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ABSTRACT

Motivation: Secondary-Structure Guided Superposition tool (SSGS)

is a permissive secondary structure-based algorithm for matching of

protein structures and in particular their fragments. The algorithm was

developed towards protein structure prediction via fragment assembly.

Results: In a fragment-based structural prediction scheme, a protein

sequence is cut into building blocks (BBs). The BBs are assembled

to predict their relative 3D arrangement. Finally, the assemblies are

refined. To implement this prediction scheme, a clustered structural

library representing sequence patterns for protein fragments is

essential. To create a library, BBs generated by cutting proteins from

the PDB are compared and structurally similar BBs are clustered. To

allow structural comparison and clustering of the BBs, which are often

relatively short with flexible loops, we have devised SSGS. SSGS

maintains high similarity between cluster members and is highly

efficient. When it comes to comparing BBs for clustering purposes,

the algorithmobtains better results than other, non-secondary structure

guided protein superimposition algorithms.

Availability: SSGS is available for download at http://www.cs.tau.

ac.il/~wainreb

Contact: ruthn@ncifcrf.gov

Supplementary information: Supplementary data are available at

Bioinformatics online.

INTRODUCTION

For over a quarter of a century (Karplus, et al., 1997), ideas on

protein folding have been dominated by two interrelated concepts:

the Levinthal paradox (Levinthal, 1968) and a necessity for folding

intermediates (Tsong et al., 1972). Levinthal argued that, because

there is an astronomical number of conformations open to the dena-

tured state of a protein, an unbiased search through these would take

‘an eternity’. The early 1990s witnessed a revolution of the concepts

(Bryngelson and Wolynes, 1989). The problem of protein folding

was viewed in the context of populations and ensembles. The

‘folding funnel’ model argued that instead of following a single

pathway, the population may take various routes in a free-energy

funnel landscape (Baldwin, 1994, 1995; Bryngelson, 1989; Dill,

1997; Karplus et al., 1995; Karplus and Shakhnovitch).

The roughness of the funnel slopes (Bryngelson et al., 1995;

Onuchic et al., 1996) reflects the inability to energetically satisfy

all the interactions in any given conformation (Onuchic et al., 1995)

and the transition state ensembles may be conformationally res-

tricted (Martinez et al., 1998). Although the free energy funnel

is described as having one global minimum conformation, at the

bottom of the funnel is an ensemble, with many conformers likely to

be important for biological function. The hydrophobic collapse

model (Dill et al., 1995; Lesk and Rose, 1981; Pace et al., 1996;

Yue et al., 1995) predicts that a protein will rapidly collapse

(Ben-Naim, 1980; Bryngelson, 1989; Dill, 1990; Struthers et al.,
1996) because of its hydrophobic side chains, invoking interactions

such as van der Waals and electrostatic. The hierarchical model

postulates that the unit from which a fold is constructed is the out-

come of a combinatorial assembly of a set of folding units. The

assemblies associate to form intra-molecular domains. The hydro-

phobic folding units (HFUs) possess relatively strong hydrophobic

cores, and their hydrophobic interactions with their surroundings,

or with other units, are weaker. They are compact and may consist of

non-contiguous segments on the amino acid chain (Struthers et al.,
1996). According to the building block (BB) model, an HFU con-

sists of contiguous segments of the chain defined as building blocks

(BBs). If a BB is removed from the chain, the most highly populated

conformation of the extracted peptide in solution would very likely

be similar to that of the BB when it is embedded in the native protein

structure, even though an alternative conformation may be selected

in the combinatorial assembly. Tsai et al. (Tsai et al., 2000; Tsai and

Nussinov, 2001) devised an empirical fragment-size-independent

scoring function that measures the relative conformational stability

of protein fragments and favors folding units that are compact,

isolated and highly hydrophobic modules.�To whom correspondence should be addressed.
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We have devised a three-stage protein prediction scheme which

follows the protein folding process. The sequence is first cut into

structurally assigned BBs (Haspel et al., 2003b). Next, we perform a

combinatorial assembly to predict the BBs relative 3D arrangement

(Inbar et al., 2005; Tsai et al., 2004). In the third stage, we refine and

rank the assemblies. To implement the first stage of the prediction

scheme and identify BBs in a given protein sequence there is a need

for a BB structural template library. In order to relate each BB to a

characteristic profile that represents its typical sequence, we clus-

tered BBs from a BB library derived by cutting proteins from the

PDB. The BB library consisted of �68 000 protein fragments,

exhibiting a relatively high conformational stability as measured

by the scoring function (Tsai et al., 2000; Tsai and Nussinov, 2001).

They were assembled from a structurally non-redundant protein

dataset. To relate a BB with a structural template, the clusters

that emerge from the clustering process should have enough mem-

bers to allow detection of a recurring sequence pattern. To achieve

this goal while maintaining high similarity between BB cluster

members, we used BBs both off and on the main folding route

and developed a permissive novel pairwise superimposition tool,

coined Secondary Structure Guided Superimposition tool (SSGS) to

efficiently detect structural similarity among the BBs and cluster

them. It aligns Ca atoms of two proteins while considering their

secondary structure assignment, allowing a more permissive align-

ment of loop regions. The algorithm combines pose clustering and

dynamic programming (DP) to find the best order-dependent global

superposition. The DP aims to achieve an alignment that satisfies

both affine mismatch and affine gap characteristics; namely, an

alignment that favors fewer larger gaps and larger mismatches

over many short gaps and mismatched regions.

