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Abstract

Understanding, and ultimately predicting, how a 1-D protein chain reaches its native 3-D fold has been one
of the most challenging problems during the last few decades. Data increasingly indicate that protein folding
is a hierarchical process. Hence, the question arises as to whether we can use the hierarchical concept to
reduce the practically intractable computational times. For such a scheme to work, the first step is to cut the
protein sequence into fragments that form local minima on the polypeptide chain. The conformations of such
fragments in solution are likely to be similar to those when the fragments are embedded in the native fold,
although alternate conformations may be favored during the mutual stabilization in the combinatorial
assembly process. Two elements are needed for such cutting: (1) a library of (clustered) fragments derived
from known protein structures and (2) an assignment algorithm that selects optimal combinations to “cover”
the protein sequence. The next two steps in hierarchical folding schemes, not addressed here, are the
combinatorial assembly of the fragments and finally, optimization of the obtained conformations. Here, we
address the first step in a hierarchical protein-folding scheme. The input is a target protein sequence and a
library of fragments created by clustering building blocks that were generated by cutting all protein
structures. The output is a set of cutout fragments. We briefly outline a graph theoretic algorithm that
automatically assigns building blocks to the target sequence, and we describe a sample of the results we have
obtained.

Keywords: Protein folding; building blocks; protein structure prediction; hierarchical folding; folding
complexity

How a 1-D polypeptide chain folds into a 3-D fold is a
fascinating yet unsolved problem, despite the improvements
made in the methodologies. All the information needed to
specify the protein 3-D structure is contained within its
amino acid sequence, and given suitable conditions, many
proteins will spontaneously fold into their native states.
Many others require the assistance of chaperones. Proteins
that fold with the aid of chaperones will also fold sponta-
neously but not on biological timescales.

Several models have been proposed for protein folding,
including (1) the framework model, (2) the nucleation and
growth mechanism, (3) the diffusion-collision model, (4)
the hydrophobic collapse model, and (5) the hierarchical
model (Haspel et al. 2003). In recent years, a folding
scheme (Rose 1979; Lesk and Rose 1981) proposed over
two decades ago has been increasingly accepted: Protein
folding is a hierarchical process (Baldwin and Rose
1999a,b) and the driving force is the hydrophobic effect
(Dill 1985, 1990; Dill and Chan 1997). This idea was fur-
ther expanded by Srinivasan and Rose (1995, 1999). The
main considerations are steric effects and conformational
entropy, and the driving forces are hydrophobic interactions
and hydrogen bond formation. Srinivasan and Rose start
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with folding small fragments of the protein, sampling ran-
dom local conformations and scoring them according to
how energetically favorable they are. The process repeats
itself until the entire protein chain is folded. Limited prote-
olysis has illustrated that one can cut the protein structure
into fragments and reassemble them through fragment
complementation to yield the native fold (Taniuchi et al.
1986; Fisher and Taniuchi 1992; Fontana et al. 1997, 1999;
Kuhlman et al. 1997; Yang et al. 1998; Polverino de Laureto
et al. 1999, 2001). And, conversely, covalently ligating two
protein molecules bound in a complex still leads to the same
native complex (for review, see Tsai et al. 2001).

Computationally, there are several approaches to predict
protein structures. If the target sequence is similar to se-
quences whose corresponding structures are available, ho-
mology modeling is the best approach to follow. If the
similarity is lower, threading is often carried out. If no ho-
mologous sequences with corresponding structures are
available in the Protein Data Bank (PDB; Bernstein et al.
1977), ab initio simulations are attempted, if the sequences
are short. Otherwise, the sequence may be parsed into short,
overlapping segments (say, ∼8–10 residues in length) and
look-up tables for the potential structures of these are en-
tered. These tables are generated through analysis of most
available structures in the PDB. Combinations of these
structures are evaluated and ranked (Bystroff and Baker
1998; Bystroff et al. 2000).

Here we adopt a strategy that is based on hierarchical
protein-folding concepts (Crippen 1978; Rose 1979; Wodak
and Janin 1981; Zehfus and Rose 1986; Zehfus 1993; Wu et
al. 1995; Panchenko et al. 1996, 1997; Peng and Wu 2000).
As previously, the sequence is cut into segments. However,
the major difference between the strategy followed here and
previous ones is that here the target sequence is cut into
longer fragments, each of which is in principle able to fold
independently and is assumed, based on a stability scoring
function, to be a local minimum. That is, the fragments are
not chosen arbitrarily, but are chosen on the basis of their
stability properties. Although there are no direct experimen-
tal data indicating that these fragments are able to fold in-
dependently, there is a fairly good correspondence between
the computationally generated fragments and those obtained
from limited proteolysis, for proteins for which such experi-
mental data exist (Tsai et al. 2002). The minimal fragment
size is 15 residues. The maximum can be any value. The
stabilities (and population times) of these fragments differ.
Figure 1 describes our scheme. The first step involves cut-
ting the target sequence into building blocks and assigning
their conformations. In the second step, the building blocks
are assembled combinatorially. In the third step, the struc-
ture is refined to finally yield the predicted conformation. A
major advantage of such an approach is that, by cutting the
target sequence into fragments and assembling them, we
may be able to achieve a substantial reduction in computa-

tional times. The rationale behind such a scheme is that it
follows hierarchical protein-folding pathways: Initially, lo-
cal fragments fold on themselves, with subsequent stepwise
assembly. To be able to adopt such a strategy, we need
several elements:

1. Clusters of “known” building blocks in which each clus-
ter contains a list of sequences, along with their experi-
mentally determined structures.

2. An efficient algorithm to assign these building blocks to
a target sequence on the basis of sequence similarity and
a weighting function.

3. An efficient combinatorial assembly algorithm to find
the optimal arrangements of the assigned building blocks
in 3-D space.

4. An efficient docking algorithm that docks the building
blocks, with an adequate weighting function to rank the
obtained conformations.

5. A modeling/simulation protocol to fill in the gaps or
small overlaps in the assignments (if any) between the
assigned building blocks and optimize the structures.

