
Computing the Digits in π

Carl D. Offner

October 15, 2015

Contents

1 Why do we care? 2

2 Archimedes 5

3 A digression: means 9

4 Measures of convergence 13

4.1 The rate of convergence of Archimedes’ algorithm . . . . . . . . . . . . . . . . . . . . 13
4.2 Quadratic convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3 The arithmetic-geometric mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 Leibniz’s series 16

6 A digression: acceleration of series 19

6.1 Euler’s transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.2 Proof that Euler’s transformation converges quickly to the original sum . . . . . . . 22

7 Quadratically converging approximations to π 27

7.1 Some representative elliptic integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.1.1 The elliptic integral of the first kind . . . . . . . . . . . . . . . . . . . . . . . 27
7.1.2 The elliptic integral of the second kind . . . . . . . . . . . . . . . . . . . . . . 30
7.1.3 More representations for K(k) and E(k) . . . . . . . . . . . . . . . . . . . . . 31

7.2 Elliptic integrals and the arithmetic-geometric mean . . . . . . . . . . . . . . . . . . 32
7.2.1 The relation of M(a, b) to K(k) . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.2.2 The arc length of the lemniscate . . . . . . . . . . . . . . . . . . . . . . . . . 33

7.3 Landen’s transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.3.1 Cayley’s derivation of Landen’s transformations . . . . . . . . . . . . . . . . . 34
7.3.2 Iteration of Landen’s transformation for J . . . . . . . . . . . . . . . . . . . . 39

7.4 Legendre’s relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.4.1 The functions E′ and K ′ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

7.4.1.1 The precise behavior of K ′ near 0 . . . . . . . . . . . . . . . . . . . 41
7.4.2 Legendre’s relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7.5 The algorithm of Brent and Salamin . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

1



2 1 WHY DO WE CARE?

8 Streaming algorithms 48

8.1 Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
8.1.1 Proof that we always make progress . . . . . . . . . . . . . . . . . . . . . . . 51

8.2 A streaming algorithm that computes the digits of π . . . . . . . . . . . . . . . . . . 53
8.2.1 Linear fractional transformations . . . . . . . . . . . . . . . . . . . . . . . . . 54
8.2.2 The algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
8.2.3 Proof that we always make progress . . . . . . . . . . . . . . . . . . . . . . . 57

9 Algorithmic efficiency 59

9.1 Can the cost of each iteration be bounded? . . . . . . . . . . . . . . . . . . . . . . . 60
9.2 Can the cost of each iteration be bounded on average? . . . . . . . . . . . . . . . . . 60

1 Why do we care?

First, the bottom line: Here is a very abbreviated history, showing the number of correct digits of
π computed at various times:

Archimedes ca. 250 BCE 3
Liu Hui 263 5
Van Ceulen 1615 35
Sharp 1699 71
Machin 1706 100
Shanks 1874 707 (527 correct)
Bailey Jan. 1986 29,360,111
Kanada Oct. 2005 more than 1 trillion

Now it’s not hard to understand what it means to compute more and more of the digits of π, faster
and faster, but it does come with a question: Who cares? And the answer is perhaps not so obvious.

So here are some possible answers to that question:

The civil engineering answer. I asked a civil engineer how many digits of π he would actually
ever need. After thinking about it for a while, he agreed with me that 5 was probably pushing
it.

The astrophysics answer. Even physicists don’t seem to need all that many digits of π:

. . . the author is not aware of even a single case of a “practical” scientific computa-
tion that requires the value of π to more than about 100 decimal places.

Bailey (1988)

And that estimate may already be absurdly high:

It requires a mere 39 digits of π in order to compute the circumference of a circle
of radius 2 × 1025 meters (an upper bound on the distance traveled by a particle
moving at the speed of light for 20 billion years, and as such an upper bound on the
radius of the universe) with an error of less than 10−12 meters (a lower bound for
the radius of a hydrogen atom).

Borwein and Borwein (1984)



3

That’s a curious fact, to be sure. But what do astronomers and astrophysicists really need?
I spoke to two recently. One had used whatever the π key on her calculator produced—at
most, 10 digits. The other thought that 7 or 8 places was the most he’d ever seen the need
for. And even in quantum field theory, where there are physical constants that are known to
an astounding accuracy of 12 or 13 decimal places, it wouldn’t really help to know π to any
greater accuracy than that.

And that’s probably as precise as any scientist would need.

The computer engineering answer.

In recent years, the computation of the expansion of π has assumed the role as a
standard test of computer integrity. If even one error occurs in the computation,
then the result will almost certainly be completely in error after an initial correct
section. On the other hand, if the result of the computation of π to even 100,000
decimal places is correct, then the computer has performed billions of operations
without error. For this reason, programs that compute the decimal expansion of π
are frequently used by both manufacturers and purchasers of new computer equip-
ment to certify system reliability.

Bailey (1988)

There is a point to this reasoning—an error of any sort will invalidate all later computations. I
think, though, that this is really an argument of convenience rather than of intrinsic strength.
That is, as long as we have a good algorithm for computing π, we may as well use it, since
it has this nice property. But there’s nothing really specific to π in this argument. There
are other iterative computations that could exercise the computer’s arithmetic capabilities
and would serve as well. And since what we’re really concerned with here is how to compute
π efficiently, any increase in efficiency would actually make the computation less useful for
testing a computer, since fewer computations would need to be performed. In addition, it’s
hard for me to believe that someone would really need to familiarize him or herself with the
mathematics of elliptic integrals, as we will do here, solely for the purpose of certifying the
correctness of a piece of computer hardware.

The mathematical answer. π is of course important all over the field of mathematics. It comes
up in so many contexts that we’re naturally curious about its peculiar properties. And one
question that has intrigued people for a long time can be loosely worded as follows: “Are the
digits in π random?” Well, of course they’re not. They’re completely determined. There’s no
chance or uncertainty involved. But really what people mean when they ask this question is
something like this: are the digits statistically random? That is, as you go farther and farther
out in the decimal expansion, does the fraction of 3’s approach 1/10? Does the fraction of the
pairs 31 approach 1/100? Does the fraction of the triplets 313 approach 1/1000? And so on.

