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1 Introduction

In these notes, we are going to touch upon three topics:

1. Euler’s proof that the number of primes is infinite.

2. How Euler found the sum

∞∑

n=1

1

n2
=

π2

6

3. Dirichlet’s evaluation of the probability that two positive integers chosen at random are rela-
tively prime.
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There is some relationship between all three of these topics, oddly enough. As is already evident,
the first two results are due to Leonhard Euler. Euler, who lived from 1707 to 1783, was the greatest

mathematician of the 18th century, and the most prolific mathematician of all time. His collected
works in mathematics and physics take up more than 60 bound volumes.

Euler’s mathematical intuition and skill were formidable. The ideas he came up with that we are
going to write about here are still bearing fruit.

The third of these topics is a result due to Dirichlet in 1849, which uses Euler’s result in the second
topic. We do not follow his original reasoning however. Instead, we first give a plausibility argument
for his result, based on some simple ideas of mathematical probability. Then we give a rigorous proof,
based on a simple version of the Lebesgue bounded convergence theorem.

These results were astonishing when they were first published. They are examples of how seemingly
distinct branches of mathematics come unexpectedly together. In particular, one might ask: How is
it that the number π, which arose first in geometry, can have anything at all to do with the sequence
of prime numbers?

2 Euler

2.1 The geometric series and the harmonic series

The geometric series

1 + x + x2 + x3 + · · · + xn + · · ·

converges for |x| < 1. This is easy to see: Let Sn denote the sum of the first n terms:

Sn = 1 + x + x2 + · · · + xn−1

Then we have

Sn = 1 + x + x2 + · · · + xn−1

xSn = x + x2 + · · · + xn−1 + xn

and so upon subtracting we get

Sn − xSn = 1 − xn

and so

Sn =
1 − xn

1 − x

If |x| < 1, then xn → 0 as n → ∞, so

lim
n→∞

Sn =
1

1 − x

and this is what is meant when we write it as an infinite sum:

∞∑

n=0

xn =
1

1 − x
for all x such that |x| < 1
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The geometric series is a very rapidly converging series. This is because the individual terms go to

zero exponentially. (In fact, a better name for the geometric series would be the exponential series.)

For instance, if x = 1/5, the series is

1 +
1

5
+

1

25
+

1

125
+

1

625
+

1

3125
+

1

15625
+ · · ·

Each term is 1/5 the size of the previous one, and it is evident that the convergence is quite fast—if
one did not know that the sum was going to be

∞∑

n=0

(
1

5

)n

=
1

1 − 1
5

= 5/4 = 1.25

then one could simply compute the partial sums

n Sn

0 1
1 1.2 . . .
2 1.24 . . .
3 1.248 . . .
4 1.2496 . . .
5 1.24992 . . .
6 1.249984 . . .

Now suppose that

a1 + a2 + a3 + · · · =

∞∑

n=1

an

is any convergent sequence. (Note that here we are letting the index variable n run from 1 to ∞,
rather than from 0 to ∞. This is just a matter of convenience. Sometimes it is more convenient to
do it one way, and sometimes the other, depending on what series we are dealing with.)

Certainly the individual terms an have to converge to 0—otherwise the series could not possibly
converge.

On the other hand, there are series in which the individual terms tend to 0 but the series as a whole
does not converge. (That is, the partial sums Sn do not converge.) The most famous example is

the harmonic series

∞∑

n=1

1

n
= 1 +

1

2
+

1

3
+

1

4
+

1

5
+ · · ·

The usual way to see that this series does not converge is to group all the terms (except for the first

two) into blocks, each block having twice the number of terms as the previous one:

1 +
1

2
+

1

3
+

1

4
︸ ︷︷ ︸

1

2

+
1

5
+

1

6
+

1

7
+

1

8
︸ ︷︷ ︸

1

2

+
1

9
+

1

10
+

1

11
+

1

12
+

1

13
+

1

14
+

1

15
+

1

16
︸ ︷︷ ︸

1

2

+ · · ·
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The way it works is this: the two terms in the first bracket are both ≥ 1
4 , so their sum is ≥ 1

4 + 1
4 =

2
4 = 1

2 , which is what we have written underneath. Similarly the four terms in the next bracket are

each ≥ 1
8 , so their sum is ≥ 1

8 + 1
8 + 1

8 + 1
8 = 4

8 = 1
2 . And so on. From this we can see that the sum

of this series gets arbitrarily large as we take more and more terms. Of course it gets larger and
larger “slower and slower”, but the partial sums still eventually diverge to ∞: they get larger than
any specified number if we are willing to wait long enough.

So this series diverges, but slowly. We can get an idea of how slowly it diverges by looking at the

function f(x) = 1
x
. We know that the integral of this function from 1 to x is just log x, the natural

logarithm of x (see Figure 1).

1 x

Figure 1: The shaded area is log x.

In Figure 2, we show how to build rectangles underneath this curve whose sizes are just the terms
of the harmonic series.

From this figure, we can see that log x grows at least as fast as the harmonic series, and so it tends
to ∞ as x → ∞. It may be hard to believe that the shaded area under the curve in Figure 1 gets
very large as x → ∞, but that is what we have just proved.
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1 2 3 4 5

Figure 2: The rectangles have area 1
2 , 1

3 , 1
4 , . . .

2.2 Euler’s proof that there is an infinite number of prime numbers

Euler used the fact that the harmonic series diverges as a basis of a proof that there are an infinite
number of prime numbers. Here is how he did it:

Remember that every positive integer is the product of prime numbers, and this product is unique.
That is, there is only one such product, up to the order of the factors. For instance,

2352 = 24 · 31 · 72

and the exponents (4, 1, 2) are uniquely determined by the number 2352; no other exponents would
work. We can use exponents of 0 to fill in the “missing primes”, like this:

2352 = 24 · 31 · 50 · 72
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In fact, we could include all the primes this way:

2352 = 24 · 31 · 50 · 72 · 110 · 130 · 170 · · ·

This looks like an infinite product, but in fact, all but a finite number of its factors are 1, so it is
really just an ordinary finite product.

We can express all this a little more generally. We number the primes in order, like this

n pn

1 2
2 3
3 5
4 7
5 11
6 13
7 17
...