In this work we address the first step in this scheme, the
cutting of the target sequence into building block fragments:

1. We first describe the building block clusters obtained by
clustering all the building blocks that were generated by
cutting all proteins in the PDB. These are clustered first
by their structures and subsequently by their sequences

Figure 1. Folding by parts and part assembly: A hierarchy-based protein
folding scheme. The overall folding scheme, composed of three steps: The
first step involves cutting the target sequence into building blocks and
assigning their conformations (this stage is described in this work). In the
second step, the building blocks are assembled combinatorially. In the third
step, the structure is refined to yield the predicted conformation.
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to generate a nonredundant sequence database. Examples
of structural clusters are given in Figure 2.

2. We next proceed to describe the graph theoretic assign-
ment algorithm (a flowchart and an outline are given in
Figures 3 and 4). The algorithm automatically assigns
building blocks to the target sequence.

3. Finally, we give some examples (Fig. 5A–F).

Two considerations are implicit in such a scheme: that
the building block cutting is consistent with experiment, and
that the cutout building blocks largely reflect fragments
with prevailing similar conformations even when in differ-
ent environments. We address these issues following.

The building block folding model (Tsai et al. 2000, 2001)
enables visualizing the protein dynamical folding pathways.
The model postulates that protein folding is a hierarchical

process and that the basic unit from which a fold is con-
structed, the hydrophobic folding unit (HFU), is the out-
come of a combinatorial assembly of a set of building
blocks. The HFUs, in turn, associate to form intramolecular
domains. The building block is defined as a highly popu-
lated, contiguous fragment in a given protein structure. Ac-
cording to this model, if one cuts out a building block from

Figure 4. An illustration of the building block assignment algorithm. (A)
The protein sequence is aligned against a building block sequence database
using BLAST. (B) A weighted directed acyclic graph is built from the
aligned building blocks, plus start and target vertices. (C) The “shortest”
path is the “best” building block assignment to the target sequence.

Figure 2. Two examples of clusters. The figures show multiple structural
alignments using MUSTA (Leibowitz et al. 2001a,b) of the cluster mem-
bers. The inserts give the file names and the range of residues. (A) (1bdc)
Immunoglobulin-binding protein A modules from Staphylococcus aureus
(domain B); (1grl) GroEL from Escherichia coli; (2pas) parvalbumin from
pike; (1edi) immunoglobulin-binding protein A modules from S. aureus
(domain E). (B) (1coy) Cholesterol oxidase from Brevibacterium steroli-
cum; (1gal) glucose oxidase from Aspergillus niger; (1gnd) guanine
nucleotide dissociation inhibitor, GDI, from cow; (1ldm) lactate dehydro-
genase from dogfish.

Figure 3. A flowchart of the building block assignment algorithm.

Reducing folding complexity
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the protein chain, the most highly populated conformation
of the resulting peptide in solution would very likely be
similar to that of the building block when it is embedded in
the native protein structure, even though it may happen that
an alternative conformation is selected in the combinatorial
assembly process. The algorithm creates an “anatomy tree”
that depicts the organization of the 1-D polypeptide chain in
3-D space and describes the most likely folding pathway(s).
Each node in the tree is a one-segment building block. Here,
the level of a building block node in the tree will be referred
to as the cutting level of that building block. This model can
be used as a basis for protein modeling and prediction of
local and global protein structures.

Results

Building block database creation and clustering

Table 1 gives some building block cluster statistics for each
protein class and cutting level (Haspel et al. 2003). The

parameters of the clustering lead to small clusters (many are
one-membered). More flexible parameters would have led
to fewer clusters, but with lesser member similarity. We
preferred to have structurally similar cluster members. For
each cluster, the sequences of the members were extracted
and reclustered, such that we were able to represent each
cluster by a minimum number of nonredundant, represen-
tative sequences. Sequence conservation within clusters
changes considerably from cluster to cluster. There were
many clusters in which the building blocks were nearly
identical. These cases usually represent building blocks de-
rived from the same protein family. Table 1 gives sequence
information for each cluster, the number of sequences, and
their average sequence length. Figure 2 shows two examples
of clusters, using MUSTA, our multiple structural compari-
son algorithm (Leibowitz et al. 2001a,b). The figure shows
the superposition of the cluster members and the sequence
alignment. In these examples the cluster members do not all
belong to the same sequence family. For clarity, not all

Figure 5. Examples of the building block assignment algorithm. (A) The target protein is chain A of glutathione S-transferase from human, class pi (PDB
code 13gs). (B) The target protein is pseudoazurin from Alcaligenes faecalis (PDB code 1paz). (C) The target protein is immunoglobulin from human (PDB
code 2imm). (D) The target protein is chain D of barstar (barnase inhibitor) from Bacillus amyloliquefaciens (PDB code 1brs). (E) The target protein is
chain A of anti-sigma factor antagonist SpoIIaa from Bacillus sphaericus (PDB code 1h4x). (F) The target protein is Clp protease, ClpP subunit from
Escherichia coli (PDB code 1tyf). The inserts shows the matched building block sequences. (See also Table 2.)

Haspel et al.
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cluster members are shown. Building blocks that are nearly
identical, sequentially and structurally, to ones that are rep-
resented in the example are omitted. Here, one building
block was taken from each sequence family. Despite the fact
that the sequence identity and even similarity is not high, the
structural similarity is high. In all examples the least con-
served areas are, as expected, the ends of the building
blocks and the irregular parts, the turns and loops, regard-
less of the sequence conservation at these areas. The build-
ing blocks vary from a nearly single secondary structure
element (for example, an �-helix with a short loop attached
to it) to an almost independent protein domain. The most
frequent cases were of supersecondary structure elements,
like two helices connected by a loop, or two strands and a
loop.

We analyzed the sequence conservation within clusters
whose members were cut from proteins that belong to dif-
ferent structural classification of proteins (SCOP; Murzin et

al. 1995) families. We found very little sequence conserva-
tion among building blocks from different families, both by
means of amino acid identity and similarity (data not
shown). Further, clustered building blocks may even belong
to different folds. Thus, the fact that building blocks from
different proteins with different sequences, different global
structures, and different spatial environments still give
building blocks that are similar provides support to the
proposition that building blocks are stand-alone entities
(Tsai et al. 2000, 2002). Combined, this illustrates that in
building blocks, as in proteins, different sequences can
share similar folds.