The feasibility of cutting protein sequences into fragments,

constructing fragment databases, assigning the structures to these

fragments and assembling the substructures in order to predict the

structure of proteins has been demonstrated in the literature with

various methods and fragment sizes [see e.g. Rohl et al. (2004),

Ruczinski et al. (2002), Skolnick et al. (2000, 2003), Zhang and

Skolnick (2004, 2005)]. Each method uses different selection

criteria for the creation of the database, different fragment size

distribution and different scoring functions. For example, the

Rosetta method (Rohl et al., 2004) uses fixed-size fragments of

lengths 3 and 9 and is scoring-function independent. The Rosetta

database is very large, since its intention is not to cluster similar

substructures, but to create a broad distribution of as many 3D

sub-structures as possible. Our database, on the other hand, is smal-

ler since it is made of clusters of longer fragments. Our fragments

are variable sized and are at least 15 amino acids long. The fragment

selection is based on a scoring function that selects only fragments

that comprise local minima.

Despite the difference between our BB library and other fragment

databases, previous works by different groups have shown the

immense potential of a fragment-based cutting and assembly

approach in the modeling of protein structures.

PREVIOUS WORK: PAIRWISE SUPERPOSITION
ALGORITHMS

Many pairwise superposition methods have been developed.

Several alignment methods utilize the DP paradigm. Some

of these algorithms use a Double DP algorithm (Cohen, 1997;

Taylor, 1999; Taylor and Orengo, 1989). Other methods use a

one level DP for an optimal mapping of the residues (Gerstein

and Levitt, 1996), for finding matching substructures (Sali and

Blundell, 1990) or for a flexible structure alignment (Ye and

Godzik, 2003). A series of algorithms focuses on backbone frag-

ment similarities (Ishida et al., 2003; Lee et al., 2004, 2005; Pei

and Grishin, 2004). They first define fragments which can be

fixed-length continuous segments from the protein sequence or

can be the secondary structure elements. Similar fragment pairs

are identified and extended or clustered into more global matches.

Shatsky et al. (Shatsky et al., 2000) proposed a graph theoretic-

based technique that uses Dijkstra’s shortest path algorithm for a

fragment-based alignment. The algorithm aligns two proteins and

detects possible hinges with no prior knowledge of the hinge

location.

The Geometric Hashing method was introduced by Wolfson et al.
(Lamdan and Wolfson, 1988; Wolfson, 1990) and later adapted

to biological applications by Wolfson and Nussinov (Nussinov

and Wolfson, 1991). It enables detection of non-sequential

motifs in proteins. The geometric hash table stores redundant

transformation-invariant information representing the object and

allows fast access to relevant data.

METHODS

The building block clustering

In the clustering procedure we iteratively compare every BB with the rep-

resentatives of existing clusters using the SSGS algorithm described below.

If we find a match between a candidate BB and a cluster representative, we

assign the BB to the cluster. If none of the representatives of the clusters

match the BB, we create a new cluster with this BB as its representative. The

cluster representative is the first BB that opened that cluster. While this

clustering method may save computational time it may be inaccurate as BBs

in the same cluster can only match the representative, but not one another. To

avoid unnecessary comparisons we used two rules: (1) Size difference, the

difference between the two compared BB sizes should not be >20% of the

size of the smaller of the two BBs. (2) Similar topology, for every BB, we

count the number of transitions from a certain secondary structure element to

another. A transition is defined as a change in the secondary structure class

while moving along the sequence of the BB from the N-terminal end. There

are two types of secondary structure classes, an a-class that contains only

residues that have been assigned as parts of an a-helix and a b-class that

contains only residues that have been assigned as parts of a b-sheet. In both

classes, we disregarded residues that were assigned to be loops. Therefore,

there are two possible transitions: a!b and b!a. According to the trans-

ition type and number of transitions, the BBs are classified into three cat-

egories: (1) all a, (2) all b and (3) a mixture of a and b. In the third category,

the number of transitions is used to differentiate between the topologies.

Specifically, a BB with n transitions is compared only with BBs that have

n ± 1 transitions. The topology is assigned using the DSSP algorithm

(Kabsch and Sander, 1983).