Numbers that have this property are called normal numbers. (Perhaps more properly, “normal
numbers to base 10”, since the question can really be asked with respect to any base.) In 1909

Émile Borel proved that almost all numbers are normal. The term “almost all” has a precise
mathematical meaning, but you can think of it in the following colloquial way: if you threw a
dart at the number line, your chance of hitting a non-normal number is 0—that is, you might
be very lucky and hit a non-normal number, but the fraction of non-normal numbers you’d hit
in a long series of such throws would tend to 0.1 And in fact, almost all numbers are normal
to all bases simultaneously.

1For another model of this, if someone was pulling numbers “randomly” out of a hat, it would never be profitable



4 1 WHY DO WE CARE?

That’s really a nice result. But the problem is that practically all the numbers we deal with
every day are not normal. No rational number, for instance, can be normal, since it has an
ultimately repeating decimal expansion. Now π, on the other hand, is not rational, and so
perhaps it is normal. No one actually knows whether or not this is true—in fact, very few
numbers have ever been proved to be normal, and none of them occur “in the wild”. That is,
no number that occurs “naturally”, like e, or

√
2, or π is known to be normal.

Nevertheless, it is widely believed that e,
√

2, and π are all normal, and since so many digits
of π have by now been computed, it’s possible to perform statistical analyses on them. And
as far as we can tell, the expansion (as far as we know it) looks like it’s normal2.

Of course that’s not a proof. It might be that starting 100 digits after the last digit that has
so far been computed, there are no more 4’s. This would of course be astonishing, and no one
seriously even entertains that possibility. But so far it can’t be ruled out.

The computer science answer. The fact that we can efficiently compute many digits of π is due
only partly to the wonderful technologies embodied in computer hardware. It is really due
much more to some wonderful algorithms that have been discovered that converge unbelievably
quickly to π. That is, we are dealing here with algorithms, the core of computer science.
And these algorithms are specific to π, of course—if we wanted to compute e, we’d use other
algorithms. And algorithms tell us something about the numbers we are computing: a number
that can be computed easily and efficiently just “feels” different from one that can only be
computed with great difficulty. There is a whole theory of algorithmic complexity based on
this idea, and we do feel that we learn something intrinsic about a number when we find out
how difficult it is to compute.

So in fact, the computer science answer and the mathematical answer are really closely related.
A good algorithm is going to depend on intrinsic mathematical properties of π, and conversely,
a good algorithm may well tell us something significant mathematically about π.

The popular cultural answer. Finally—and I only bring this up with some trepidation—it has
to be acknowledged that π is just one of those bits of learning that pretty much every one
remembers from high school. People who have never heard of e know about π. And it’s part of
the popular culture. Everyone knows that π “goes on forever”, and this is widely regarded as
at least somewhat mysterious, as indeed it is. You’ve probably heard the jokes about “street
math”—mathematical knowledge brought down to a caricature:

“You divide by zero, you die.”

“I knew this kid. He found the exact value of pi. He went nuts.”

All right, so those are the reasons. Now let’s look at what’s been accomplished. We’ll take things
pretty much in chronological order. It turns out that the history of this is fascinating in itself. And
while I can’t possibly cover this field exhaustively—books have been written about these things, and
the topic itself impinges on some rather deep mathematics—I have surveyed the main approaches
to the topic3. I have also written out many derivations in much more detail than would normally
be done, mainly because I hope that this can be read by advanced undergraduates.

for you to bet that the next number would not be normal, no matter what the odds. OK; that’s enough about
gambling.

2Wagon (1985) is a nice short article that goes into these matters at somewhat greater length.
3And I’ve done my best to clarify some tricky points. For instance, section 7.4.1.1 is somewhat similar but more

direct and more motivated than some equivalent reasoning in Whittaker and Watson (1927). (For one thing, the
actual integral I deal with is simpler and more directly arrived at; Whittaker and Watson perform a seemingly out-
of-the-blue transformation, which I believe comes from the deformation of the contour in a contour integral, although



5

2 Archimedes

Many years ago I read that Archimedes found that π was between 3 10
71 and 31

7 by reasoning that the
circumference of a circle was greater than that of any inscribed polygon and less than that of any
circumscribed polygon—he considered regular polygons of 96 sides and was able to approximate π
in this fashion.

This never impressed me much. In the first place, it’s not all that great an approximation. In the
second place, it just seems like drudgery. And why 96 sides, anyway?

Actually, what Archimedes did was really great. He didn’t just figure out what the perimeter of
two 96-sided polygons were. What he actually did was come up with an iterative procedure which
could in principle be carried out mechanically as far as needed. That is, he produced an iterative
algorithm for computing the digits of π. He actually carried out the first 5 steps of this algorithm,
corresponding to a polygon of 96 sides, but he could have gone as far as he wanted. And he did all
this around 250 BCE.

Stage 1: 6 sides Stage 2: 12 sides

Figure 1: Stages 1 and 2 of the construction used by Archimedes to approximate π.

It’s actually not easy to see that this is what he did—the Greeks didn’t have algebraic notation, so
his reasoning is expressed geometrically and in terms of rational approximations of every quantity.
And he certainly didn’t have any way to express in formal terms our notion of a recursive or iterative
algorithm. This makes his paper extremely hard to read. And to be honest, I haven’t gone through
it myself, although I did look at it. But enough people have explained what he did that I’m confident
that what I’m writing here is correct.

To set things up conveniently, let us say the circle has radius 1 (so the circumference, which we will

they don’t say so, and for another thing, I’m able to motivate naturally the way I arrive at the point of division of the
range of the integral). It’s also much clearer than an equivalent computation in Cayley (1895) (which is undoubtedly
correct but would not be easy to write rigorously today). I did get at least one idea from each of those ways of doing
the computation, however.



6 2 ARCHIMEDES

approximate, will be 2π). It also turns out to be convenient to let the angle at the center of one
“wedge” of the polygon at stage n be 2θn. The edges of the circumscribed and inscribed polygons
at stage n will be denoted by αn and βn, respectively. Thus in Figure 2 we have

αn

2
= tan θn

βn

2
= sin θn

2θn

βn

αn

Figure 2: One edge of the inscribed polygon, and one edge of the circumscribed polygon. If the
polygon at stage n has k edges, then 2θn = 2π

k . In fact, k only comes in at the very end of the
computation, and basically cancels out of the final result.