The distribution of the building block stability score in
the cluster varies: For clusters consisting of building blocks
derived from the same protein family, the distribution is
narrow. This is expected, as they are very similar structur-
ally and sequentially, and are surrounded by a very similar
environment. However, clusters derived from dissimilar
proteins have broad distributions of stability scores. The
stability scores (described in Materials and Methods) are
used in the weighting scheme of the assignment algorithm.

The building block assignment to a target sequence

Table 2 presents some results of the building block assign-
ment to target sequences. Figure 5A–F illustrates several
examples taken from Table 2 of the assigned building
blocks superimposed on the target protein. The target pro-
teins either do not appear in the original database, or were
removed from it before the execution of the program, so that
they will not bias the results. Further, the database used for
the assignment contains mainly building blocks from more
distant proteins. Improvements in both the algorithm and
the weighting function still need to be carried out; never-
theless, in many cases the algorithm finds good building
block assignments even when the sequence homology is
rather weak. The percent sequence identity and similarity
between the assigned building block and the target sequence
are given in the table and in the figures. As Table 2 and
Figure 5A–F show, the target protein classes and sizes vary.
Furthermore, the assigned building blocks do not necessar-
ily derive from the same protein class as the target protein.
This is consistent with the building block being a stand-
alone unit.

To see the results obtained by the assignment algorithm,
in the figures the building blocks were matched to the tar-
get proteins using a flexible structural matching algorithm:
FlexProt (Shatsky et al. 2002). This algorithm automatically
finds the best flexible match between two protein structures
without a predefinition of the hinge locations. In our cases
here, the matching was done between the target protein and
a dummy protein composed of the matching building
blocks. FlexProt is particularly convenient for our purpose
here because it enables us to disregard the structural con-
nectivity between the building blocks in the dummy protein.

Table 1. Cluster statistics

Protein
classa

Cutting
levelb

No.
protein
chainsc

No.
building
blocksd

No.
clusterse

Average
sequence
lengthf

No.
building

block
sequencesg

�/� 1 1514 2121 515 154.08 464
2 1514 5257 1286 62.55 1804
3 1514 8013 1899 38.75 3153
4 1495 7813 1727 30.86 3137
5 1174 9944 2124 29.37 3872
6 595 5663 1402 28.94 2493

� + � 1 1619 2491 379 108.58 457
2 1616 5445 828 49.45 1212
3 1558 7454 1199 34.08 1929
4 1339 7702 1285 28.98 2175
5 520 4361 1089 28.38 1716
6 153 1606 628 28.62 878

all-� 1 870 1419 405 85.88 548
2 870 3181 751 41.81 1422
3 794 3858 830 30.82 1921
4 594 2971 727 28.62 1502
5 263 2662 707 28.06 2131
6 94 1299 466 29.28 722

all-� 1 1313 1757 428 115.47 514
2 1311 3814 1049 53.58 1489
3 1299 5815 1566 36.66 2449
4 1132 4683 1456 32.23 2200
5 523 4068 1283 30.46 1898
6 167 1914 729 30.70 1018

a The protein class that created the specific database.
b The cutting level (1 to 6).
c The number of protein chains participating in that database.
d The total number of building blocks in that database.
e The number of clusters resulting from the clustering procedure of that
database.
f The average sequence size at each nonredundant sequence database.
g The number of sequences in the nonredundant sequence database.
The data here was calculated only from the representatives of the clusters
to avoid bias toward large families that contain nearly identical building
blocks.

Reducing folding complexity
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Table 2. Results of the building block assignment algorithm

Target protein Matching sequences

Protein name (class)
PDB
code

Matched
sequence
positions Protein name (class)

PDB
code

Matched
sequence
positions

Percent sequence
similarity (identity)

Squid glutathione S-transferase (�/�)
Human glutathione

S-transferase, class pi,
chain A (�/�)

13gs 1-32
38-72
77-122

124-149
153-185

S. japonicum glutathione S-transferase (all-�)
Methane monooxygenase hydrolase, � subunit (all-�)
Pyruvate phosphate dikinase (�/�)
S. japonicum glutathione S-transferase (all-�)

1gsq
1gne
1mtyB
1dik
1gne

1-32
154-184
345-384
472-497
155-184

58 (40)
53 (31)
57 (34)
53 (42)
60 (42)

Pseudoazurin from
Alcaligenes faecalis
(all-�)

1paz 1-33
34-49
50-70
68-92
93-112

Phosphoglycerate kinase (�/�)
Manganese peroxidase (all-�)
2Fe-2S ferredoxin (� + �)
Plastocyanin from parsley (all-�)
Retinoic acid-binding protein (all-�)

3pgk
1mn2
2cjn
1plb
1epaB

118-147
91-106
10-30
72-96
70-90

45 (27)
55 (37)
51 (28)
48 (36)
52 (38)

Human immunoglobulin
(all-�)

2imm 3-20
21-48
50-66
67-84
95-109

Immunoglobulin Bence-Jones VL (�) dimer RHE
(all-�)

Immunoglobulin Fab NC10 (all-�)
�2-Microglobulin from cow (all-�)
Azurin from N. aeruginosa (all-�)
Fumarase from E. coli (all-�)

2rhe

1nmaH
1bmg
1iluH
1fupA

3-20
20-43

5-21
85-112
81-101

78 (52)
53 (39)
52 (35)
46 (21)
60 (38)

Barstar from B.
amyloliquefaciens, chain
D (�/�)

1brs 4-23
23-37
40-66
66-83

Adenylate kinase from pig (� + �)
IU-NH from C. fasciculata (�/�)
Leu aminopeptidase from cow (�/�)
Parvalbumin from pike (all-�)

3adk
2masB
1lap
1pvaA

133-150
294-308
123-149

61-78

53 (33)
66 (40)
55 (33)
55 (33)

Anti-� factor antagonist
SpoIIaa from B.
sphaericus, chain A (�/�)

1h4x 5-21
17-36
38-63
65-89
91-108

DNA polymerase � (� and �)
Annexin XII from hydra (all-�)
Pepsin (ogen) from pig (all-�)
Human myeloperoxidase (all-�)
Histidine-binding protein (�/�)

1bpe
1aeiD
5pep
1mhlC
1hslB

154-170
249-271
143-168
253-278
195-213

58 (29)
50 (35)
57 (34)
48 (28)
54 (27)

Clp protease, ClpP subunit
from E. coli, chain A
(�/�)