Secondary structure guided superposition tool

The motivation for this algorithm is to perform a pairwise superposition that

is permissive and allows a loose matching between the compared fragments

in assigned loop regions (Fig. 1). We can roughly divide the SSGS algorithm

into two stages (1) creating a set of transformations of a candidate protein

that match fully or partially a target protein and (2) using DP to rank that

transformation set. We use the DP score of the superimposition iteratively to

refine the superimposition until we reach convergence. Figure 2 depicts an

outline of the SSGS algorithm.
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Stage 1—transformation set creation

(a) Preprocessing and recognition The input to this stage consists

of the coordinates of the Ca atoms of two proteins, A and B. Protein A is the

target and protein B the model, with lengths of M and N, respectively. The

goal of this stage is to generate rigid transformations that match the target

fully or partially to the model. To create a transformation set we use the pose

clustering method (Ballard, 1981). Pose clustering performs object recog-

nition by determining hypothetical object poses and finds clusters of the

poses in the space of the object positions. The poses are the transformations

needed to match each triplet of interest points from the target object with

each triplet of interest points from the model. The space complexity of pose

clustering is lower than the space complexity in the geometric hashing

method described above. The space economization causes a higher time

complexity. However, because the average object size is small (�40 interest

points) the time complexity difference is small. Pose clustering is based on

the notion that a target object that appears in a scene will yield a large cluster

of poses close to the correct position of the model object in the scene.

The transformation set creation stage of the algorithm consists of two

stages—preprocessing and recognition. Rather than testing all possible

transformations, the preprocessing stage matches target triplets only with

model triplets that have matching features. The interest points are the Ca

atoms. For every non-collinear triplet of the model’s Ca atoms (i,j,k), we

compute the lengths of the edges of the triangle (i,j,k) and use the lengths as a

3D key to place the indices (i,j,k) in a 3D hash table. In the recognition stage,

we iteratively choose non-collinear triplets of the target’s Ca atoms (A,B,C)

and compute the corresponding edge lengths. We use the lengths as a query

key to access the hash table to find possible instances of the model. The query

returns all of the model’s hashed triangles whose distance from the query

key is bounded by a given resolution factor f, where the underlying metric

is defined as follows: Let Tr ¼ (i,j,k) be a triangle in the hash table, and let

T ¼ (A,B,C) be the query triangle. Denote the lengths of the edges of Tr

by (u1,u2,u3), where u1 ¼ j i!j j , u2 ¼ j j!k j and u3 ¼ j k!i j and

the lengths of the edges of T, similarly by (v1,v2,v3). Then d(Tr,T) ¼
max1�i�3 j ui � vi j . For every target triplet T ¼ (A,B,C) we compute the

transformation needed to transform the triplet to each of the query returned

model triplets, thus creating a redundant transformation set. These trans-

formations place a target and model triplet in the same plane that coincides

their baricenters. The space complexity of the pose clustering method is

O(M3), which is the number of possible triplets. The time complexity is

O(M3) for the preprocessing stage, plus O(N3 � m) for the recognition stage.

In large proteins, this may result in long computation times because of a

possibly extremely large number of transformations. To reduce the size of

the transformation set without losing the best transformation, we utilize

some heuristics. See Supplementary Material for more details.

(b) Clustering of the transformations We cluster the transformation

set by the RMSD to create a non-redundant set. This stage is computationally

costly. In a Naı̈ve order dependent clustering algorithm, assuming that the

number of clusters and the number of transformations is of the same mag-

nitude, the average time complexity would be O(number of clusters)2. To

refrain from unnecessary comparisons during the clustering and to set a

linear time complexity, we use a geometric hash table during the search

for a matching cluster for the candidate transformation. The geometric hash

table enables us to compare the candidate transformation only against cluster

representatives that are potential matches for the candidate transformation.

For a detailed description of the transformation clustering method, see

Supplementary Material.

Stage 2—alignment creation and evaluation

Each transformation that was created in the previous stage is used as an input

to the next stage, where it is used to create an alignment. The alignment and

its evaluation are performed by a DP recursion aimed at achieving an affine

mismatch topology dependent alignment. This alignment favors a smaller

number of long mismatched regions over many short mismatched regions

and punishes more strongly for mismatches in a-helix and in b-sheet struc-

tures over mismatches in assigned loops. The DP is aimed to achieve the

highest score for a given transformation.

Creation of the spatial neighboring relations matrix

Prior to the DP recursion, we translate the input into a spatial neighboring

relations matrix (SNRM), R(M · N). The input is the Ca atomic coordinates

of the model and target proteins, with lengths of M and N, respectively. We

index the Ca atoms according to their location on the backbone, starting

from the N terminal side, and set all the values in R to a mismatch. For every

Caj (0 � j � N) atom of the model, we compute its Euclidian distance to

every Cai (0 � i�M) atom of the target. Only if the distance is smaller than

radius r and i� j� Maximal shift value, we set R(i,j) to a match between Cai

and Caj. The latter condition excludes matches between residues whose

indices along the protein sequence are distant from each other. We discard

a transformation if the number of matched cells is lower than the maximal

shift value, because these transformations cannot yield a satisfying

A 

B 

Fig. 1. Given two BB fragments (marked A and B) SSGS superimposes them

while giving a greater weight to superimposition of the b-sheet and a-helix

assigned residues in an affine mismatch and affine gap manner. The yellow

and red colored areas of the proteins show areas that were not matched. In the

yellow colored regions, the backbones of the proteins A and B are spatially

separated. The red colored area is a gap region, in which the residues of

protein A were disregarded. The two proteins are (1) Fructose-

1,6-bisphosphatase from Pig, chain B (PDB 1fpg), residues 245–275 and

(2) Stromelysin-1 (MMP-3) from Human (PDB 2srt), residues 114–145.