Let us denote the entire perimeter of the circumscribed polygon at stage n by an—this is just αn

multiplied by the number of edges at stage n. Similarly, we will denote the entire perimeter of the
inscribed polygon at stage n by bn, and this is just βn multiplied by the number of edges at stage
n.

We pass from an and bn to an+1 and bn+1 by doubling the number of edges in the polygon; that is,
by dividing θn by 2. Thus to see how an+1 and bn+1 are related to an and bn, we can use some of the
famous “half-angle formulas” of trigonometry. Identities like these were very familiar to students
and practitioners of mathematics a century ago, but have a quaint feel about them today. And since
I’m no better at these trigonometric identities than anyone else is, I’ll derive the ones we need. We
start with the few that I (and I suppose most people) know:

sin2 θ + cos2 θ = 1(1)

sin 2θ = 2 sin θ cos θ(2)

cos 2θ = cos2 θ − sin2 θ(3)



7

From (3) and (1) we get the identities

cos 2θ = cos2 θ − sin2 θ =

{

1 − 2 sin2 θ

2 cos2 θ − 1

From those identities we have

tan2 θ =
sin2 θ

cos2 θ
=

1 − cos 2θ
1 + cos 2θ

=
1 − cos2 2θ

(1 + cos 2θ)2
=

sin2 2θ
(1 + cos 2θ)2

and so

tan
θ

2
=

sin θ
1 + cos θ

=
sin θ tan θ

sin θ + tan θ
(4)

which is one of the two formulas we need.

The other one we’ll simply notice to be true by expanding out sin θ = 2 sin θ
2 cos θ

2 on the right-hand
side:

sin2 θ

2
=

sin θ tan θ
2

2
(5)

We’re now ready to solve for αn+1 and βn+1 in terms of αn and βn: We see that

αn+1 = 2 tan
θn

2
= 2

sin θn tan θn

sin θn + tan θn
=

αnβn

αn + βn

and

β2
n+1 = 4 sin2 θn

2
= 2 sin θn tan

θn

2
=
βnαn+1

2

That is, we have the recursive relations

αn+1 =
αnβn

αn + βn

βn+1 =

√

βnαn+1

2

We’re almost done. What we really need is a similar recursion for the perimeters an and bn of the
circumscribed and inscribed polygons. Suppose to make the computation simple we start with a
regular hexagon. Then β0 = 1 and α0 = 2/

√
3. So b0 = 6 and a0 = 4

√
3. Further, bn = 6 · 2nβn

and an = 6 · 2nαn, so it follows easily that

an+1 =
2anbn

an + bn

bn+1 =
√

bnan+1

and so using this recursion, both an and bn will converge to 2π.

Figure 3 shows how the convergence works out in practice.



8 2 ARCHIMEDES

n an/2 bn/2

1 3.464101615137754587054892 3.000000000000000000000000
2 3.215390309173472477670643 3.105828541230249148186786
3 3.159659942097500483316634 3.132628613281238197161749
4 3.146086215131434971098098 3.139350203046867207135146
5 3.142714599645368298168859 3.141031950890509638111352
6 3.141873049979823871745487 3.141452472285462075450609
7 3.141662747056848526224490 3.141557607911857645516463
8 3.141610176604689538763470 3.141583892148318408668969
9 3.141597034321526151993218 3.141590463228050095738458

10 3.141593748771352027975981 3.141592105999271550544776
11 3.141592927385097033548008 3.141592516692157447592874
12 3.141592722038613818342804 3.141592619365383955189549
13 3.141592670701998047877018 3.141592645033690896672141
14 3.141592657867844419844008 3.141592651450767651704253
15 3.141592654659306032497220 3.141592653055036841691123
16 3.141592653857171436889364 3.141592653456104139264643
17 3.141592653656637788064203 3.141592653556370963662823
18 3.141592653606504375862713 3.141592653581437669762668
19 3.141592653593971022812640 3.141592653587704346287648
20 3.141592653590837684550141 3.141592653589271015418894
21 3.141592653590054349984517 3.141592653589662682701706
22 3.141592653589858516343111 3.141592653589760599522409
23 3.141592653589809557932760 3.141592653589785078727584
24 3.141592653589797318330172 3.141592653589791198528878
25 3.141592653589794258429525 3.141592653589792728479202
26 3.141592653589793493454363 3.141592653589793110966783
27 3.141592653589793302210573 3.141592653589793206588678
28 3.141592653589793254399625 3.141592653589793230494152
29 3.141592653589793242446889 3.141592653589793236470520
30 3.141592653589793239458704 3.141592653589793237964612
31 3.141592653589793238711658 3.141592653589793238338135
32 3.141592653589793238524897 3.141592653589793238431516
33 3.141592653589793238478206 3.141592653589793238454861
34 3.141592653589793238466534 3.141592653589793238460697
35 3.141592653589793238463616 3.141592653589793238462157
36 3.141592653589793238462886 3.141592653589793238462521
37 3.141592653589793238462704 3.141592653589793238462612
38 3.141592653589793238462658 3.141592653589793238462635
39 3.141592653589793238462647 3.141592653589793238462641
40 3.141592653589793238462644 3.141592653589793238462642

Figure 3: The first 40 iterations of the computations in Archimedes’ algorithm.



9

Archimedes stopped with stage 5 (corresponding to regular polygons of 96 sides). His approxima-
tions were 3 10

71 ≤ π ≤ 3 1
7 , or equivalently, 3.1408 . . . ≤ π ≤ 3.1428 . . .. This is actually only a

little less accurate than the computation above—even though Archimedes was approximating every
square root (and in fact every arithmetic operation) with fractions, we can see that his rational
approximations were very close to what you would get with unlimited precision arithmetic.

But the point, just to make it again, is that the importance of what Archimedes did does not lie in
the accuracy of his result, which wasn’t that great. The real significance is that he produced for the
first time an iterative algorithm capable of producing approximations to π of any desired accuracy.