...

Then using this numbering, any positive integer a has a unique representation

a = pα1

1 pα2

2 pα3

3 · · · =
∞∏

n=1

pαn

n

where all but a finite number of the exponents αn are 0 (so the corresponding factors pαn
n are 1).

Now here is what Euler did: Suppose that there are only a finite number of primes. Say there are

N of them. As above, we enumerate them as {p1, p2, . . . , pN}. Now we know that for any n we can
write

1

1 − 1
pn

= 1 +
1

pn

+
1

p2
n

+
1

p3
n

+ · · · =

∞∑

i=0

1

pi
n

(We know this because this is just the sum of the geometric series 1+a+a2+a3+ . . . , with a = 1
pn

.)

So now let us take the product of these expressions over all N primes:

N∏

n=1

1

1 − 1
pn

=

N∏

n=1

∞∑

i=0

1

pi
n

The left hand side is a finite product of finite numbers. We don’t really care what its value is. All
that matters is that it is obviously a finite number.

Now let us look at the right-hand side. It is a product of sums. It looks like this:
(

1 +
1

p1
+

1

p2
1

+ · · ·

)(

1 +
1

p2
+

1

p2
2

+ · · ·

)(

1 +
1

p3
+

1

p2
3

+ · · ·

)

· · ·

(

1 +
1

pN

+
1

p2
N

+ · · ·

)

(1)

If we imagine multiplying this product out completely, we would take one term from each of the N
sums and multiply them together to get a product. We would form a product from each possible



2.3 The series

∞∑

n=1

1

n2
7

combination in this way, and add those products up. That would give us the value of the expression
on the right hand side.

Now each of these products is of the form

1

pα1

1

1

pα2

2

· · ·
1

pαN

N

=

N∏

n=1

1

pαn
n

Every power of every prime occurs exactly once in one of the sums in the expression (1). Therefore,

there will be exactly one term like this for each different collection of exponents {α1, α2, . . . , αN}.

We know that each positive integer a has a representation

a =
N∏

n=1

pαn

n

and so

1

a
=

N∏

n=1

1

pαn
n

That is, for each positive integer a, there is precisely one of the multiplied-out terms on the right-

hand side that equals 1
a
, and every multiplied-out term on the right-hand side is 1

a
for some such a.

Therefore, the right-hand side must equal

1 +
1

2
+

1

3
+

1

4
+

1

5
+ · · ·

That is, the right-hand side must equal the sum of the harmonic series. But we know this series
diverges—it does not have a finite sum. Therefore our assumption that there is only a finite number
N of primes must be incorrect, and the proof is complete.

Now this proof of Euler’s was by no means the first proof that the number of primes is infinite.
Euclid had already written down a simple and very elegant proof 2000 years previously. Neverthless,
Euler’s proof is quite clever, and the ideas in the proof also lead to some other remarkable results,
as we shall see below.

2.3 The series

∞∑

n=1

1

n
2

We saw above that the harmonic series

∞∑

n=1

1

n
= 1 +

1

2
+

1

3
+

1

4
+

1

5
+ · · ·

diverges, even though the individual terms tend to 0. Now if a is any number between 0 and 1,

then 0 < a2 < a. That is, squaring a small number makes it smaller. So it might occur to us to see
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if forming a new series by squaring each term of the harmonic series yields a series that converges.
That is, we consider the series

∞∑

n=1

1

n2
= 1 +

1

4
+

1

9
+

1

16
+

1

25
+ · · ·

It turns out that this series actually does converge. We can see this by playing the same game with
graphs that we did with the harmonic series. If we build rectangles whose areas are the terms in

this series, then these rectangles lie beneath the graph of the function f(x) = 1
x2 . Figure 3 shows

what this looks like.

1 2 3 4 5

Figure 3: The graph of the function f(x) = 1
x2 . The rectangles have area 1

22 , 1
32 , 1

42 , . . .

It is apparent from the graph that this function tends to 0 as x → ∞ much more quickly than the

function 1
x
. And we also see that the terms of this series also get smaller much quicker than the

terms of the harmonic series. (And by the way, the terms of the geometric series get smaller much

quicker than the terms of either of these series.)
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Now in fact, we can see that the total area under the graph of the function f(x) = 1
x2 from 1 to ∞

is finite. For it is just

∫ ∞

1

1

x2
dx = −

1

x

∣
∣
∣
∣

∞

1

= 1

Therefore, the sum of all the terms of this series except the first, which is represented by the sum
of the areas of all the rectangles, is less than this, and so must be finite—less than 1, in fact. This
shows that the series converges, and we see that actually, the sum of the whole series is less than
1 + the sum of the rest of the terms, and so is less than 2. And it’s also greater than 1, since the
first term is 1. So the sum is a number between 1 and 2.

Well, that’s not bad. It shows how calculus can be applied to give us a handle on the convergence
of a series. Of course, the question then arises: can we find a simple expression for the exact sum
of the series?

Many people wondered about this question. It was finally answered by Euler, using another ingenious
argument, which we will now present.

2.4 Linear factors of polynomials

First, we have to say a few things about polynomials.

Polynomials have the following property: If p(x) is a polynomial, and if a is any number, then x−a

is a factor of p(x) if and only if p(a) = 0. This is just because, no matter what the number a is, we

can divide p(x) by x− a to get a quotient polynomial q(x) and a remainder r. (The remainder r is

always a number, not a polynomial.)

For instance, if p(x) is the polynomial x5 − 5x4 − 11x3 + 57x2 − 7x − 12 and a is 5, we can divide

p(x) by x − 5, just as we learned in high school (see Figure 4). In that figure, the remainder r is 3.
We can also write the result of the division in that figure as follows:

x5 − 5x4 − 11x3 + 57x2 − 7x − 12 = (x4 − 11x2 + 2x + 3)(x − 5) + 3

This kind of division can be done in general: we always can divide p(x) by x − a to get a quotient

q(x) and a remainder r, and we can write this as

p(x) = q(x)(x − a) + r

From this equation, we see that x − a is a factor of the polynomial p(x) if and only if r = 0.

Also, if we substitute a for x in this equation, we get p(a) = r. This shows that

x − a is a factor of p(x) ⇐⇒ the remainder r is 0

⇐⇒ p(a) = 0

A number a such that p(a) = 0 is called a zero of the polynomial p(x).