Fig. 2. A flowchart of the SSGS algorithm.

SSGS: a protein superimposition tool
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alignment with enough matches. We set the maximal shift value to a third of

the longest protein length, and the radius r to 3 s.

Alignment creation

To simplify the description, we first introduce a secondary structure inde-

pendent affine mismatch and gap alignment and later describe how the

secondary structure dependency is added into the algorithm.

We compare our scoring system with Gotoh’s affine gap penalty algo-

rithm (Gotoh, 1982). Gotoh’s algorithm calculates three values at each

recursion stage. Two of the values represent the score of alignments ending

with an open gap that goes through the current cell. The third value repres-

ents the best alignment that ends in the current cell and is dependent on the

maximal value of the previously calculated three values of its upper left

diagonal cell. At every stage it checks whether opening a new gap yields a

higher alignment score than continuing the already opened gap alignment

and whether matching the compared indexed objects will yield a higher score

than the former values.

Our affine gap and mismatch score does not only depend on the location of

the cell the gap starts from and the size of the gap (as in Gotoh’s affine gap

penalty algorithm), but also on whether the cell the gap starts from is a

mismatch or a match. For example, in Figure 3, given a matrix D(M+1,N+1), if

cell D(i,j) is considered as a mismatch cell, then cell D(i,j) can be either the

beginning of a new mismatch region or a continuation of an existing mis-

matched region (view the red and green arrows alignments in Fig. 3). If the

cell that leads to D(i,j) is considered as a match, aligning these cells one after

the other will open a new mismatched region. For example, aligning the

diagonal cell D(i�1,j�1) and D(i,j) (view the black arrow alignment in Fig. 3)

will open a new mismatched region. In some cases a better alignment score

can be achieved for closing a gap of type ‘mismatch’ that starts at cell

D(i�3,j�1) (thus closing a mismatch region), over closing a gap of type

‘match’ that starts from cell D(i�2,j�1) (thus continuing a match region).

As illustrated in these examples, a path that starts from a mismatch and a

path that starts from a match may have different impact on the alignment

score, hence at every cell D(i,j), we consider both possibilities and differen-

tiate between two types of gaps: gaps that start from a mismatch cell and gaps

that start from a match cell. As seen in the figure, the value that represents the

best alignment that ends in cell D(i,j) is the maximum among five values: the

leftward and upward cells each contributing two values gap (where each gap

starts from a different cell) and the diagonal alignment value. Hence, when

we update the relevant gaps for every D(i,j) we first identify the new gap type,

[i.e whether the cell (D(i�1,j�1)) the gap starts from is a ‘mismatch’ or a

‘match’ cell] and whether opening the new gap yields a better alignment

score over the existing gap.

The secondary structure dependency

The secondary structure is introduced by further differentiating between cell

types. Residues that belong to b-sheets or a-helices are considered as a

‘structure’. Otherwise they are considered as a ‘loop’. We assess the assign-

ment by DSSP (Kabsch and Sander, 1983). These definitions of the assign-

ment give rise to three mismatch cell types (loop to loop, loop to structure

and structure to structure mismatch cells) and similarly three types of match

cells. For example cell (Aj, Bi) in Figure 4 exemplifies a matched cell of type

loop to loop.

The secondary structure dependency of the alignment is manifested in the

topology factor, which is the payoff given by aligning two cells one after

another depending on (1) the secondary structure assignment of the aligned

residues in the cell, (2) whether the cell is a match or a mismatch and (3) the

route progress: either opening a mismatched region, continuing a matched

region, continuing a mismatched region or closing a mismatched region. As

seen in the example in Figure 4, the final payoff for aligning the cells (Bi,Aj)

and (Bk,Ae) is calculated considering the assignment and the spatial relations

of the aligned residues. Cell (Bi,Aj) aligns two loop-assigned Ca atoms that

are spatial neighbors. Cell (Bk,Ae) aligns a loop and structure-assigned Ca

atoms that are not spatial neighbors. Since cell (Bi,Aj) is a match, and cell

(Bk,Ae) is a mismatch, aligning the two cells opens a mismatched region in

the alignment. The final payoff for aligning cells (Bi,Aj) and (Bk,Ae) is the

average of the payoffs for opening a mismatch in a loop-to-loop residues

alignment and a structure-to-loop residues alignment.

C

A B

Fig. 3. (A) A 2D representation of a transformation of molecules A and B.

The black arrows point to the neighboring atoms of atoms B1 and B2 from

molecule A. (B and C) A schematic spatial relation matrix of molecules A

and B. Each of the five arrows represents a different alignment that starts from

different cells and ends in cell (A4,B3). The red arrow represents a gap of type

mismatch (i.e. starts from a mismatch cell) going from cell (A3,B1) to (A4,B3).