1tyf 6-35
41-70
67-94
96-123

125-152
154-171

Restriction endonuclease Cfr10I (�/�)
Glycogen phosphorylase (�/�)
Leu-Ile-Val-binding protein (�/�)
Trp synthase, �-subunit (�/�)
Annexin IV from cow (all-�)
Chorismate mutase (� + �)

1cfr
1noiA
2liv
1ttpB
1ann
2chtL

99-131
121-147
252-279
135-165
109-136

12-29

48 (33)
77 (55)
45 (35)
57 (24)
53 (39)
55 (33)

Cytochrome c6 from D.
vulgaris (all-�)

1dvh 3-39
37-54
52-70

3-Isopropylmalate dehydrogenase (�/�)
Socitrate dehydrogenase (�/�)
Interleukin-5 from human (all-�)

1osiC
1iso
1hulB

255-291
45-62
66-84

40 (27)
55 (33)
51 (36)

Phycocyanin from red alga,
chain A (all-�)

1phn 5-26
27-53
52-88
89-107

110-128
129-145

GreA transcript cleavage protein (all-�)
�-Trichosanthin (� + �)
Phycoerythrin (all-�)
Thioredoxin reductase (�/�)
Adenovirus hexon (all-�)
Plasmepsin ii (all-�)

1grj
1tcs
1liaK
1vdc
1dhx
1smeB

29-50
216-242

52-86
130-148
728-746
178-194

40 (40)
36 (25)
54 (32)
57 (31)
57 (42)
47 (47)

E. coli Rck domain from
putative potassium
channel Kch, chain B
(�/�)

1idl 12-33
33-78
80-102

101-132
130-151

Troponin C from chicken (all-�)
CheY-binding domain of CheA (� + �)
Lysozyme from chicken (� + �)
Lipase from B. cepacia (�/�)
Phosducin from rat (�/�)

1top
1fwp
1mlcF
1oilA
2trcP

76-97
5-41

99-121
69-112

181-205

58 (31)
45 (28)
56 (30)
42 (27)
60 (36)

C-terminal part of
pyridoxine 5�-phosphate
synthase from E. coli,
chain A (�/�)

1hol 43-101
106-127
124-148
148-236

Triacylglycerol lipase (�/�)
6PGD from sheep (�/�)
Methylamine dehydrogenase (all-�)
Pyruvate phosphate dikinase (�/�)

1lgyC
1pgq
2bbkJ
1dik

199-256
106-123
322-346
664-733

41 (23)
59 (50)
48 (28)
38 (21)

Cytochrome c552 from
Thermus thermophilus
(all-�)

1c52 6-28
31-45
45-64
73-99
97-112

Adenovirus hexon from human adenovirus type 2
(all-�)

DHFR from E. coli (�/�)
HIV-1 matrix protein (all-�)
6PGD from sheep (all-�)
Cyclin H (mcs2) from human (all-�)

1dhx
4dfrB
1hiwA
1pgn
1jkw

827-849
86-100
79-98

290-305
259-274

39 (39)
53 (59)
35 (60)
37 (48)
43 (68)

(continued)
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It further allows us to overcome possible hinge bending
within building blocks. FlexProt finds the best matching by
means of the smallest RMSD. The matching shown in the
figures does not necessarily include the entire matched
building block, because C�-atom pairs above the allowed
matching threshold (here in the range of 3.5–4 Å) are not
matched. As seen in Table 2 and Figure 5A–F, in most cases
the matching building blocks are from proteins from differ-
ent families, and sometimes even different protein classes.
Only in a few cases does the matching building block derive
from the same protein family as the target protein. Even in
this case it is a distant family member; therefore, the se-
quence similarity is rather weak. Our results yield many
examples of building blocks that repeat across various pro-
tein families and folds. This shows that building blocks,
which are relatively stable protein fragments, may be pro-
tein-context independent.

In the current implementation of the assignment algo-
rithm, a shortest path is found between all the starting ver-
tices (those connected to the “source” vertex) to the “target”
vertex. This leads to more than one possible solution, that is,
more than one possible building block assignment. Here we
provide the “best” assignment result, that is, the result that
visually looks best. We note, however, that in all cases, the
weighting function ranked these results among the top three.
We further note that our assignment algorithm is fully au-
tomated. The FlexProt algorithm is used only for testing and
displaying the results graphically.

Discussion

In this work we have outlined the first stage of a potential
way to reduce the computational complexity in protein fold-
ing. The building block folding model proposes to initiate
the computational folding process by first identifying
“building blocks,” that is, fragments that form energetically
local minima along the protein sequence. The model as-
sumes that protein folding is a hierarchical process: Rela-
tively stable fragments are assumed to fold first, with sub-
sequent binding onto each other (“combinatorial assembly”)

to hierarchically create higher order building blocks, until
the native protein fold is formed.

To be able to apply such a scheme, we need two com-
ponents. The first is a sequentially nonredundant database of
building blocks, each with its associated structure. The sec-
ond is an efficient assignment algorithm with an appropriate
weighting function. The sequentially nonredundant data-
base of building blocks that we have created is based on our
building block cutting algorithm.

Most structures in the PDB (Bernstein et al. 1977) have
been cut, and the resulting building blocks have been clus-
tered. Our sequence length-independent energy function
does not account for electrostatics, and is based on the na-
tive structures; nevertheless, it is in fairly good agreement
with experiment (Tsai et al. 2002). The comparisons have
been carried out for all proteins for which there are available
limited proteolysis data, using pepsin, subtilisin, trypsin,
thermolysin, and proteinase K.

A detailed description of the clustering procedure and of
the clusters is presented in Materials and Methods and also
in Haspel et al. (2003). Inspection of the clusters illustrates
that, although some clusters contain only building blocks
from the same family, others consist of building blocks from
dissimilar proteins. In such cases, although the structures of
the building blocks are similar, they differ in their sequences
and in their spatial interactions. This observation is consis-
tent with the assumption that the building blocks are likely
to be stand-alone units. This is particularly the case for larger
fragments with a substantial hydrophobic core. Smaller build-
ing blocks also have a preferred conformation in solution,
which is likely to resemble that observed in the native protein.
Nevertheless, neighboring building blocks may lead to a se-
lection of an alternate more favorable conformer.