Thus, if we know the zeros of a polynomial (i.e., if we know where a polynomial takes the value 0),
we also know its linear factors. For instance, if we have been given the polynomial

p(x) = x4 − 2x3 − 41x2 + 42x + 360
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x4 − 11x2 + 2x + 3

x − 5 x5 − 5x4 − 11x3 + 57x2 − 7x − 12

x5 − 5x4

−11x3

−11x3 + 55x2

2x2 − 7x

2x2 − 10x

3x − 12

3x − 15

3

Figure 4: Dividing polynomials, as we learned to do it in high school. The remainder is 3.

and we know it vanishes when x is −3, 4, −5, and 6, then we know at once that p factors as

p(x) = A(x + 3)(x − 4)(x + 5)(x − 6)

for some value of A.

This is in fact the complete factorization of the polynomial p(x) because both sides of this equation

have degree 4, and any other factor would increase the degree of the right-hand side. Furthermore,

A must be 1, because the highest order term in p(x) is x4, and on the other hand, the highest order

term on the right-hand side, when we multiply it out, is Ax4.

This is very useful as a way of finding the factors of a polynomial, because in many cases it is not
hard to find the zeros of the polynomial.

There is another way this can be written: in the example we just used, we could also write

x + 3 as 3
(

1 +
x

3

)

x − 4 as − 4
(

1 −
x

4

)

and so on. This way, we can write

p(x) = 360
(

1 +
x

3

)(

1 −
x

4

)(

1 +
x

5

)(

1 −
x

6

)

Further, the constant 360 is just p(0), as we can see by substituting in 0 for x, and in general, we

see that if a polynomial p(x) of degree n has zeros at {a1, a2, . . . , an}, and if none of the numbers
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n=1

1

n2
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ai is 0, then

p(x) = A

n∏

i=1

(

1 −
x

ai

)

(2)

where in this case A = p(0).

If p(x) has a factor x—that is, if p(0) = 0—then we can divide p(x) by x to get a polynomial q(x),
and we could continue dividing until we get a polynomial that does not have a factor of x. The
product representation (2) then applies to that polynomial.

In the case p(x) has exactly one factor of x—that is, in the case that x is a factor of p(x) but x2 is
not—we see that we get by this method

p(x)

x
= A

n∏

i=1

(

1 −
x

ai

)

or equivalently,

p(x) = Ax

n∏

i=1

(

1 −
x

ai

)

In this case, the degree of the polynomial is n + 1.

2.5 How Euler evaluated

∞∑

n=1

1

n
2

Euler, as well as all mathematicians in his generation, knew that many functions have series expan-
sions

f(x) = a0 + a1x + a2x
2 + a3x

3 + · · ·

Series like this are called power series. Euler and his contemporaries also knew that there is a nice
formula for the coefficients of such a series. In fact, you may already know, as they did, the power
series for sinx:

sin x = x −
x3

3!
+

x5

5!
−

x7

7!
+ · · ·

But even if you don’t, this series is easy to derive, just by finding successive derivatives and evaluating
at 0:

First we find the derivatives. We know how to take the derivative of a power series (i.e., term-

by-term), and we know how to take the derivative of a trigonometric function, so we do this both
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ways:

sin x = a0 + a1x + a2x
2 + a3x

3 + · · ·

d

dx
sin x = a1 + 2a2x + 3a3x

2 + · · ·
d

dx
sinx = cosx

d2

dx2
sin x = 2a2 + 6a3x + · · ·

d2

dx2
sinx = − sin x

d3

dx3
sin x = 6a3 + · · ·

d3

dx3
sinx = − cosx

Thus, substituting 0 for x, we have

a0 = sin 0 = 0
a1 = cos 0 = 1

2a2 = − sin 0 = 0
6a3 = − cos 0 = −1

Putting this all together, we have

sin x = x −
1

6
x3 + terms of degree 4 or higher

or, dividing by x,

sin x

x
= 1 −

1

6
x2 + terms of degree 3 or higher(3)

Now a power series can be thought of as a polynomial of infinite degree. When you look at the
graph of the function f(x) = sinx (see Figure 5), you can see that it has zeros at the points

{0,±π,±2π,±3π, . . .}. Euler had the remarkable idea that these zeros of sinx should correspond
to linear factors of the power series for sinx, just as the zeros of ordinary polynomials correspond

to linear factors of those polynomials. Thus, if we take account of the factor x (which corresponds,

π 2π 3π−π−2π−3π

Figure 5: The graph of the function f(x) = sin x.

as in the case of polynomials, to the zero at 0), we can write—formally, at least—

sinx = Ax

∞∏

n=1

(

1 +
x

nπ

)(

1 −
x

nπ

)

(4)

This was really a bold thing to do. It immediately raises all sorts of questions, such as
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∞∑

n=1

1

n2
13

• Does the infinite product actually converge?

• Does the order in which we have written the factors matter?

• Even if it does converge, does it really converge to sinx?

Let us ignore these questions for the moment and proceed formally. The first thing to do is to find
the value of the constant multiplier A. Now if the equation (4) is true, then dividing by x, we have

sin x

x
= A

∞∏

n=1

(

1 +
x

nπ

)(

1 −
x

nπ

)

We know that the limit of the left-hand side as x → 0 is 1. And if we just substitute x = 0 in the
right-hand side, we get A (since each of the factors in parentheses reduces to 1). So we must have

A = 1, and we have

sin x = x
∞∏

n=1

(

1 +
x

nπ

)(

1 −
x

nπ

)

Using the fact that (1 + t)(1 − t) = 1 − t2, we can rewrite this as

sin x = x

∞∏

n=1

(

1 −
x2

n2π2

)

(5)

This is a wonderful identity. It turns out that all this can be rigorously justified by means of

techniques that were developed in the 19th century, well after Euler’s death. However, Euler did
examine this identity critically, including testing it numerically, and convinced himself and others
that it was in fact true.

Now let us compare this to what we get from the identity (3). First, let us rewrite (5) as a product

for sin x
x

, to make it consistent with the power series (3):

sinx

x
=

∞∏

n=1

(

1 −
x2

n2π2

)

(6)

We can imagine multiplying out this infinite product of binomials and adding up all the terms to

get a power series, which must of course be the power series (3).