This illustrates an alignment in which we disregard the atoms B1 and B2 and

align cells (A3,B0) and (A4,B3) one after the other in the alignment. Because

cell (A3,B1) is a mismatch and cell (A4,B3) is a mismatch then such an

alignment depicts a continuation of a mismatch region. The green arrow

represents a gap of type match (i.e. starts from a match cell) going from cell

(A3,B1) to cell (A4,B3). This gap aligns cells (A3,B1) and (A4,B3) one after

another, thus opening a mismatch region. The black arrow represents the

diagonal alignment going from cell (A3,B2) to cell (A4,B3). Aligning these

cells one after the other represents opening a mismatch region. The cyan and

yellow arrows represent a match and mismatch gaps respectively from the

leftward side. (C) The alignments that each of the arrows depicts: the red

arrow alignment represent continuing a mismatch region (S!S), the green

arrow alignment represents opening a new mismatch (M!S).

Ae Aj . . A0  **I Model 
L L . . S SA*  

. . . . . S B0 

Structure -S . . . . . . . 
Loop -L . . . . . . . 

Match -Ma Ma Ma . . . L Bi 
Mismatch-Mi Mi Mi  . . S Bk 

**I-Cα  atom index Target 
*SA- Topology assignment 

Model 2° structure        .          .          .       L     L           . 

  Red (model)     0         .          .        j      e           . 
 

Protein A 

Target 2° structure    .        .           .         L        S         . 

Blue (target)    0       .           .         i          k        . 
 

Protein B 

Fig. 4. The table illustrates the criteria that influence the topology factor for

two proteins A and B: the 2� structure assignment (red cells), and the spatial

relation matrix (green cells). For example, cell Bi, Aj is an alignment of two

loop assigned residues and is regarded as a match due to the spatial neighbor-

ing of Ca atoms Bi and Aj according to the spatial relation matrix. The figure

at the bottom illustrates a graphic representation of the table. It shows the

indices (black), the 2� structure assignment (red), the match between Aj and Bi

Ca atoms and the mismatch between the Ae and Bk Ca atoms.
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Payoff factors

The payoffs are the weights that rank the alignment. The ratio between the

payoffs endows upon the alignment its affine mismatch secondary structure-

dependent nature. Figure 5 illustrates the payoff combination optimized for a

test set of 200 proteins. The ratio payoff has the following criteria:

(1) The payoff for opening a mismatch in a loop-to-loop is higher than

that in a structure-to-structure alignment. Similarly, the payoff for

continuing a mismatch in a loop-to-loop is higher than that in a

structure-to-structure alignment. These ratios guarantee that the best

alignment will favor mismatches in loops over mismatches in a-helix

and b-sheets.

(2) The payoff for a match in a structure-to-structure is higher than a match

in a loop-to-loop alignment. This reflects the tendency for matches in

structure-assigned residues.

(3) The payoff for opening a mismatch is always smaller than continuing

an already opened mismatch. This favors few long mismatch regions

over many short ones.

(4) We expect loop-to-structure alignment to appear more often in the

margins of the assigned secondary structure, where the assignment

might be imprecise. To ensure some flexibility in the alignment, the

payoffs of loop-to-structure are the average of the loop-to-loop and

structure-to-structure alignment payoffs.

Implementation

We create three matrices: Opt(M+1,N+1), Left(M+1,N+1,6) and Up(M+1,N+1,6). The

Opt matrix holds the value for an optimal alignment that ends in the current

cell. The matrices Up and Left are composed of six values, each for a

different cell type for the optimal path that ends with a gap leading to

the current cell, depending on the topology of the aligned residues and

the match or mismatch.

We modify Gotoh’s affine gap penalty to achieve an alignment satisfying

both secondary-structure-dependent affine mismatch and affine gap charac-

teristics. At every stage of the DP we compute 13 values, as the outcome of

our differentiation between six cell types (determined by the match/

mismatch state and the secondary structure alignment) at which a gap region

can start from (6 values are calculated for each of the Left and Up matrices

and the 13th value is the optimal score). At every stage of the recursion, we

save the highest payoffs for these gap types (the gap type is determined by

the cell it starts from). As the recursion progresses, we check the current cell

type and determine whether opening a gap at the current cell type achieves

a higher payoff.

Trace back: Given matrices Opt, Left and Up, find the type of the highest

value among the cells Opt (M,N), Left(M,N) and Up(M,N). According to the

matrix k, which contains the highest value, we set the next cell in the

alignment. For a detailed description of the algorithm implementation,

see Supplementary Material.

RESULTS AND DISCUSSION

Clustering of the building blocks

We clustered 67 971 BBs from 8617 protein chains into 14 401

clusters with an average of 4.7 BBs per cluster. The choice of

the protein chains was based on a non redundant representation

of the PDB (Fischer et al., 1995). Of the clusters 62% (8933 clus-

ters) had more than one member. As expected, the ratio between the

sizes of the BB clusters and the BB lengths exhibited an exponential

growth in the size of the BB cluster as the length of the

BB representative shortens. In most of the clusters the majority

of the members belonged to the same SCOP family, implying a

high sequence resemblance. Both high sequence and high structural

similarity are crucial for the template’s ability to reflect a sequence-

structure pattern that is statistically identifiable in a sequence-profile

search. On the one hand, the sequence similarity has to be high. On

the other hand, it has to reflect some of the sequence polymorphism

the BB cluster structure exhibits.