Archimedes was not the only person to discover such a recursive algorithm, but he seems to have
been the first. Around 500 years later Liu Hui in China wrote down a very similar procedure,
which played a role in the Chinese mathematical tradition very similar to that which Archimedes’
algorithm played in the West.

This algorithm, with only minor changes, formed the basis for all computations of π up through the
early 1600’s, when 35 digits of π were computed by Ludolph van Ceulen. This feat was considered
so remarkable that the value that he got was referred to in parts of Europe for years afterward as
the “Ludolphian number”.

For this particular algorithm, it appears that the convergence is “linear” in the sense that the number
of correct decimal places is roughly proportional to the number of iterations of the process.

We’ll see that this is true. But first we need to take a small side trip.

3 A digression: means

If we have two positive numbers b ≤ a, there are several different notions of a mean we can define.
In fact, there is a whole scale of means, parametrized by p:

Mp(a, b) =
(ap + bp

2

)1/p

(Actually, this definition can be generalized greatly to talk about means of a finite or even infinite
collection of numbers, or of a function, and can accommodate weighted averages as well. But we
won’t need any of that here, so we’ll just stick to the simplest case. Everything we say below,
however, generalizes.)

This definition may look strange at first, but it actually encapsulates some well-known “averages”:

• When p = 1, we have M1(a, b) = a+b
2 , which is the arithmetic mean of a and b. It’s what

people usually mean when they talk about the “average” of two numbers—“you add ’em up
and divide by 2”.

• When p = 2, we have M2(a, b) =
√

a2+b2

2 . This is the root-mean-square, which is a mean

that is used frequently in measuring physical and statistical errors. If we have a series of
measurements {aj : 1 ≤ j ≤ n} of some quantity whose real value is expected to be m, say,
then the “error” of the jth measurement aj is |aj −m|, and so we could say that the average



10 3 A DIGRESSION: MEANS

error4 is

∑n
j=1|aj −m|

n

However, squares are a lot easier to deal with algebraically than absolute values, and so it turns
out to be more convenient to describe the average error by the root-mean-square deviation of
{aj} from the expected value:

√

∑n
j=1(aj −m)2

n

• When p = −1, we have5

M−1(a, b) =
1

1
2

(

1
a + 1

b

) =
2ab
a+ b

This is the harmonic mean of a and b. It comes up in the following kind of problem: Suppose
you travel for 100 miles at 50 mph and then another 100 miles at 25 mph. What was your
average speed? Well, you might think it was the arithmetic mean of 25 and 50, which is 37.5
mph, but it’s not. The total distance you traveled was 200 miles. The total time it took you
was (100/50) + (100/25) = 6 hours. So your average velocity was 200/6 = 33 1/3 mph. This
in fact is the harmonic mean of 25 and 50, because

total time =
100
50

+
100
25

total distance = 2 · 100

and so

average velocity =
2 · 100

100
50 + 100

25

=
1

1
2

(

1
50 + 1

25

)

= M−1(50, 25)

(By contrast, if you traveled 1 hour at 50 mph and then another hour at 25 mph, your average
velocity would have been the arithmetic mean of 25 and 50.)

Note that the harmonic mean of 25 and 50 is less than the arithmetic mean of 25 and 50. This
is true in general, as we’ll see shortly.

What is also interesting from our point of view here is that Archimedes’ algorithm computes
an+1 as the harmonic mean of an and bn.

4We use absolute values because we don’t care whether the error is positive or negative, and we don’t want positive
errors to cancel out negative ones.

5I know, I didn’t specify the values that p could take, but it can be negative.



11

• We know that Mp(a, b) makes sense if p > 0 and also if p < 0. What happens if we try to set
p = 0? Of course M0(a, b) makes no sense as defined above, but we can ask what happens to
Mp(a, b) as p → 0. It turns out (and it is not too hard to prove, but we won’t prove it here)

that limp→0 Mp(a, b) =
√
ab. So we define

M0(a, b) =
√
ab

This is the geometric mean of a and b. I assume it’s called the geometric mean because of
the ways it comes up in geometry. For instance, if a square of side s has the same area as a
rectangle of sides a and b, then s2 = ab, so s is the geometric mean of a and b. There is also
the neat theorem we all learned in high school geometry—and this certainly also goes back to
Euclid—that in figure 4 we have h =

√
ab.

h

a b
Figure 4: How the geometric mean arises in geometry. h =

√
ab.

• What happens as p → ∞? Actually, it’s pretty easy to compute this: keeping in mind that
0 < b ≤ a, we have

Mp(a, b) =
(ap + bp

2

)1/p

= a

(

1 +
(

b
a

)p

2

)1/p

Now
(

b
a

)p
is bounded and so as p → ∞,

(

1 +
(

b
a

)p

2

)1/p

→ 1

Thus it makes sense for us to define

M∞(a, b) = max{a, b}

• Further, we see that for any p > 0,

M−p(a, b) =
1

(

(

1
a

)p
+
(

1
b

)p

2

)1/p
=

1
Mp

(

1
a ,

1
b

)

(6)



12 3 A DIGRESSION: MEANS

and therefore limp→−∞ Mp(a, b) = b so we can with a clear conscience define

M−∞(a, b) = min{a, b}

Note that all these means Mp satisfy what must be reasonable properties of any mean:

• Mp(a, b) lies between a and b. If a 6= b and −∞ < p < ∞, then Mp(a, b) lies strictly between
a and b.

• Mp(a, a) = a.

• If a1 ≤ a2 then Mp(a1, b) ≤ Mp(a2, b) and if b1 ≤ b2 then Mp(a, b1) ≤ Mp(a, b2).