To multiply out the infinite product, we take one term from each factor and multiply them together.
The only way to get a constant term is to multiply all the constant terms (i.e., the first term in each

factor). These terms are all 1, so their product is 1, and that is indeed the constant term in (3).

To get the next term in (3) (i.e, the term − 1
6x2), we take the constant terms from all but one factor

in (6), and the other term from that factor. All the constant terms are 1, and if the factor is the nth

factor, we get − x2

n2π2 . Adding all these products together and setting the result equal to the second

term in the power series (3), we get

−
1

6
x2 =

∞∑

n=1

−
x2

n2π2
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We can get rid of the minus sign on both sides. Then we can divide out by x2 and multiply through

by π2. We come up with

∞∑

n=1

1

n2
=

π2

6

That is the ingenious way in which Euler found the sum of this series. Note, by the way, that

π2/6 = 1.644934 . . . , which is indeed between 1 and 2.

3 Dirichlet

3.1 Some simple ideas of probability

Suppose we have 35 marbles. Some are translucent and the rest are opaque. Some of each kind are
red and the rest are blue. Say they are divided up as in Figure 6.

red blue

opaque

translucent

Figure 6: 35 marbles

We can talk about probabilities with respect to this set. For instance, we can say that the probability
that a marble chosen at random from this set is red is 3/5. Similarly, the probability that a blue

marble is opaque is 3/7.

Mathematical probability consists of the following generalization of this kind of model: We start
with

• A set X . Let us make things simple and assume in this section that X is a finite set.

An example is the set X consisting of the set of 35 marbles.

There are of course many other finite sets. For instance, there is a set Y consisting of the

ordered pairs 〈n, m〉, where n and m are both integers between 1 and 30. This set has 302 = 900

elements.
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• A function P (for “probability”) that maps subsets of X into real numbers between 0 and 1.

That is, it assigns to each subset A of X a number P (A), which we call the probability of the

set A. The intuitive idea is that “the probability that an element of X should belong to the
subset A of X” is given by the value P (A).

For example, in the set X of 35 marbles defined above, the subset R of red marbles contains
3/5 of the elements of X , and so it is reasonable to say that P (R) = 3/5. That is, the

probability that a marble chosen at random from X is red is 3/5.

Of course, this depends on how the marble was chosen. We are assuming that all choices
of marbles are equally likely. Another way of saying this is to say that P assigns to each
1-element subset of X the value 1/35.

To be a little more precise, let us use the notation |A| to denote the number of elements in

the set A. So for instance |R| = 21. Then our probability function P in this marble example

is defined by

P (A) =
|A|

|X |

for any set A.

• There is a certain use of language that is typical of this field: a subset of X corresponds to
a property. For instance, the subset R corresponds to the property “being red”. In fact, we
have four obvious subsets:

R being red
B being blue
T being translucent
O being opaque

The probability that a marble is red is the probability that it is in the set R, which is P (R).

Combinations of these sets correspond to combinations of their properties. For instance, a
marble is red and translucent if and only if it is an element of the set R ∩ T . That is, the
“and” of two properties corresponds to the intersection of their two subsets.

Similarly, the “or” of two properties corresponds to the union of their two subsets. For instance,
a marble is red or translucent (or both—by “or” we mean the “inclusive or”) if and only if it
belongs to the subset R ∪ T .

• The function P must have the following properties:

1. P (∅) = 0.

2. P (X) = 1.

3. If A and B are disjoint subsets of X (i.e., they have no elements in common—equivalently,

A ∩ B = ∅), then

P (A ∪ B) = P (A) + P (B)

The first two properties are obvious.
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The third property is also easy to see: If for instance

A = R ∩ T = set of red translucent marbles

B = B ∩ O = set of blue opaque marbles

then

P (A) = 12/35

P (B) = 6/35

P (A ∪ B) = 18/35

and clearly P (A ∪ B) = P (A) + P (B).

So these three properties are exactly what we would expect of a function P in order for it to
give us a notion of probability.

Note that if for any subset A we denote its complement X−A by A, then A and A are disjoint
and so, using items 2 and 3, we have

1 = P (X) = P (A ∪ A) = P (A) + P (A)

so

P (A) = 1 − P (A)

This also makes intuitive sense. For instance, the probability that a marble in X is red is 3/5,

and the probability that it is not red is 1 − 3/5 = 2/5.

Similarly, the same reasoning shows that if B ⊂ A, then P (A) = P (B) + P (A − B).

Now this kind of example is so simple that it seems trivial. The mathematical theory of probability
is developed much farther, along the following lines:

• It is not necessary that all points of X (i.e., all single-element subsets of X) have the same

probability. There are many natural cases in which they do not. (It is always true, however,
that—if X is a finite set—the probabilities of all the single-element subsets of X must add up

to 1.)

• The theory can be extended—although the mathematics becomes much more sophisticated—
to sets X that are infinite. Many subtle questions then arise. For instance, what is the
probability that a real number between 0 and 1 is rational? What is the probability that a
continuous function is differentiable? Questions like this are deep. We are going to ignore all
of them.

The reason we are not going to go very deeply into the theory of probability is that we need it
mainly to motivate what we are going to do in the rest of this paper. We are not actually going to
prove anything rigorously with it.

We need one important idea, however. We need to know what it means for two subsets to be
independent, or equivalently, for two properties to be independent.
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The idea is that two properties are independent if knowing one does not give you any information
about the other. For instance, consider the two properties “red” and “translucent” in our marble
example.

The probability that a marble is red is P (R) = 3/5. Now just considering the marbles that are

translucent (this amounts to momentarily letting X be the set T ), the probability that such a

translucent marble is red is also 3/5. That is to say, knowing that a marble is translucent does not

make it more or less probable that the marble is red. For this reason, we say that the property of
being translucent is independent of the property of being red, or equivalently, the sets T and R are
independent.

On the other hand, if we consider the properties “red” and “blue”, we see that they cannot be
independent. The probability that a marble (chosen at random from the set X) is blue is 2/5.