Figure 6 shows the multiple structural alignments and the mul-

tiple sequence alignment (MSA) of a cluster whose representative is

human estrogenic 17 beta-hydroxysteroid dehydrogenase (residues

2–35). The multiple structural alignment of the cluster exhibits

a low RMSD (2.0 Å
´

), implying that there is a high structural sim-

ilarity. However, the MSA exhibits a low sequence conservation

Fig. 5. The graph illustrates the relative payoffs given in the alignment stage

of the SSGS algorithm as a function of the alignment type.

 

1bhs Red -R-TV-VLITGCSSGIGLHLAVRLASD--PSQSF----KV-Y---AT
1gga Green --TI-KVGING-FGRIGRMVFQALCDD--G--LLGNEIDVVA---V-
1gyp Yellow -P-I-KVGING-FGRIGRMVFQAICDQ--G--LIGTEIDVVA---V-
1dnp Orange -H-LF-YNYQ--YEVNERARDVEVERAL--RNVV---CEG-FDDS--
2cmd Blue ---KV-AVL-GAAGGIGQALALLLKTQLP-SGSE----LS-L---YD
Conservation  13115131339113366333331311311553301115131111131 

 

Fig. 6. A multiple structural alignment of a BB cluster from two views. The

representative of this cluster is the BB consisting of residues 2–35 of

the human estrogenic 17 beta-hydroxysteroid dehydrogenase (PDB: 1bhs,

red chain) which is considered to be the average structure for the cluster. The

sequence alignment is shown above. The building blocks are 1bhs, (residues

2–35) Human Estrogenic 17 b-Hydroxysteroid Dehydrogenase; 1dnp,

(residues 38-131) Deoxyribodipyrimidine Photolyase; 1gga, (residues

1–35) Glycosomal glyceraldehyde-3-phosphate dehydrogenase; 1gyp, (resi-

dues 2–36) Glycosomal glyceraldehyde-3-phosphate dehydrogenase, 2cmd,

(residues 2–34) Malate Dehydrogenase
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[calculated by Al2CO (Pei and Grishin, 2001)]. This example illus-

trates an already known phenomenon, according to which the struc-

ture is often better conserved than the sequence. Further, the

structural flexibility at the BB ends and at the inter-BB area may

be important for enabling the combinatorial trial-association pro-

cess of the BBs as the protein folds. As expected, the least struc-

turally conserved regions are the BB ends, which are often loop

regions.

The BB folding model leads to an important question: Can the

BBs be referred to as stand-alone units, independent of their struc-

tural environment? Will a BB show similar properties if it is taken

out of its structural context and placed elsewhere? To address this

question we use the clusters, which contain an abundance of data.

The most interesting clusters are the ones containing many BBs

from different protein families and which vary greatly in their

sequences. We encountered many such clusters (Haspel et al.,
2003a; Wainreb, 2005), illustrating that the BBs can usually be

viewed as independent units, regardless of their environmental con-

text. If this is true, the BB clusters can be a powerful tool that helps

to reduce the complexity of the protein structure prediction via the

hierarchical three-stage protein folding scheme described above.

The SSGS algorithm

The BB clustering and the SSGS algorithm used for BB alignment

during the clustering were implemented on an AMD 1700 MHz

based workstation. We ran the SSGS algorithm over a large number

of examples (approximately billion comparisons). The average run-

ning time for finding the optimum geometric alignment between

two protein chains with a length of 40 amino acids, the average

length of the BB in the BB database, was 3.5 s.

Figure 7 shows three examples of the results of the SSGS algo-

rithm, when applied to BBs. All three cases show <20% sequence

identity. In Figure 7B and C the two BBs are derived from proteins

of different super-families. In Figure 7A the two BBs are from

proteins of the same family, but from different regions of the pro-

tein. This shows that the SSGS algorithm finds good structural

matches even in cases where the sequence homology is weak.

As seen in the figures, the secondary structure match is preferred

over matches of loops and unassigned areas even if as a result, the

overall RMSD of the match is higher. Since loop regions are less

conserved than secondary structure assigned regions, a pairwise

matching algorithm that prefers secondary structure matching to

loop matching is more likely to discover matches that are significant

to the conservation and retention of the protein structure.

The alignment created by SSGS is a balance between four align-

ment goals: (1) to maximize the number of pairs of equivalent main

chain atoms, (2) to minimize the alignment error i.e. the root mean

square deviation (RMSD) between the aligned atom pairs, (3) to

align the two fragments while giving a higher preference to aligning

the secondary structures assigned residues, and (4) to favor few long

mismatched regions over many short mismatched regions.

Comparison with other algorithms

In order to test the SSGS performance relative to other algorithms,

we compared its results with those of three other structural

alignment tools—MASS (Dror et al., 2003), MutiProt (Shatsky

et al., 2002) and DALI (Holm and Sander, 1993). These align-

ment tools represent two methodologies of structurally based com-

parison. MultiProt and DALI, on the one hand, align the proteins,

disregarding their secondary structure and their sequence order.

