances, the protein environment stabilizes the
native conformer, increasing its population time. On the
other hand, for larger, independently folding units with
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hydrophobic cores, the influence of the protein environ-
ment is limited.

The recurrence of building block conformations is remi-
niscent of protein folds. Combined with the agreement
with limited proteolysis, this suggests that these frag-
ments are able to fold independently, in principle enabling
visualization of dynamic folding pathways and intermedi-
ate states. These findings validate protein folding schemes
that are based on hierarchical folding, as first proposed by
Rose.'?

They suggest that it should be possible to develop an
algorithm that predicts the building block assignment of a
protein sequence whose structure is unknown. Here we
have created sequentially nonredundant databases of build-
ing block sequences, against which a target protein se-
quence can be aligned in order to be matched to a set of
potential building blocks.

We further probe building blocks that are critical for
“correct” folding and for maintaining native protein struc-
tures. We find that although they can be located anywhere
along the protein sequence, they are most likely to appear
at chain termini. Although the critical building block
sequence and structure may be conserved within a protein
family, they do not have typical secondary structure
composition, sequence or tertiary structure that tend to
recur across families. The sole property shared among
critical building blocks from different protein families is
their larger proportion of hydrophobic amino acids com-
pared to other building blocks, likely the outcome of their
being buried in the protein core.

Criticalness scores of building blocks belonging to the
same structural clusters distribute broadly. Hence, critical-
ness does not depend on the 3D structure. Remarkably, we
further find that the higher the criticalness score, i.e., the
more critical they are, the less stable. This makes inherent
sense, as it enables large interfaces between building
blocks in the protein core while still keeping “reasonable”
protein sizes.
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