But if we know that the marble is red to begin with (so the set X is in effect the set R), then the
probability that it is also blue is 0. So knowing whether or not a marble is red gives us a lot of
information about whether it is blue.

Now let us return to considering the independence of the properties “red” and “translucent”. We
can make our analysis more precise in the following way: We have defined our probability function
P in the marbles example by

P (A) =
|A|

|X |

What we have just seen is that the probability of R is

P (R) =
|R|

|X |
= 21/35 = 3/5

and the probability that a translucent marble is red is

|R ∩ T |

|T |
= 12/20 = 3/5

(Note that in this last equation, T takes the place of X , since we are considering only the set of

translucent marbles.)

That is, we have

|R|

|X |
=

|R ∩ T |

|T |
=

|R ∩ T |

|X |

/
|T |

|X |

Equivalently,

P (R) =
P (R ∩ T )

P (T )

or simply

P (R ∩ T ) = P (R)P (T )

We turn this into a general definition: two sets A and B are independent if and only if

P (A ∩ B) = P (A)P (B)



18 3 DIRICHLET

Note that independence is a very special property that a pair of sets may have. It corresponds to
the sets being “orthogonal” in some representation such as in Figure 6. For example, in Figure 7,
the sets R and T are not independent—one can see that knowing that a marble is translucent makes
it less likely to be red, and in fact

12/35 = P (R ∩ T ) < P (R)P (T ) = 24/35 · 20/35

red

red

blue

blue

opaque

translucent

Figure 7: 35 marbles. In this example, “red” and “translucent” are not independent properties.

We can generalize this definition of independence to handle more than two sets. We say that a

family of sets {Ai : i = 1, 2, · · · } is independent if for every subfamily
{
Aij

: j = 1, 2, · · ·
}

we have

P

(
⋂

j

Aij

)

=
∏

j

P (Aij
)

That is, for each subfamily of {Ai}, the probability of the intersection of the sets in that subfamily
must equal the product of the probabilities of the sets.

Finally, we need the following result: if A and B are independent, then also A and B are independent.
For,

P (A ∩ B) = P
(
(X − A) ∩ B

)

= P (B − A ∩ B) (just draw a Venn diagram)

= P (B) − P (A ∩ B) (because A ∩ B ⊂ B)

= P (B) − P (A)P (B) (because A and B are independent)

=
(
1 − P (A)

)
P (B)

= P (A)P (B)
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Of course, we can then apply this result to B to show that also A and B are independent.

The result can be extended in a straightforward manner to the case of more than two sets: for

instance, if the sets {Ai} are independent, then also the sets
{
Ai

}
are independent. We will use

this fact in the next section.

3.2 The probability that two numbers are relatively prime

Given two positive integers picked “at random”, what is the probability that they are relatively
prime? This question is not really well-defined, because there is no unique way to specify what
it means to pick a positive integer at random. However, we can give the question a conventional
meaning as follows:

Given a number N , let r(N) denote the probability that two integers chosen at random in the range

1 to N are relatively prime. More specifically, we assume that each integer has equal probability of
being 1, 2, . . . , N—that is to say, the probability of each value between 1 and N is 1/N . In addition,
we assume that the two integers are chosen independently.

Of course r(N) can be computed—there are only a finite number of different possibilities to consider

for any given N . Then we can look to see if r(N) has a limit as N → ∞. If it does, we can say that
this limit is the probability that two integers picked at random are relatively prime.

Dirichlet showed how to do this in 1849, and we will also perform this computation, although not

precisely the way Dirichlet did it. (Actually, Dirichlet did not evaluate r(N), but he evaluated a

related quantity. The basic idea is his.)

Before doing this, however, we will give a plausibility argument for the result. This plausibility
argument will use the fundamental ideas of elementary probability theory that we developed in
the last section. In particular, we will see that the probability of being divisible by a number a
is independent of the probability of being divisible by a number b provided a and b are relatively
prime. We will use this to give a non-rigorous but plausible derivation of Dirichlet’s result.

Then in the remainder of these notes we will show how all this can be made rigorous.

For convenience, when we say “number” in the following, we mean “positive integer”. Let us use
the notations

P (a | n) = the probability that a divides n

P
(
(a | n) and (a | m)

)
= the probability that a divides n and a divides m

1. If a is any fixed number, the probability that a number n (chosen at random) is divisible by

a is 1/a. That is, P (a | n) = 1/a.

This is just because in the first N numbers, ⌊N/a⌋ are divisible by a. Therefore, the probability
that one of the first N numbers is divisible by a is

1

N

⌊
N

a

⌋

(7)

We know by definition that

N

a
− 1 <

⌊
N

a

⌋

≤
N

a
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and so as N → ∞, the expression in (7) tends to 1/a.

2. If a is any fixed number, and if n and m are two numbers chosen at random, the probability

that n and m are both divisible by a is 1/a2.

This is because if we restrict n and m to be between 1 and N , there are N2 possible pairs of

numbers 〈n, m〉. Of these pairs, the number having both n and m divisible by a is ⌊N/a⌋2.

Therefore, the probability that a pair 〈n, m〉, both elements of which are between 1 and N
has both elements divisible by a is

1

N2

⌊
N

a

⌋2

and as N → ∞, this tends to 1/a2.

3. if a and b are two fixed numbers that are relatively prime and n is a number chosen at random,
the properties

• n is divisible by a

• n is divisible by b

are independent.

This is true by the following reasoning: We know first that

• The probability that n is divisible by a is 1/a.

• The probability that n is divisible by b is 1/b.

To say that these properties are independent is to say that the probability that n is divisible
by both a and b is the product of these probabilities, namely, 1/(ab), which as we have seen
above is just the probability that n is divisible by ab.

That is, we have to show that the following two probabilities are the same:

• The probability that n is divisible by both a and b.

• The probability that n is divisible by ab.

But these probabilities are the same, because since a and b are relatively prime, n is divisible
by both a and b if and only if n is divisible by ab. This proves the result. The reasoning can
be recast as follows:

P
(
(a | n) and (b | n)

)
= P (ab | n) (since a and b are relatively prime)

=
1

ab

=
1

a

1

b

= P (a | n)P (b | n)

4. If a and b are two fixed numbers that are relatively prime and n and m are two numbers
chosen at random, the probabilities

• n and m are both divisible by a
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• n and m are both divisible by b

are independent.