The second component is a graph theoretic assignment
algorithm that, given a protein sequence, finds the “optimal”
building block assignment of that sequence. Here we have
presented several examples for different proteins. The re-
sults achieved so far look promising, although considerable
work is still needed to optimize and improve the perfor-
mance of the algorithm. The next step in such a folding

Table 2. Continued

Target protein Matching sequences

Protein name (class)
PDB
code

Matched
sequence
positions Protein name (class)

PDB
code

Matched
sequence
positions

Percent ssequence
similarity (identity)

YopH Tyr phosphatase
N-terminal domain from
Y. pestis (� + �)

1huf 6-20
19-35
37-53
57-78
78-94
94-114

Staphylococcal nuclease (all-�)
Tyrosyl-tRNA synthetase (�/�)
p-Hydroxybenzoate hydroxylase (�/�)
7-�-Hydroxysteroid dehydrogenase (�/�)
Methane monooxygenase hydrolase (all-�)
T4 endonuclease V from bacteriophage T4 (all-�)

1syf
1tyaE
2phh
1ahhA
1mhyD
1enj

7-21
77-93

161-177
192-213
234-250

4-23

33 (66)
41 (46)
41 (52)
36 (54)
58 (35)
35 (55)
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scheme is the combinatorial assembly of the assigned build-
ing blocks. Computationally this is the heaviest step. Work
on this problem is already in progress in our laboratory
(Inbar et al. 2003). Finally, because the target sequence is
not completely covered by building blocks, the unassigned
parts need to undergo modeling, with subsequent overall
minimization.

The advantages inherent in “folding the protein in parts,
and part assembly” have been recognized for a number of
years (for review, see Hardin et al. 2002). There are two
major differences between previous work (Oliva et al. 1997;
Bystroff and Baker 1998; Bystroff et al. 2000) and the cur-
rent work. First, previously the sequence has been cut into
a large number of fragments by shifting a window across the
sequence and testing a large number of sequence parts. Sec-
ond, only very short sequence pieces were folded sepa-
rately. However, fragments having a few (<10) residues
usually do not have a prevailing 3-D conformation. Al-
though short building block sequences usually do not have
a conformation with a very high population time, neverthe-
less, these sequences were not chosen arbitrarily. They were
selected owing to their being relatively stable with higher
population times than other, arbitrarily chosen fragments.
Our ability to cut the structures into building block frag-
ments with high population times, consistent with experi-
ment (Tsai et al. 2002) in principle enables us to cut the
target sequence into building blocks. Furthermore, we have
developed a procedure to identify building blocks that are
critical for correct protein folding (Ma et al. 2000; Kumar et
al. 2001). These building block fragments are largely buried
in the protein core, inserted between sequentially adjacent
building blocks. Assigning a critical building block to a
given fragment in the target protein may indicate a likely
spatial location, further reducing the computational folding
complexity.

Conclusions

Binding and folding are similar processes, with similar un-
derlying mechanisms. Experimentally, it has been shown
that, in general, cutting the proteins and reassembling them
yield similar conformations as when they are chain-con-
nected. Similarly, linking a two-molecule complex yields a
structure similar to a two-molecule association. These ob-
servations are consistent with a hierarchical protein-folding
scheme. If we accept that protein folding is hierarchical, and
that the driving force is the hydrophobic effect, we can devise
approaches that make use of such a hierarchical concept. In
such a scheme, a rational first step is to initially cut the target
sequence into fragments that are likely to fold on themselves
and subsequently to combinatorially assemble them.

Toward such an approach to reduce the computational
complexity of protein folding, here we present two essential
components: a library of nonredundant sequences of build-

ing blocks, clustered by their structures, and an algorithm
assigning them to a target sequence. We further present
some of the results we have obtained. These include pro-
teins from different classes, with the building blocks that are
not necessarily assigned from the same protein class. Our
results are encouraging, indicating that folding by parts and
part assembly may contribute to further progress in the pro-
tein-folding problem; nevertheless, it clearly needs further
optimization, both on the algorithmic side, and in the scor-
ing function. Furthermore, such schemes can combine with
experiment, such as limited proteolysis (Fontana et al. 1997;
Polverino de Laureto et al. 1999; Tsai et al. 2002) and
spectroscopy to validate the target sequence cutting.

Materials and methods

The building blocks folding model and the cutting

The building block cutting algorithm (Tsai et al. 2000, 2001) uses
a scoring function that measures the relative conformational sta-
bility of a candidate building block. The stability score for a given
building block is defined as:

ScoreB.B�Z, H, I� = �ZAvg
1 − Z��ZDev

1 + �H − HAvg
1 ��HDev

1

+ �IAvg
1 − I��IDev

1 + �ZAvg
2 − Z��ZDev

2

+ �H − HAvg
2 ��HDev

2 + �IAvg
2 − I��IDev

2

where Z stands for compactness, H for hydrophobicity, and I for
isolatedness. Each quantity is calculated as the deviation from the
averaged value of known protein structures. The average and stan-
dard deviation of these quantities were calculated from a nonre-
dundant dataset of 930 representative single chain proteins from
the PDB. Terms with superscript 1 were determined with respect
to fragment size and those with superscript 2 were determined as
a function of the fraction of the fragment size to the whole protein.

The three components are as follows:
“Compactness” is defined as the solvent accessible surface area

(ASA; Lee and Richards 1971; Shrake and Rupley 1973) of the
fragment, divided by its minimum possible surface area, which is
the area of a sphere with volume equal to that of the fragment.

Z =
ASASurf

( 36�VOL2 ) 1�3

“Degree of isolation” is the ratio of the fragment’s nonpolar ASA
that was originally buried in the interior of the protein but is
exposed to the solvent after cutting, to the ASA of the isolated
fragment. This component is a measurement of the extent to which
the stand-alone fragment obeys the hydrophobicity rules when it is
cut out of its context.

I =
ASAB→ E

Non

ASAfrag

“Hydrophobicity” is the fraction of the buried nonpolar area out of
the total nonpolar area of the fragment.

H =
ASABuried

Non polar

ASABuried
Non polar + ASASurf

Non polar
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The scoring function is independent of the building block
length, and reflects the population time of the building block in
solution: the larger the stability, the higher the population time.