• Mp(a, b) = Mp(b, a).

as well as being homogeneous of degree 1: for any t > 0,

Mp(ta, tb) = tMp(a, b)

and in particular,

Mp(a, b) = aMp

(

1, b
a

)

And there is one final inequality which (to my mind, at least) is just wonderful: For p ≤ q, Mp(a, b) ≤
Mq(a, b). We won’t prove that here even for these means of two variables, but look what it says for
the particular means we have been considering:

M−∞(a, b) ≤ M−1(a, b) ≤ M0(a, b) ≤ M1(a, b) ≤ M2(a, b) ≤ M∞(a, b)(7)

Some of this we know already. For instance, we know that M1(a, b) ≤ M∞(a, b). The fact that
M0(a, b) ≤ M1(a, b) is the famous “Theorem of the Arithmetic and Geometric Means”, and in this
special case it’s quite easy to prove: we just notice that for any real numbers x and y, (x− y)2 ≥ 0,
so x2 − 2xy + y2 ≥ 0. That is

xy ≤ x2 + y2

2

and then setting x =
√
a and y =

√
b, we are done. So now we know that M0(a, b) ≤ M1(a, b) ≤

M∞(a, b). The remainder of the inequalities in (7) can be proved similarly or in some cases even
more simply by using (6) to “reflect the inequalities in the origin”.



13

4 Measures of convergence

4.1 The rate of convergence of Archimedes’ algorithm

So why were we so interested in these means? Well as we’ve already noted, in the recurrence relations
in Archimedes’ algorithm,

an+1 =
2anbn

an + bn

bn+1 =
√

bnan+1

we see that an+1 = M−1(an, bn). And bn+1 is “almost” the geometric mean of an and bn—in
fact, it’s the geometric mean of an+1 and bn. Further, the arithmetic and geometric means will be
absolutely crucial later.

In any case, we’re now ready to investigate the convergence of Archimedes’ algorithm. We will show
by induction that

• bj−1 < bj and aj < aj−1 for all j ≥ 1, and

• bj < aj for all j ≥ 0.

For we know these statements are true when j = 0. (Of course the first statement is vacuous in
that case.) If then these statements are true for all j ≤ n then we have

an+1 =
2anbn

an + bn

{

< 2anbn

2bn

= an

> 2anbn

2an

= bn

(8)

From the second inequality in (8), it follows that

bn+1 =
√

bnan+1 > bn

and also that

bn+1 =
√

bnan+1 < an+1

and this completes the inductive proof.

Thus as n → ∞, bn increases to a limit b, and an decreases to a limit a, with b ≤ a. Now then we
have

an+1 − bn+1 ≤ an+1 − bn =
2anbn

an + bn
− bn =

bn

an + bn
(an − bn) = mn(an − bn)

where the multiplier mn < 1/2, which shows two things:

1. an − bn → 0 as n → ∞.

2. Each successive iteration of the algorithm increases our accuracy by a factor of m, and in fact,
since mn → 1/2, ultimately each iteration increases our accuracy by a factor of 2.

Thus each iteration should give us roughly an additional binary digit of accuracy, which is the kind
of behavior we saw in practice above. This kind of convergence is called “linear convergence”.



14 4 MEASURES OF CONVERGENCE

4.2 Quadratic convergence

The usual “divide-and-average” algorithm for finding square roots was known to the Babylonians:
to find

√
x (let us confine our discussion to the case when x > 0) start with some reasonable guess

a, set a0 = a, and define successively

an+1 =
1
2

(

an +
x

an

)

It is easy to see that this process converges very quickly. In fact, we have

an+1 −
√
x =

1
2

(

an +
x

an

)

−
√
x

=
a2

n − 2an
√
x+ x

2an

=
(an − √

x)2

2an

So once an is close enough to
√
x, it stays close, and we have

0 ≤ an+1 −
√
x = O

(

(an −
√
x)2
)

This is called “quadratic convergence”, for obvious reasons, and it is very fast: the number of
correct decimal places roughly doubles on each iteration. Figure 5 demonstrates this astounding
convergence of the iterations for the computations of

√
2, starting from an initial guess of 1.0.

n an

0 1.00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
1 1.50000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
2 1.41666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666
3 1.41421568627450980392156862745098039215686274509803921568627450980392156862745098039215686274509
4 1.41421356237468991062629557889013491011655962211574404458490501920005437183538926835899004315764
5 1.41421356237309504880168962350253024361498192577619742849828949862319582422892362178494183673583
6 1.41421356237309504880168872420969807856967187537723400156101313311326525563033997853178716125071
7 1.41421356237309504880168872420969807856967187537694807317667973799073247846210703885038753432764

Figure 5: Convergence of the approximations to
√

2, starting with an initial guess of 1.0.

4.3 The arithmetic-geometric mean

Gauss’s arithmetic-geometric mean M(a, b) of two numbers (we will assume here that they are
positive real numbers) is defined by forming the arithmetic and geometric means of those two
numbers

a1 =
a+ b

2

b1 =
√
ab



4.3 The arithmetic-geometric mean 15

and then repeating this process. Suppose (without loss of generality) that 0 < b < a. Then by the
theorem of the arithmetic and geometric means we have

b < b1 < a1 < a

and so it is clear that bn ↑ and an ↓. In fact, they approach the same limit—which we will denote
by M(a, b)—as we can see as follows:

an+1 − bn+1 ≤ an+1 − bn =
an + bn

2
− bn =

an − bn

2

and so by induction we have

0 ≤ an − bn ≤ 2−n(a− b)

So we see that the limit M(a, b) well-defined.

The convergence we have just demonstrated is linear convergence. But actually, we gave away too
much in the estimation we made. Now that we know that the process converges, we can do better:

a2
n+1 − b2

n+1 =
a2

n + 2anbn + b2
n

4
− anbn

=
a2

n − 2anbn + b2
n

4

=
(an − bn)2

4

(9)

so since an + bn ≥ 2b0 and so is bounded away from 0 for all n, we get

an+1 − bn+1 =
(an − bn)2

4(an+1 + bn+1)
= O

(

(an − bn)2
)

so we see that the iteration for the arithmetic-geometric mean converges quadratically, just like the
square root algorithm.