The reasoning is the same:

P
(
{(a | n) and (a | m)} and {(b | n) and (b | m)}

)

= P
(
{(a | n) and (b | n)} and {(a | m) and (b | m)}

)

= P
(
(ab | n) and (ab | m)

)
(since a and b are relatively prime)

=
1

(ab)2
(by item 2)

=
1

a2

1

b2

= P
(
(a | n) and (a | m)

)
P
(
(b | n) and (b | m)

)

This result can be extended: the same reasoning shows that if {p1, p2, . . . , pn} are distinct
prime numbers, then the probabilities that any pi divides both n and m are all independent.

5. Passing to complements in item 4, if p and q are two primes, and n and m are two numbers,
then the probability that p does not divide both n and m (although it may divide one or the

other) is independent of the probability that q does not divide both n and m.

And similarly, we can prove that if {p1, p2, . . . , pn} are distinct prime numbers, the probabilities
that pi does not divide both n and m are all independent.

Now to say that two numbers n and m are relatively prime is to say that there is no prime number

that divides them both. We have seen that the probability that p divides both n and m is 1/p2.

Therefore, the probability that p does not divide both n and m (i.e., it may divide one or the other,

or neither, but not both) is

1 −
1

p2

A similar probability holds for each prime p, and these probabilities are all independent. Therefore,
the probability that n and m are relatively prime is

∞∏

k=1

(

1 −
1

p2
k

)

(8)

This product should start to look familiar. In fact, if we call it P , then

1

P
=

∞∏

k=1

1

1 − 1
p2

k

Now remember we showed that

∞∏

k=1

1

1 − 1
pk

=

∞∑

n=1

1

n
= ∞
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We can use the same reasoning here. We have

∞∏

k=1

1

1 − 1
p2

k

=

(

1 +
1

p2
1

+
1

p4
1

+ · · ·

)(

1 +
1

p2
2

+
1

p4
2

+ · · ·

)

· · ·

(

1 +
1

p2
k

+
1

p4
k

+ · · ·

)

· · ·

The right-hand side is evaluated by taking one term from each of the expressions in parentheses
and multiplying those terms together. Then the resulting products are added up. There is one
such product for every squared number, since only even powers of primes are represented on the
right-hand side of this identity.

Therefore, we must have

1

P
=

∞∏

k=1

1

1 − 1
p2

k

=

∞∑

n=1

1

n2
=

π2

6

Therefore, P = 6/π2. That is, the probability that two numbers chosen at random are relatively
prime is

6

π2

This number evaluates to 0.6079271 . . . . Thus, the probability that two numbers picked at random
are relatively prime is about 3/5.

We mentioned that this was not a real proof but only a plausibility argument. Where does it break
down? It turns out that everything here is quite rigorous with one exception: the formation of

the expression (8). The problem is that we are multiplying infinitely many probabilities here, one

for each prime number. Each of these probabilities is a limit probability (as N → ∞). But what

we really should have done is compute the probability r(N) for each finite N (each such r(N) will

involve only a finite number of primes) and then let N → ∞. It turns out that this is not particularly
difficult to do. We need two techniques, however, and the next two sections are devoted to them.
Then in the last section we use them to present a short but rigorous proof of Dirichlet’s result.

As we will see, the entire rigorous proof, even with all the preliminary material, takes up somewhat
less space than the plausibility argument based on probability that was just presented. Nevertheless,
the probabilistic argument is important, because it provides us with a powerful intuitive sense of
why the result is true.

3.3 The inclusion-exclusion principle

As before, if S is any finite set, we denote the number of elements of S by |S|.

Now suppose we have n subsets of X ; call them Ai (1 ≤ i ≤ n). We want to derive an expression
for the number of elements of X that are not in any of the sets Ai. That is, we want to find an
expression for

∣
∣
∣
∣
∣
X −

n⋃

i=1

Ai

∣
∣
∣
∣
∣
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Here is the idea: To make things simple, let us just start with two sets, and let us call them A and
B. If A and B are disjoint, then it is clear that

|X − (A ∪ B)| = |X | − |A| − |B|

But if A and B have any elements in common, the right-hand side of the equation above would
subtract those common elements twice. So to fix that, we have to add them back in, and we get

|X − (A ∪ B)| = |X | − |A| − |B| + |A ∩ B|

or equivalently,

|X − (A1 ∪ A2)| = |X | − |A1| − |A2| + |A1 ∩ A2|

This is our result when the number n of sets Ai is 2.

When n = 3, we get, similarly, (see Figure 8)

|X − (A1 ∪ A2 ∪ A3)| = |X |− |A1|− |A2|− |A3|+ |A1 ∩ A2|+ |A1 ∩ A3|+ |A2 ∩ A3|− |A1 ∩ A2 ∩ A3|

We could also write this as follows:

∣
∣
∣
∣
∣
X −

3⋃

i=1

Ai

∣
∣
∣
∣
∣
= |X | −

∑

1≤i1≤3

|Ai1 | +
∑

1≤i1<i2≤3

|Ai1 ∩ Ai2 | −
∑

1≤i1<i2<i3≤3

|Ai1 ∩ Ai2 ∩ Ai3 |

(Note that the last sum has only 1 term: |A1 ∩ A2 ∩ A3|.)

It’s pretty clear that this formula generalizes to any n. To derive it in general, we need a little more
notation:

Suppose X is a finite set and f : X → R is any function. That is, f is just an assignment of a real
number f(x) to each point x of the finite set X . Suppose we add all these numbers up to get a

sum. We can think of this sum as being the “integral” of f over the set X . We write this using the
integral sign, like this:

∫

X

f =
∑

x∈X

f(x)

(This use of the integration notation is entirely correct: what we are actually doing is taking the
integral of f over X with respect to the “counting measure” on X . However, that terminology is
overkill for what we are doing here.)