The cutting algorithm is iterative. The level of cutting is deter-
mined by counting the number of steps that are needed to trace
back to the initial, uncut structure. This structure is considered the
root node. The cutting stops when no new fragments can be gen-
erated.

The building block clusters

The building block database was created using the data collected
by Tsai et al. (2000; available at http://protein3d.ncifcrf.gov/tsai/).

The clustering algorithm is as follows:

1. Each cluster has one or more representative member(s).

2. For each building block: Run over all existing clusters an al-
gorithm that finds the best rigid matching between the candi-
date building block and the cluster representative building
block, provided that the size of each of the two building blocks
is at least 70% of the other building block. The rigid matching
algorithm is geometric-hashing based (Fischer et al. 1992).

3. If the two building blocks match (within RMSD of 1.8 Å at
most for cutting levels 1 and 2, 1.5 Å for levels 3 and 4, and 1.3
Å for levels 5 and 6, and the match size is at least 70% the size
of the smallest protein), assign the building block to this cluster.

4. If, at the end of the procedure, the building block does not
match any cluster representative, open a new cluster with this
building block as the representative.

Clustering has two stages:

1. Classifying the building blocks according to their original
SCOP (Murzin et al. 1995) protein family and clustering within
the family.

2. Merging the initial clusters, with the representative of each
initial cluster now representing all cluster members. In such
cases, a cluster may have more than one representative.

We have created 24 different databases from four protein
classes, all-�, � + �, �/�, and all-� proteins, for six cutting levels.
The coordinates were taken from the PDB. Clustering was based
on structural similarity. Each of the databases (from each class and
level) was clustered separately. A more detailed description of the
clustering procedure and analysis of the cluster statistics is given
elsewhere (Haspel et al. 2003).

Figure 2 shows examples of multiply-aligned building blocks
from two clusters. The multiple alignment has been carried out
using MUSTA (Leibowitz et al. 2001a,b).

The nonredundant sequence database

At the end of the clustering procedure, we created a nonredundant
sequence database that represents each clustered database. This is
done as follows: For each cluster, the sequences of the cluster
members are extracted to a FASTA format file (http://fasta.bioch.
virginia.edu/fasta/). Within each cluster, the sequences are clustered
using BLASTCLUST (http://www.ncbi.nlm.nih.gov/BLAST/). The
sequence identity that determines whether two sequences belong to
the same cluster is based on a statistical function developed by
Abagyan and Batalov (1997). The function estimates the sequence

identity and sequence similarity required to guarantee as much as
possible structural similarity, depending on the lengths of the se-
quences. The function is described by a normal distribution with
the following parameters:

mean(L) � 31L−0.124, �(L) � 18.2 L−0.305

where L is the length of the shortest sequence. For example, if we
wish to determine the percent sequence identity that guarantees a
similar fold at 4� level for two sequences, where the length of the
shortest sequence is 25 amino acids, the threshold will be:

t(L) � 31 * 25−0.124 + 4 * 18.2 * 25−0.305 � 48.07%

We used this equation to cluster the sequences at 4� levels, with
over 99% confidence of having the same fold.

Therefore, each structural cluster can be associated with a
nonredundant group of sequences with a local structural pattern.
All nonredundant sequence groups of all structural clusters are
gathered and reclustered using BLASTCLUST. Our goal at this
stage is to eliminate all redundancies among clusters caused by
similar sequences that fall into different structural clusters. The
result of this procedure is a sequentially nonredundant database
that represents the structural database by means of sequences. Each
item in that database is associated with a specific structural cluster,
such that a structural cluster can be represented by more than one
sequence.

The building block assignment algorithm

The clusters of building blocks, grouped by their structures and by
their sequences, constitute the input to a graph theoretic sequence
assignment algorithm. The stages of the algorithm are the follow-
ing:

1. Alignment of the target sequence against the building block
sequence database.

2. Constructing a weighted, directed acyclic graph whose edges
are the aligned building block sequences.

3. Adding fictitious start and end vertices to the graph.

4. Finding a building block assignment to the target sequence
using a graph theoretic algorithm that finds the shortest path
from the start to the end vertices.

5. Testing and displaying the results.

Following are the details of the assignment algorithm:

Sequence alignment

For a given target sequence whose building block composition
we wish to assign, we carry out a sequence comparison with the
database containing the representatives of all building block clus-
ters, using BLAST (Altschul et al. 1990) with default parameters,
allowing gaps (note that this is a one-against-all pairwise align-
ment, and a not multiple alignment).

Construction of the graph

If a sequence similarity above a given threshold is found (that is,
a building block in the database is found to match an area of the
target protein sequence), this building block is represented as a
weighted graph vertex.
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The weighting scheme. The current weighting scheme con-
tains two components: the BLAST match score and the building
block stability score. A candidate building block is considered only
if the match spans the entire building block (allowing a 10-residue
gap at each side) and if the match length is at least 15 residue long.
The building block’s score is: −(BLAST score + 3 * stability
score). The factor of three is there because the stability score is
usually smaller than the BLAST score by a factor of at least 3. This
factor gives the two measurements a roughly equal weight in the
scoring function. The minus sign leads to negative weights, so that
the best path will be the “shortest,” that is, with the smallest
weight. Although the BLAST score is always positive, a larger
stability score reflects a more stable building block. Using this
scheme, the more negative the building block total score, the more
“suitable” it is. The weighting function may also include secondary
structure prediction. However, its effectiveness may depend on the
implementation scheme. Substantial work is still needed in this
direction, along with additional potential parameters and their rela-
tive weights.

The edges. In the graph, a directed edge connects two vertices
if they are sequentially adjacent, and if they adhere to the rules
followed in the generation of the building blocks from the native
structures (no more than a 7-residue overlap, and not over 15
residues apart). The edge connecting the vertices is assigned the
average weight of the two vertices.

Finding the matches
The next step involves finding the shortest paths of consecutive

edges. We add two fictive vertices to the graph. The first is the
“source” (starting) and the last is the “target” (ending) vertex. A
zero-weight edge connects each of these to a vertex that is up to a
distance of 15 residues. These either follow (the starting source
vertex) or are prior to (the ending target vertex). It is easy to see
that the resulting graph is directed and acyclic. In such a graph,
there exists an algorithm that finds the shortest path between any
pair of known vertices in a short time. The shortest path algorithm
(Cormen et al. 1990) is used for this purpose. A path is actually a
consecutive set of vertices that leads from the starting source ver-
tex to the ending target vertex. Because each of these vertices is a
building block, the path represents a possible assignment of build-
ing blocks to the sequence. Among the obtained paths, the highest
scoring ones are retained. These are assumed to have a higher
probability of being a true possible building block assignment for
the sequence.