MASS, on the other hand, aligns the protein structures almost solely

based on their secondary structures. Compared with these methods

SSGS exhibits a compromise genre that gives a more flexible attri-

bute to secondary structure and non-secondary structure assigned

Ca atoms.

We performed a large-scale iterative pairwise alignment of a

dataset of protein segments taken from our BB library using

SSGS, MASS, MultiProt and DALI. The subset of protein segments

was selected trying to maintain two database criteria: uniform dis-

tributions of segment sizes and of secondary structure percentage

(i.e. the fraction of the number of residues assigned as a-helix or

b-sheet out of the total number of residues). Overall, we selected a

representative set made of 263 pairs of protein segments from the

original BB database. To evaluate the structural alignments we used

STACCATO, which is a novel MSA tool (Shatsky et al., 2006).

Given a structural alignment, it incorporates both the sequence and

the structural information into its resultant MSA.

The segment pairs in the dataset were each aligned by MASS,

MultiProt, DALI and SSGS and compared according to STACCA-

TO’s identity score. We denoted the identity score for the alignment

of protein segments A and B IdA‚B
SSGS‚IdA‚B

MASS‚IdA‚B
MULTI‚IdA‚B

DALI

Fig. 7. Examples of the results of the SSGS algorithm when applied to BBs. In

each case the model BB is colored in blue and the target is colored in red. The

BBs are (A) Model: Aspartate aminotransferase from Escherichia coli (PDB:

1asl), chain A, residues 249–269. Target: Aspartate aminotransferase from

chicken (PDB: 2cst), chain B, residues 63–82. (B) Model: Phycocyanin beta

subunit from cyanobacterium (PDB: 1cpc), chain L, residues 48–96. Target:

Cyclin H (mcs2) from human (PDB: 1jkw), residues 126–174. (C) Model:

Transglutaminase from human (PDB: 1ggt), chain A, residues 2–34. Target:

immunoglobulin from mouse (PDB: 1clo), chain L, 516–549.
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for SSGS, MASS, MultiProt and DALI, respectively. We evaluated

the results of SSGS comparing to the other methods according to

the difference in the identity scores achieved by the three methods

for each protein pair, i.e.: IdA‚ B
SSGS�MASS ¼ IdA‚ B

SSGS � IdA‚ B
MASS‚

IdA‚ B
SSGS�MULTI ¼ IdA‚ B

SSGS � IdA‚ B
MULTI and IdA‚ B

SSGS�DALI ¼
IdA‚ B

SSGS � IdA‚ B
DALI:

In �80% of the comparisons, there were no substantial differ-

ences between the results obtained by the different methods. As

expected, we encountered more differences between the methods

as the average identity value ½ðIdA‚ B
SSGS þ IdA‚ B

MASS þ IdA‚ B
MULTI þ

IdA‚ B
DALIÞ/4� of the alignments decreased. This observation emphas-

izes the fact that as the compared proteins become more evolution-

arily distant, it is more important to choose the correct alignment

tool for the problem. As can be seen in Table 1, on average, SSGS

performed better than MASS, MultiProt and DALI but this result is

not statistically significant. However, in the cases in which SSGS

was favorable to MultiProt, the average difference in the identity

score (IdSSGS�MULTI) was 5.5% compared with only 1.6% in the

cases in which SSGS was inferior to MultiProt (i.e. IdSSGS�MULTI

<0). This pattern can be also seen with regard to MASS. In the cases

in which SSGS was favorable to MASS (IdSSGS�MASS >0) the

average difference in the alignment identity was 8.3%. In the

cases in which SSGS was inferior to MASS (i.e. IdSSGS�MASS

<0) the average identity difference was 1.7%. In the cases in

which SSGS was favorable to DALI (IdA‚B
SSGS�DALI > 0) the average

difference in the alignment identity was 15%. In the cases in which

SSGS was inferior to DALI (i.e. IdA‚B
SSGS�DALI < 0) the average iden-

tity difference was 2%. A graphic representation of these results can

also be seen in Figure 8 where the comparison of SSGS with the

other three algorithms is shown in the form of a histogram.

In order to characterize those cases in which it would be prefer-

able to use SSGS, we studied how the difference in the number of

secondary structures of the aligned proteins affected the perform-

ance of the four methods. Cases in which SSGS results were favor-

able compared with MASS, MultiProt or DALI, the difference

between the number of secondary structure elements of the aligned

protein was significantly smaller. Unlike MASS, MultiProt or DALI

that are sequence order independent, SSGS is a sequence order

dependent algorithm. This feature guides the alignment results of

SSGS to the detection of order-dependent motifs which are better

conserved among topologically related protein segments. Evolu-

tionarily, the loop regions are poorly conserved and exhibit a

high rate of insertions and deletions. Thus, finding consensus resi-

dues might require a better alignment of the secondary structures

that are more conserved, over aligning the loop assigned regions.

This makes a secondary structure guided alignment more significant

when attempting to find similar structural patterns among proteins

from different families, as is the case of the clustering of the BBs.