The usual rules of integration apply. For instance, if f and g are two such functions, and if a is any
real number, we have

∫

X

(f + g) =

∫

X

f +

∫

X

g

∫

X

(af) = a

∫

X

f
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A1

A2

A3

X

|X − (A1 ∪ A2 ∪ A3)| = |X |− |A1|− |A2|− |A3|+ |A1 ∩ A2|+ |A1 ∩ A3|+ |A2 ∩ A3|− |A1 ∩ A2 ∩ A3|

∣
∣
∣
∣
∣
X −

3⋃

i=1

Ai

∣
∣
∣
∣
∣
= |X | −

∑

1≤i1≤3

|Ai1 | +
∑

1≤i1<i2≤3

|Ai1 ∩ Ai2 | −
∑

1≤i2<i2<i3≤3

|Ai1 ∩ Ai2 ∩ Ai3 |

Figure 8: How to compute the size of the complement of a union of three sets.

For a particular example, let us define the characteristic function χA of a set A to be the function
that is 1 on A and zero elsewhere:

χA(x) =

{

1 if x ∈ A

0 if x /∈ A

Then it is clear that the integral of χA is just the number of elements of A:

∫

X

χA = |A|

Notice that if A and B are two subsets of X , then

χA∩B(x) = χA(x)χB(x)

and in fact this holds for any number of sets:

χ∩Ai
(x) =

∏

i

χAi
(x)
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It is also easy to see that

χX−A(x) = 1 − χA(x)

Now we can use this notation to derive the formula for |X − ∪Ai| that we started out considering
above. First, we know that

X −

n⋃

i=1

Ai =

n⋂

i=1

(X − Ai)

Therefore we have

1 − χ∪n
i=1

Ai
(x)

=

n∏

i=1

(1 − χAi
(x))

= 1 −

n∑

1≤i1≤n

χAi1
(x) +

∑

1≤i1<i2≤n

χAi1
(x)χAi2

(x) −
∑

1≤i1<i2<i3≤n

χAi1
(x)χAi2

(x)χAi3
(x) + · · ·

= 1 −

n∑

1≤i1≤n

χAi1
(x) +

∑

1≤i1<i2≤n

χAi1
∩Ai2

(x) −
∑

1≤i1<i2<i3≤n

χAi1
∩Ai2

∩Ai3
(x) + · · ·

and therefore, by integrating, we get

∣
∣
∣
∣
∣
X −

n⋃

i=1

Ai

∣
∣
∣
∣
∣
= |X | −

n∑

1≤i1≤n

|Ai1 | +
∑

1≤i1<i2≤n

|Ai1 ∩ Ai2 | −
∑

1≤i1<i2<i3≤n

|Ai1 ∩ Ai2 ∩ Ai3 | + · · ·

This identity is known as the inclusion-exclusion principle.

Note that since X is finite, there are really only a finite number of terms in this sum, as we already
saw above when n was 2 or 3.

3.4 The bounded convergence theorem for series

There is an immensely useful theorem due to Lebesgue, known as the bounded convergence theorem.
Here we are going to state and prove a simple version of this theorem.

Suppose that we have a sequence of pairs of numbers

a
(N)
1 , a

(N)
2 (1 ≤ N < ∞)

and suppose that as N → ∞, both the first and second elements of each pair tend to a limit:

a
(N)
1 → a1

a
(N)
2 → a2

Then it is certainly true that

a
(N)
1 + a

(N)
2 → a1 + a2
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The same is true if, instead of a sequence of pairs of numbers, we have a sequence of K-tuples,
where K is any fixed finite number: if as N → ∞

a(N)
n → an (for all 1 ≤ n ≤ K)

then

K∑

n=1

a(N)
n →

K∑

n=1

an as N → ∞

Now suppose we let K “become infinite”. That is, suppose instead of K-tuples of numbers, we have

a family of series, indexed by N , so the nth term of the N th series is a
(N)
n . The first series looks like

this:

a
(1)
1 + a

(1)
2 + a

(1)
3 + . . .

The second series looks like this:

a
(2)
1 + a

(2)
2 + a

(2)
3 + . . .

and so on.

Suppose that each of these series converges; say

∞∑

n=1

a(N)
n = sN

and furthermore, suppose that for each fixed n, a
(N)
n converges to a limit an as N → ∞. (That is,

the first terms of the series converge to a1, the second terms converge to a2, and so on. We express

this by saying that the series converge termwise to the series
∑∞

n=1 an. We ask (as above in the

case of series with a finite number of terms) if it is necessarily true that the sums sN also converge
to a limit s and if

∞∑

n=1

an = s

It is easy to see that in this generality, the answer is no. For consider the family of series defined as
follows:

a(N)
n =

{

1 if n = N

0 otherwise

Then the N th series is identically 0 except for the N th term, which is 1. The first series is

1, 0, 0, 0, . . .

The second series is

0, 1, 0, 0, . . .
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and so on.

Certainly each sum sN is 1, and the limit of these sums is clearly s = 1. On the other hand, the

limit (as N → ∞) of the nth terms of these series is 0 for each n. (For as soon as n > N , a
(N)
n = 0.)

Therefore, an = 0 for all n, and so the sum
∑

an = 0 6= 1 = s.

There is, however, a simple additional condition that, when it is satisfied, does away with this
problem and allows us to conclude that s exists and

∑
an = s.

The way it works is this: the only reason that our counterexample failed to work “correctly” was

that the series “escaped to infinity”. That is, each successive series a(N) was concentrated farther
and farther out. And that is really the only thing that can go wrong.

To prevent the series from escaping to infinity, we introduce the following constraint:

Suppose that there is a convergent series
∑∞

n=1 bn where all the bn are ≥ 0, and suppose that for

every N ,

∣
∣
∣a(N)

n

∣
∣
∣ ≤ bn for all n

In this case, we say that each series
∑∞

n=1 a
(N)
n is majorized (or bounded) by the series

∑∞

n=1 bn.

Note that in such a case each series
∑∞

n=1 a
(N)
n must be absolutely convergent (since it is bounded

termwise by the nonnegative convergent series
∑∞

n=1 bn), and so it is automatically convergent.

The bounding series
∑∞

n=1 bn is used like this: since this series converges, we know that for each

ǫ > 0 (“no matter how small”), there is some number K (depending on ǫ, of course) such that

∞∑

n=K

bn < ǫ

Now we can imagine splitting each of the series a(N) into two parts. The first part consists of the
first K terms, and the second part (which we can call the “tail”) consists of the rest of the terms.
Just as we reasoned above, the first K terms of each series converge pointwise, and so the first part

of each series (i.e., the Kth partial sum) also converges. But the rest of each series is bounded by ǫ,

since it is majorized by the “tail”
∑∞

n=K+1 bn of the majorizing series.