Figure 3 presents a flowchart of the building block assignment
algorithm and Figure 4 presents an illustration of the algorithm.

The advantage of using a graph algorithm instead of a simple
assignment scheme is that the algorithm performs the assignment
more efficiently. If we denote the number of vertices (candidate
building blocks) by V and the number of edges connecting them by
E, the algorithm finds the shortest path in time proportional to
(V + E). E can be of the order of V2, but because this graph is
usually sparse, the number of edges is smaller than that. The al-
gorithm performs the sorting on graph vertices (enabled by the fact
that the graph does not contain any cycles), and then finds the
shortest paths on the sorted graph. Thus, not all possible candidate
paths are tested, only those compatible with the sorting. A simple,
straightforward assignment process would force us to go over all
the possible assignments and therefore would take much longer.
Actually, the number of possible valid graph paths is the number
of possible combinations of consecutive vertices. The number of
possible paths in a graph can be exponential in the number of
vertices, but in these cases it can be estimated in Vk, where k is the
number of building blocks that match each protein segment. k can

be estimated as 3 or 4 in most cases. Thus, the Single Source
Shortest Paths algorithm (Cormen et al. 1990) greatly reduces the
computational time. Following the sequence assignment, the origi-
nal conformation of the building block in the known native struc-
ture is assigned to the candidate building block. Currently, we
focus on all paths with the starting vertex within the first 15 resi-
dues, consistent with the building block cutting algorithm (Tsai et
al. 2000). There were a few cases, though, in which no building
block cover was found for a part of the protein (see, for example,
pyridoxine 5�-phosphate synthase in Table 2). In such a case only
part of the protein was assigned, provided that it was large enough
and contiguous (in this case it was the C-terminal domain, starting
from residue 43). This implies allowing short gaps (up to 15 resi-
dues) and short overlaps. In the current version we allow an over-
lap of no more than two residues because the algorithm has a
tendency toward creating large overlaps.

Acknowledgments

The research of R.N. and H.J.W. in Israel has been supported in
part by the Ministry of Science grant and by the Center of Excel-
lence in Geometric Computing and its Applications, funded by the
Israel Science Foundation (administered by the Israel Academy of
Sciences). The research of H.J.W. is partially supported by the
Hermann Minkowski-Minerva Center for Geometry at Tel Aviv
University. This project has been funded in whole or in part with
federal funds from the National Cancer Institute, National Insti-
tutes of Health, under contract number NO1-CO-12400.

The content of this publication does not necessarily reflect the
view or policies of the Department of Health and Human Services,
nor does mention of trade names, commercial products, or orga-
nization imply endorsement by the U.S. Government. The pub-
lisher or recipient acknowledges right of the U.S. Government to
retain a nonexclusive, royalty-free license in and to any copyright
covering the article.

The publication costs of this article were defrayed in part by
payment of page charges. This article must therefore be hereby
marked “advertisement” in accordance with 18 USC section 1734
solely to indicate this fact.

References

Abagyan, R.A. and Batalov, S. 1997. Do aligned sequences share the same fold?
J. Mol. Biol. 273: 355–368.

Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. 1990. Basic
local alignment search tool. J. Mol. Biol. 215: 403–410.

Baldwin, R.L. and Rose, G.D. 1999a. Is protein folding hierarchic? I. Local
structure and peptide folding. Trends Biochem. Sci. 24: 26–33.

———. 1999b. Is protein folding hierarchic? II. Folding intermediates and
transition states. Trends Biochem. Sci. 24: 77–84.

Bernstein, F.C., Koetzle, T.F., Williams, G.J.B., Meyer, E.F., Brice, M.D.,
Rodgers, J.R., Kennard, O., Shimanouchi, T., and Tasumi, M. 1977. The
Protein Data Bank: A computer-based archival file for macromolecular
structures. J. Mol. Biol. 112: 535–542.

Bystroff, C. and Baker, D. 1998. Prediction of local structure in proteins using
a library of sequence-structure motifs. J. Mol. Biol. 281: 565–577.

Bystroff, C., Thorsson, V., and Baker, D. 2000. HMMSTR: A hidden Markov
model for local sequence-structure correlations in proteins. J. Mol. Biol.
301: 173–190.

Cormen, T., Leiserson, C., and Rivest, R. 1990. Introduction to algorithms. MIT
Press, Cambridge, MA.

Crippen, G.M. 1978. The tree structural organization of proteins. J. Mol. Biol.
126: 315–332.

Dill, K.A. 1985. Theory for the folding and stability of globular proteins. Bio-
chemistry 24: 1501–1509.

———. 1990. Dominant forces in protein folding. Biochemistry 31: 7134–
7155.

Haspel et al.

1186 Protein Science, vol. 12

 on May 17, 2007 www.proteinscience.orgDownloaded from 

http://www.proteinscience.org


Dill, K.A. and Chan, H.S. 1997. From Levinthal to pathways to funnels. Nat.
Struct. Biol. 4: 10–19.

Fischer, D., Nussinov, R., and Wolfson, H.J. 1992. 3-D substructure matching
in protein molecules. In Proceedings of the Third Symposium on Combina-
torial Pattern Matching, Tucson, Arizona. Lecture Notes on Computer Sci-
ence, vol. 644, pp. 133–147. Springer Verlag.

Fisher, A. and Taniuchi, H. 1992. A study of core domains, and the core
domain–domain interaction of cytochrome c fragment complex. Arch. Bio-
chem. Biophys. 296: 1–16.

Fontana, A., Polverino de Laureto, P., De Filippis, V., Scaramella, E., and
Zambonin, M. 1997. Probing the partly folded states of proteins by limited
proteolysis. Fold. Des. 2: R17–R26.

———. 1999. Limited proteolysis in the study of protein conformation. In
Proteolytic enzymes: Tools and targets (eds. E.E. Sterchi and W. Stocker),
pp. 257–284. Springer Verlag, Heidelberg, Germany.