In particular, suppose that for some N , |aN − bN | ≤ 1/2. Then it follows by induction that

an − bn = O
(

2−2n−N
)

for n ≥ N(10)

When we come to consider this in more detail, it will be useful to set

cn =
√

a2
n − b2

n

Then from (9), we get

c2
n+1 =

(an − bn)2

4
=

(an − bn)2

4
· (an + bn)2

(an + bn)2
=

(a2
n − b2

n)2

4(an + bn)2
=

c4
n

4(an + bn)2

and so

cn+1 = O(c2
n)(11)



16 5 LEIBNIZ’S SERIES

n an bn

0 1.4142135623730950488016887242096980785696718 1.0000000000000000000000000000000000000000000
1 1.2071067811865475244008443621048490392848359 1.1892071150027210667174999705604759152929720
2 1.1981569480946342955591721663326624772889040 1.1981235214931201226065855718201524506920132
3 1.1981402347938772090828788690764074639904586 1.1981402346773072057983837881898007087318308
4 1.1981402347355922074406313286331040863611447 1.1981402347355922074392136559275436700932807
5 1.1981402347355922074399224922803238782272127 1.1981402347355922074399224922803238782272125

Figure 6: Convergence of the approximations to M(
√

2, 1).

Just as in the case of the square root algorithm, we can show how an and bn converge dramatically
quickly to M(a, b). In Figure 6 we take a =

√
2 and b = 1.

The remarkable fact is that the first 22 digits of the numbers in rows 0 through 4 were computed (by
hand, of course) by Gauss sometime before 1800. Figure 7 shows a page from his actual computation.
(Incidentally, in the tables of computations that I have generated here, I have not rounded off the
results in the last digit; but you can see that Gauss actually did.)

5 Leibniz’s series

With the invention of the calculus, many series were produced which converged to π or to a simple
multiple of π. Probably the most famous is the one usually attributed to Leibniz and discovered by
him in 1674:

π

4
= 1 − 1

3
+

1
5

− 1
7

+
1
9

− . . .

Series like this were in the air at the time. The Scottish mathematician James Gregory had given
essentially the same result 3 years earlier. These discoveries were made independently, and starting
with different goals. Leibniz was concerned with the problem of “quadrature”—i.e., measuring area,
while Gregory essentially discovered the Taylor series some 14 years before the birth of Taylor. And
both these discoveries were actually made shortly before Newton and Leibniz themselves formalized
calculus as we know it today.

In fact, the same series was produced a couple of hundred years earlier by an Indian mathematician
whose actual identity is not definitively known, although the result is usually ascribed to Nilakantha.
Roy (1990) gives an interesting discussion of these three discoveries and how they were arrived at.

The usual way this series is derived today—and it’s not far removed from how Gregory and Leibniz
arrived at it—is to use the integral for arctan z, expanding out the integrand as a geometric series,



17

Figure 7: A page from a manuscript of Gauss (1800). Gauss’s computation of M(
√

2, 1) is the
bottom half of the second table on the page.



18 5 LEIBNIZ’S SERIES

and integrating term-by-term:

arctan z =
∫ z

0

1
1 + t2

dt

=
∫ z

0

(1 − t2 + t4 − t6 + t8 − . . . ) dt

= z − z3

3
+
z5

5
− z7

7
+
z9

9
− . . .

which not only has radius of convergence 1, but actually does converge to arctan z at 1. This series is
known as Gregory’s series. Substituting z = 1, we get Leibniz’s series. (In fact, the series obviously
converges at 1, and so by Abel’s theorem, it represents arctan z there.)

Leibniz’s series is just beautiful, and it can even be derived from some equally beautiful theorems
in number theory—see Hilbert and Cohn-Vossen (1999). For computational purposes, however,
it obviously converges abysmally slowly—it would take several hundred terms just to get 2-digit
accuracy. But Gregory’s series could be used directly:

By the beginning of the eighteenth century Abraham Sharp under the direction of the
English astronomer and mathematician E. Halley had obtained 71 correct digits of π
using Gregory’s series with x =

√

1/3, namely

π

6
=

1√
3

(

1 − 1
3 · 3

+
1

32 · 5
− 1

33 · 7
+ . . .

)

Borwein and Borwein (1987), page 339

Even this series, however, did not really converge all that quickly.

A series which converged more quickly was derived by John Machin, who used it to calculate 100
digits of π in 1706. He used some trigonometric identities which we need to recall: From

sin(θ ± φ) = sin θ cosφ± cos θ sinφ

cos(θ ± φ) = cos θ cosφ∓ sin θ sinφ

we get

tan(θ ± φ) =
sin θ cosφ± cos θ sinφ
cos θ cosφ∓ sin θ sinφ

=
tan θ ± tanφ

1 ∓ tan θ tanφ

and in particular,

tan 2θ =
2 tan θ

1 − tan2 θ

Machin started by defining an angle θ by

θ = arctan
1
5



19

Then

tan 2θ =
2 tan θ

1 − tan2 θ
=

5
12

and thence

tan 4θ =
2 tan 2θ

1 − tan2 2θ
= 1 +

1
119

and from that, we get

tan
(

4θ − π

4

)

=
tan 4θ − 1
1 + tan 4θ

=
1

239

and taking the arctan of both sides of this, we get Machin’s formula

π

4
= 4 arctan

1
5

− arctan
1

239

Gregory’s series allows this to be evaluated reasonably efficiently: the first term works well with
decimal arithmetic, and the second converges rapidly.

Many other series of this form were developed and used. The calculations were all performed by
hand (or eventually, by desk calculators, and finally, by early computers). But already by 1976, a
better method was available, due independently to Brent and Salamin. We’ll look at it next, after
another digression.

6 A digression: acceleration of series

Let’s go back to Leibniz’s series:

π

4
= 1 − 1

3
+

1
5

− 1
7

+
1
9

− . . .(12)

We have already noted that this series converges so slowly that it is quite useless for any practical
purpose. Nevertheless, we might ask if there is some transformation one might apply to this series
that would generate an equivalent series that converged faster.

The simplest thing to try, and a very obvious one, is to notice that since this is an alternating series
with terms of diminishing absolute value, we can take the terms in pairs and write this series as

π

4
=
(

1 − 1
3

)

+
(1

5
− 1

7

)

+
(1

9
− 1

11

)

. . .