So here is the complete proof:

3.1 Theorem If

•
∑∞

n=1 bn is a convergent series of non-negative terms, and

•
∑∞

n=1 a
(N)
n is a family of series that are majorized by the series

∑∞

n=1 bn (and therefore have

sums which we denote by sN ), and

• For each n, limN→∞ a
(N)
n = an exists,

then limN→∞sN = s exists, and

∞∑

n=1

an = s
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Proof. As a preliminary remark, note that since for each n all
∣
∣
∣a

(N)
n

∣
∣
∣ ≤ bn, the limit of the a

(N)
n

must also be bounded in absolute value by bn; that is, |an| ≤ bn. Therefore,
∑

an converges

absolutely, and hence converges. (That is, it therefore also converges “non-absolutely”.) Let us
denote its sum by s:

∞∑

n=1

an = s

We will be done once we have shown that sN → s. Here’s how we do this:

Given ǫ > 0,

• Let K be so large that
∑∞

n=K bn < ǫ.

• Then, having fixed K, let N0 be so large that for N ≥ N0 and 1 ≤ n ≤ K,
∣
∣
∣a

(N)
n − an

∣
∣
∣ < ǫ/K.

(We can do this because K is finite. Of course, N0 depends on ǫ.)

Now for N ≥ N0, we have

|sN − s| =

∣
∣
∣
∣
∣

∞∑

n=1

(a(N)
n − an)

∣
∣
∣
∣
∣

≤

K∑

n=1

∣
∣
∣a(N)

n − an

∣
∣
∣+

∞∑

n=K+1

∣
∣
∣a(N)

n − an

∣
∣
∣

≤

K∑

n=1

ǫ

K
+ 2

∞∑

n=K+1

bn

≤ K
ǫ

K
+ 2ǫ

= 3ǫ

That is, for large enough N , |sN − s| < 3ǫ. This completes the proof.

As an aside, the two-step technique we used to pick K and N0 so as to make |sN − s| small occurs
often in analysis. It is often expressed simply by writing, “First make K large, then make N0 large.”

3.5 Making the proof rigorous

Remember that we have defined r(N) to be the probability that two numbers picked independently

with uniform probability between 1 and N are relatively prime. We will now compute r(N).

The number of such pairs of numbers is N2, and the number of such pairs that are both multiples

of a prime p is
⌊

N
p

⌋2

. Similarly, the number of such pairs that are both multiples of two primes p

and q is
⌊

N
pq

⌋2

, and so on.
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Let {pn : 1 ≤ i ≤ m} denote the set of primes that are ≤ N . By the inclusion-exclusion principle,

the number of pairs of numbers that are not both divisible by any of these primes is

N2 −
∑

1≤n1≤m

⌊
N

pn1

⌋2

+
∑

1≤n1<n2≤m

⌊
N

pn1
pn2

⌋2

−
∑

1≤n1<n2<n3≤m

⌊
N

pn1
pn2

pn3

⌋2

+ · · ·

Note that although the sum is formally infinite, in actuality it is a finite sum for any specific value
of N . In fact, we could substitute ∞ for m in this equation without changing anything, because by

assumption, if k > m, pk > N , so ⌊N/pk⌋ = 0. So that is how we will write it, using ∞ instead of
m.

The probability r(N) then is this expression divided by N2. That is,

r(N) =

1 −
∑

1≤n1<∞

1

N2

⌊
N

pn1

⌋2

+
∑

1≤n1<n2<∞

1

N2

⌊
N

pn1
pn2

⌋2

−
∑

1≤n1<n2<n3<∞

1

N2

⌊
N

pn1
pn2

pn3

⌋2

+ · · ·

Now we know that, whatever the value of a,

1

N2

⌊
N

a

⌋2

→
1

a2
as N → ∞

If we could be justified in substituting these limiting values in the above sum, we would have

lim
N→∞

r(N) = 1 −
∑

1≤n1<∞

1

p2
n1

+
∑

1≤n1<n2<∞

1

(pn1
pn2

)2
−

∑

1≤n1<n2<n3<∞

1

(pn1
pn2

pn3
)2

+ · · ·

=

∞∏

k=1

(

1 −
1

p2
k

)

=
6

π2

So everything hinges on showing that we are allowed to pass to the limit “under the summation sign”.

(This is essentially what we did in a previous section in computing the elementary probabilities as
limits first, and then combining them. That’s why the reasoning in that section was not a rigorous
proof but a plausibility argument.)

We show this by using the bounded convergence theorem of the last section.

First, we take the absolute value of every term in the series for r(N). In this way we find that the

series for r(N) is majorized by the series

1 +
∑

1≤n<∞

1

N2

⌊
N

pn1

⌋2

+
∑

1≤n1<n2<∞

1

N2

⌊
N

pn1
pn2

⌋2

+
∑

1≤n1<n2<n3<∞

1

N2

⌊
N

pn1
pn2

pn3

⌋2

+ · · ·(9)

Next, we use the fact that ⌊x⌋ ≤ x for all x. This shows that the series (9) (and hence also the

series for r(N)) is majorized by the series

1 +
∑

1≤n1<∞

1

p2
n1

+
∑

1≤n1<n2<∞

1

(pn1
pn2

)2
+

∑

1≤n1<n2<n2<∞

1

(pn1
pn2

pn3
)2

+ · · ·(10)



30 3 DIRICHLET

Now this series does not depend on N . In addition, it converges; in fact, it equals

∞∏

k=1

(

1 +
1

p2
k

)

≤

∞∏

k=1

(

1 +
1

p2
k

+
1

p4
k

+ · · ·

)

=

∞∏

k=1

1

1 − 1
p2

k

=
π2

6

The actual value doesn’t matter; the point is that this series converges.

So r(N) is given by a series which is majorized by the convergent series (10). Using this fact, the
bounded convergence theorem assures us that we are justified in taking the limit of the series for
r(N) term-by-term before summing it, and that completes the proof.