Hardin, C., Pogorelov, T.V., and Luthey-Schulten, Z. 2002. Ab initio protein
structure prediction. Curr. Opin. Struct. Biol. 12: 176–181.

Haspel, N., Tsai, C.-J., Wolfson, H., and Nussinov, R. 2003. Hierarchical pro-
tein folding pathways: A computational study of protein fragments. Proteins
51: 203–215.

Inbar, Y., Benyamini, H., Nussinov, R., and Wolfson, H. 2003. Protein structure
prediction via combinatorial assembly of substructural motifs. Intelligent
Systems in Molecular Biology (ISMB). Bioinformatics 1: 1–10.

Kuhlman, B., Boice, J.A., Wu, W.J., Fairman, R., and Raleigh, D.P. 1997.
Calcium binding peptides from �-lactalbumin: Implications for protein fold-
ing and stability. Biochemistry 36: 4607–4615.

Kumar, S., Sham, Y.Y., Tsai, C.J., and Nussinov, R. 2001. Protein folding and
function: The N-terminal fragment in adenylate kinase. Biophys. J. 80:
2439–2454.

Lee, B. and Richards, F. 1971. The interpretation of protein structures: Estima-
tion of static accessibility. J. Mol. Biol. 55: 379–400.

Leibowitz, N., Fligelman, Z., Nussinov, R., and Wolfson, H. 2001a. Automated
multiple structure alignment and detection of a common structural motif.
Proteins 43: 235–245.

Leibowitz, N., Nussinov, R., and Wolfson, H. 2001b. MUSTA—A general,
efficient, automated method for multiple structure alignment and detection
of a common motif: Application to proteins. J. Comput. Biol. 8: 93–121.

Lesk, A.M. and Rose, G.D. 1981. Folding unit in globular proteins. Proc. Natl.
Acad. Sci. 78: 4304–4308.

Ma, B., Tsai, C.J., and Nussinov, R. 2000. Binding and folding: In search of
intramolecular chaperone-like building block fragments. Protein Eng. 13:
617–627.

Murzin, A.G., Brenner, S.E., Hubbard, T., and Chothia, C. 1995. SCOP: A
structural classification of proteins database for the investigation of se-
quences and structures. J. Mol. Biol. 247: 536–540.

Oliva, B., Bates, P., Quero, E., Aviles, F., and Sternberg, M.J. 1997. An auto-
mated classification of the structure of protein loops. J. Mol. Biol. 266:
814–830.

Panchenko, A.R., Luthey-Schulten, Z., and Wolynes, P.G. 1996. Foldons, pro-
tein structural modules, and exons. Proc. Natl. Acad. Sci. 93: 2008–2013.

Panchenko, A.R., Luthey-Schulten, Z., Cole, R., and Wolynes, P.G. 1997. The
foldon universe: A survey of structural similarity and self-recognition of
independently folding units. J. Mol. Biol. 272: 95–105.

Peng, Z.-Y. and Wu, L.C. 2000. Autonomous protein folding units. Adv. Protein
Chem. 53:1–47.

Polverino de Laureto, P., Scaramella, E., Frigo, M., Wonderich, F.G., De Fil-
ippis, V., Zambonin, M., and Fontana A. 1999. Limited proteolysis of
bovine �-lactalbumin: Isolation and characterization of protein domains.
Protein Sci. 8: 2290–2303.

Polverino de Laureto, P., Vinante, D., Scaramella, E., Frare, E., and Fontana, A.
2001. Stepwise proteolytic removal of the � subdomain in �-lactalbumin.
The protein remains folded and can form the molten globule in acid solu-
tion. Eur. J. Biochem. 268: 4324–4333.

Rose, G.D. 1979. Hierarchic organization of domains in proteins. J. Mol. Biol.
134: 447–470.

Shatsky, M., Wolfson, H.J., and Nussinov, R. 2002. Flexible protein alignment
and hinge detection. Proteins 48: 242–256.

Shrake, A. and Rupley, J. 1973. Environment and exposure to solvent of protein
atoms. Lysozyme and insulin. J. Mol. Biol. 79: 351–371.

Srinivasan R. and Rose G.D. 1995. LINUS—A simple algorithm to predict the
fold of a protein. Proteins 22: 81–99.

———. 1999. A physical basis for protein secondary structure. Proc. Natl.
Acad. Sci 96: 14258–14263.

Taniuchi, H., Parr, G.R., and Juillerat, M.A. 1986. Complementation in folding
and fragment exchange. Methods Enzymol. 131: 185–217.

Tsai, C., Maizel, J., and Nussinov, R. 2000. Anatomy of protein structure:
Visualizing how a 1d protein chain folds into a 3d shape. Proc. Natl. Acad.
Sci. 97: 12038–12043.

Tsai, C., Ma, B., Sham, Y., Kumar, S., Wolfson, H., and Nussinov, R. 2001.
Hierarchical, building block based computational method for protein struc-
ture prediction. IBM Journal of Research and Development 45: 513–523.

Tsai, C.J., Polverino de Laureto, P., Fontana, A., and Nussinov R. 2002. Com-
parison of protein fragments identified by limited proteolysis and compu-
tational cutting of proteins. Protein Sci. 11: 1753–1770.

Wodak, S.J. and Janin, J. 1981. Location of structural domains in proteins.
Biochemistry 20: 6544–6552.

Wu, L.C., Peng, Z.Y., and Kim, P.S. 1995. Bipartite structure of the �-lactal-
bumin molten globule. Nat. Struct. Biol. 2: 281–286.

Yang, X.M., Yu, W.F., Li, J.H., Fuchs, J., Rizo, J., and Tasayco, M.L. 1998.
NMR evidence for the reassembly of an �/� domain after cleavage of an
�-helix: Implications for protein design. J. Am. Chem. Soc. 120: 7985–
7986.

Zehfus, M.H. 1993. Improved calculations of compactness and a reevaluation of
continuous compact units. Proteins 16: 293–300.

Zehfus, M.H. and Rose, G.D. 1986. Compact units in proteins. Biochemistry 25:
5759–5765.

Reducing folding complexity

www.proteinscience.org 1187

 on May 17, 2007 www.proteinscience.orgDownloaded from 

http://www.proteinscience.org