=
2
3

+
2

5 · 7
+

2
9 · 11

+ · · ·

That is,

π

4
= 2

∞
∑

n=1

1
(4n− 3)(4n− 1)

(13)



20 6 A DIGRESSION: ACCELERATION OF SERIES

The nth term of this series is O
(

1
n2

)

, and so it is similar in nature to Euler’s wonderful formula

π2

6
=

∞
∑

n=1

1
n2

This transformed series (13) is more convenient for computation than Leibniz’s series, because it
avoids the computational difficulty of adding and subtracting numbers that mainly cancel out—it’s
hard to do this and maintain a high level of precision. Unfortunately, however, the new series doesn’t
actually converge any faster than Leibniz’s original series does, since each term in (13) is just the
sum of two consecutive terms in (12), and after n terms we are still only within a distance of about
1/n from the sum.

6.1 Euler’s transformation

This didn’t stop Euler, however. He found a method of transforming series like this which in many
cases dramatically improves the rate of convergence. In effect he recursively applied a transformation
similar to the transformation we performed above, and in doing so he came up with a general method
that works for a large class of alternating series.

To see what he did it is helpful to have some standard notation: if (x0, x1, x2, x3, . . .) is any sequence
of real (or even complex) numbers, we define the forward difference sequence (∆x0,∆x1,∆x2, . . . )
by ∆xk = xk+1 − xk, and we define the backward difference sequence (∇x0,∇x1,∇x2, . . .) by
∇xk = xk − xk+1 = −∆xk. Euler’s transformation can actually be written in terms of either ∆ or
∇, but we will find it somewhat more convenient to use ∇. Note that we can iterate this process:
we can take differences of differences, and so on, as in Figure 8. We see immediately that we have

∇kam =
k
∑

j=0

(−1)j

(

k

j

)

xj

With this notation, the Euler transform of an alternating series
∑∞

j=0(−1)jaj is produced by the
following series of steps:

S = a0 − a1 + a2 − a3 + a4 − . . .

=
1
2
a0 +

1
2

(

(a0 − a1) − (a1 − a2) + (a2 − a3) − (a3 − a4) + . . .
)

=
1
2
a0 +

1
4

(a0 − a1) +
1
4

(

(a0 − 2a1 + a2) − (a1 − 2a2 + a3) + (a2 − 2a3 + a4) − . . .
)

That is, Euler replaced the series
∑∞

j=0 aj with the series

∞
∑

k=0

∇ka0

2k+1

or equivalently,

∞
∑

k=0

1
2k+1

k
∑

j=0

(−1)j

(

k

j

)

aj



6.1 Euler’s transformation 21

x0

x0 − x1

x1 x0 − 2x1 + x2

x1 − x2 x0 − 3x1 + 3x2 − x3

x2 x1 − 2x2 + x3 x0 − 4x1 + 6x2 − 4x3 + x4

x2 − x3 x1 − 3x2 + 3x3 − x4

x3 x2 − 2x3 + x4 x1 − 4x2 + 6x3 − 4x4 + x5

x3 − x4 x2 − 3x3 + 3x4 − x5

x4 x3 − 2x4 + x5

x4 − x5

x5

x0 = ∇0x0

∇x0

x1 = ∇0x1 ∇2x0

∇x1 ∇3x0

x2 = ∇0x2 ∇2x1 ∇4x0

∇x2 ∇3x1

x3 = ∇0x3 ∇2x2 ∇4x1

∇x3 ∇3x2

x4 = ∇0x4 ∇2x3

∇x4

x5 = ∇0x5

Figure 8: Backward differences. By convention, ∇0xk = xk and of course ∇ = ∇1.

(Just to be clear, note that the series S itself is alternating, but each ak ≥ 0.)

The three big questions we need to answer then are:

1. Does the Euler transform converge?

2. If so, does it converge to the same sum as the original series?

3. And finally, assuming it does converge to the same sum, does it converge any faster than the
original series?

The utility of Euler’s transformation is that in a large class of cases, the answer to all three questions
is yes. We’ll show this next.



22 6 A DIGRESSION: ACCELERATION OF SERIES

6.2 Proof that Euler’s transformation converges quickly to the original

sum

Euler didn’t actually prove any general theorems about this transformation. He did use it in several
specific cases, where he could show that it really did converge to the original sum, and converged
much more quickly. We’re going to give a general result here showing that the Euler transformation
can be applied to a large class of alternating series. The reasoning in the proof of this result is quite
elegant and goes ultimately back to Hausdorff. We’ll follow Cohen et al. (2000), who have shown
how this method can be used to arrive at Euler’s transformation (and in fact many others) very
quickly.

Suppose—and this is the key assumption—that there is a positive measure µ defined on the interval
[0, 1] such that the numbers ak are the moments of µ, by which we simply mean this:

ak =
∫ 1

0

tk dµ(t)(14)

This won’t always be the case—there are sequences {ak} for which no such µ exists—but in many
cases there is such a µ. So assuming that there is such a µ, let us continue6: We can use (14) to
write the sum of the series as follows:

S =
∞
∑

k=0

(−1)kak =
∫ ∞

0

(

∞
∑

k=0

(−1)ktk dµ(t)
)

=
∫ 1

0

1
1 + t

dµ(t)

Now suppose that we have a sequence {Pn} of polynomials where Pn has degree n, so we can write

Pn(x) =
n
∑

j=0

p
(n)
j xj

and where Pn(−1) 6= 0. (We’ll see that such sequences of polynomials are not hard to come by.)
We know that P (t) − P (−1) must be divisible by t− (−1), i.e., by t+ 1. Let us set

Sn =
1

Pn(−1)

∫ 1

0

Pn(−1) − Pn(t)
1 + t

dµ(t)

We can split this sum into two parts:

Sn =
∫ 1

0

1
1 + t

dµ(t) − 1
Pn(−1)

∫ 1

0

Pn(t)
1 + t

dt

As we have seen, the first term on the right-hand side is just the sum S of the series. Our aim will
be to find a sequence of polynomials such that the second integral on the right is very small. For

6And by the way, if you are not comfortable with measures, you can assume the situation is somewhat simpler:
you can assume that there is a positive “weight function” w(t) such that the numbers ak are the moments of w:

ak =

∫

1

0

tkw(t) dt

and then in what follows simply replace every occurrence of dµ(t) by w(t) dt. This is not a highly restrictive
assumption to make, and it is all we need here anyway.