An example of this preference can be seen in Figure 9, where we can

view two different alignments of the same two chains created by (1)

SSGS and (2) Multiprot. The two protein chains are BB fragments

Table 1. The average differences in performance between SSGS and three

other structural alignment methods—MASS, MultiProt and DALI

Method Identity score difference with SSGS

MASS 0.61 ± 4.01

MultiProt 0.53 ± 3.71

DALI 0.79 ± 6.4

The difference in the performance is expressed as the difference between the identity

scores of each comparison, obtained by STACCATO (see Results section). The data was

generated running the three algorithms on 400 protein segment pairs. Histogram repre-

sentations of the results can be found in Figure 8.

 

 

 

Fig. 8. A histogram representation of the comparisons between SSGS and

three other structural alignment methods—MASS (A), MultiProt (B) and

DALI (C). This is a histogram presentation of the results displayed in

Table 1. The difference in the performance is expressed as the difference

between the identity scores of each comparison, obtained by STACCATO

(see Results section). The data was generated running the three algorithms on

400 protein segment pairs.
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that were cut from human Cyclin H (mcs2), residues 126–174 and

Phycocyanin beta subunit from cyanobacterium, chain L, residues

48–96. Both protein segments contain a helix–loop–helix assigned

region. As the figure shows, the SSGS resulting superposition

exhibits an alignment in which the matching of the helix assigned

residues was preferred over an alignment with more residues and a

lower overall RMSD which does not fully align the helix assigned

residues, as observed in the resulting superposition created by

MultiProt. As shown in Figure 9, the sequence alignment of the

match obtained by the SSGS algorithm is better than the sequence

alignment of the match obtained by MultiProt for the same model

and target. This stems from the fact that the SSGS aligned the

secondary structure elements better than MultiProt, at the expense

of a poorer loop alignment.

Figure 10 provides the alignment of two BBs using SSGS and

MASS. The aligned segments are BB fragments cut from the human

tumor necrosis factor (TNF) (PDB: 1tnf), residues 60–121 and the

extra-cellular domain of the human CD40 ligand (PDB: 1aly), resi-

dues 55–114. Both protein segments contain two loop regions and

two secondary structure regions. As can be seen, the alignment

obtained by SSGS is much better both structurally and by means

of identity score, than the alignment obtained by MASS. This stems

from the fact that MASS first aligns secondary structure elements

and later attempts to find the best alignment within this framework,

while SSGS aligns all the residues in one stage, which may result in

an alignment that prefers loop regions over secondary structure

regions to maximize the overall score. In addition, a secondary-

structure-based algorithm such as MASS is likely to fail in finding a

match in cases where a BB contains few or no secondary structure

elements whereas SSGS, despite preferring the alignment of

secondary structure elements, can still proceed. The structure

guided sequence alignment shown in Figure 10 shows that the

SSGS guided alignment prefers one larger gap in the loop region

over two smaller gaps as in the MASS case. To sum, our tests

indicate that SSGS is a good compromise between the two

approaches represented by secondary–structure-dependent methods

such as MASS and residue-based sequence order independent

matching methods such as MultiProt or DALI.

CONCLUSIONS

Here, we present a new method for fragment structure alignment.

Our method comprises a novel technique for achieving an affine

mismatch alignment. The method successfully performs pairwise

alignment, while considering the topology of the aligned chains.

The reference to the secondary structure assignment avoids an

exhaustive scan of the transformation space without missing the

optimal alignment. The SSGS algorithm was used for a large-scale

clustering of protein fragments derived from the PDB. Considering

the accommodating nature of this method, we propose its use while

modifying the parameters according to the evolutionary distance

between the aligned proteins. Instead of disregarding the loop-

assigned residues or award loop residues the same weight as the

structure-assigned residues, it is possible to adjust the weight of

Fig. 9. An example of the matching of two BBs using two different pairwise

matching algorithms. (A) Alignment using the SSGS algorithm. (B) Align-

ment using the MultiProt algorithm. The sequence alignment of each match is

shown below. The two BBs are (1) Cyclin H (mcs2) from human (PDB: 1jkw),

residues 126–174 (blue). (2) Phycocyanin beta subunit from cyanobacterium

(PDB: 1cpc), chain L, residues 48–96 (red).

 

  

  
                

 

Fig. 10. An example of the matching of two BBs using two different pairwise

matching algorithms. (A) Alignment using the SSGS algorithm. (B) Align-

ment using the MASS algorithm. The sequence alignment of each match is

shown below. The two BBs are (1) TNF from human (PDB: 1tnf), chain A,

residues 60–121 (blue). (2) The extra-cellular domain of the human CD40

ligand (PDB: 1aly), residues 55–114 (red).
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the loop-assigned residues in the alignment to reflect the fact that

they are less conserved evolutionarily.

In particular, SSGS is able to efficiently and robustly create

structurally similar clusters of fragments of protein chains when

these may (largely) consist of loops. This ability of SSGS makes it a

useful tool towards structure prediction via modeling of local

structures followed by their assembly. In cases where there are

no sequentially similar chains with available structures which

can be used in homology modeling, modeling of fragments may

prove a sound strategy. In such an approach, a library rich in clusters

of structurally similar BB fragments would be key for large-scale

protein structure prediction.
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