6.2 Proof that Euler’s transformation converges quickly to the original sum 23

such a sequence of polynomials, then, Sn will be very close to S. If we can do this right, Sn will be
easy to express, and will converge to S faster than the original series does.

Now exactly what is Sn? We have

Sn = S − 1
Pn(−1)

∫ 1

0

Pn(t)
1 + t

dt

= S − 1
Pn(−1)

∫ 1

0

(

n
∑

j=0

p
(n)
j tj

)

∞
∑

k=0

(−t)k dµ(t)

= S − 1
Pn(−1)

∫ 1

0

(

n
∑

κ=0

tκ
κ
∑

j=0

p
(n)
j (−1)κ−j +

∞
∑

κ=n+1

tκ
n
∑

j=0

p
(n)
j (−1)κ−j

)

dµ(t)

(where κ in the last line is substituted for k + j).

Now we’re ready to pick the polynomials Pn. In fact, we’re going to use Pn(t) = (1−t)n. This works
very nicely, because Pn(−1) = 2n, which grows rapidly, and on the other hand Pn(t) is bounded by
1 on the interval [0, 1], so the integral we were concerned about above is easily bounded

1
Pn(−1)

∫ 1

0

Pn(t)
t+ 1

dµ(t) = O(2−n)

and we see that it goes to 0 very quickly. So certainly Sn approaches S very quickly. It remains for
us to express Sn in a form that is easy to evaluate.

Now with this choice of Pn, we have by the binomial theorem

Pn(t) = (1 − t)n =
n
∑

j=0

(

n

j

)

(−t)j

That is,

p
(n)
j = (−1)j

(

n

j

)

So now we can continue our computation of Sn from where we left off above:

Sn = S − 1
2n

∫ 1

0

n
∑

k=0

(−1)ktk
k
∑

j=0

(

n

j

)

dµ(t) − 1
2n

∫ 1

0

∞
∑

k=n+1

(−1)ktk
n
∑

j=0

(

n

j

)

dµ(t)

Now we know that
∑n

j=0

(

n
j

)

= 2n, so the third term on the right is just

1
2n

∫ 1

0

∞
∑

k=n+1

(−1)ktk2n dµ(t) =
∞
∑

k=n+1

(−1)kak

and so S minus this term is just
∑n

k=0(−1)kak. Thus we have

Sn =
n
∑

k=0

(−1)kak − 1
2n

∫ 1

0

n
∑

k=0

(−1)ktk
k
∑

j=0

(

n

j

)

dµ(t)



24 6 A DIGRESSION: ACCELERATION OF SERIES

There are a couple of ways we can look at this. The first term on the right-hand side is just the
nth partial sum of our original series. Presumably the second term on the right is very small. But
actually we want to combine these two terms and get an expression that is convenient to compute.
When we do this we get

Sn =
n
∑

k=0

(−1)kak

(

1 − 1
2n

k
∑

j=0

(

n

j

)

)

=
n−1
∑

k=0

(−1)kak · 1
2n

n
∑

j=k+1

(

n

j

)

(The outer sum originally has upper bound n, but the inner sum, in either expression, is 0 when
k = n.)

This may look completely opaque. It turns out, however, that it is equal to the (n − 1)th partial
sum of the Euler transform. In fact, that partial sum is

n−1
∑

j=0

1
2j+1

j
∑

k=0

(−1)k

(

j

k

)

ak =
n−1
∑

k=0

(−1)kak

n−1
∑

j=k

1
2j+1

(

j

k

)

and so we want to prove that

1
2n

n
∑

j=k+1

(

n

j

)

=
n−1
∑

j=k

1
2j+1

(

j

k

)

or equivalently,

n
∑

j=k+1

(

n

j

)

=
n−1
∑

j=k

2n−j−1

(

j

k

)

(15)

This can be proved simply by induction, but as usual, that gives no hint as to why it is really true.
There is an elegant combinatorial proof of this7 however, using the method of “counting something
two different ways”.

Let S(n) be a set with n elements. The left-hand side of (15)—call it N (n)
k —is just the number of

subsets of S(n) containing more than k elements. Now let us suppose that the elements of S(n) are
numbered from 1 to n. Given any subset T of S(n) containing more than k elements, we can look at
which element of S(n) is the (k + 1)th element of T . That element must be in one of the positions
k + 1, k + 2, . . . , n of S(n). Thus, we can write

N
(n)
k =

n−1
∑

j=k

A
(n)
k,j

where A(n)
k,j is the number of subsets of S(n) each of which has the property that its (k+1)th element

occurs in position j + 1. And we can evaluate A(n)
k,j easily by looking at Figure 9.

We can see that any subset T whose (k+ 1)th element occurs in position j + 1 is composed of three
pieces:

7I owe this proof to David Offner.



6.2 Proof that Euler’s transformation converges quickly to the original sum 25

. . . . . . . . .

1 k j n

j positions n− j − 1 positions

subset of size k any subset

Figure 9: A set with n elements, numbered from 1 to n, containing a subset T whose (k + 1)th

element occurs in position j + 1.

• There are k elements in positions 1 through j. These elements can be picked in
(

j
k

)

ways.

• There is 1 element in position j + 1.

• There are any number of elements in the remaining positions. That is, we can pick any subset
of the remaining positions, and there are 2n−j−1 such subsets.

So A(n)
k,j , which is the number of such subsets T , must be 2n−j−1

(

j
k

)

. And this is just the term of

index j on the right-hand side of (15), so we have derived that identity, and with it, the correctness
of the Euler transform for the the class of alternating series the absolute values of whose terms are
representable as moments of a positive measure.

Now let us apply the Euler transform to Leibniz’s series. We have ak = 1
2k+1 . We have to make

sure that there is a weight function corresponding to this series. And there is: we have

1
2k + 1

=
∫ 1

0

tk
1

2
√
t
dt

(Note that 1
2

√
t
, even though it is unbounded on [0, 1], still has a finite integral over that interval.)

Therefore the derivation we have just gone through applies, and we know that the Euler transform
of this series converges fairly rapidly to its sum. Now what is the Euler transform of this series?

We have

∇0a0 = 1

∇1a0 = 1 − 1
3

=
2
3

∇2a0 = 1 − 2 · 1
3

+
1
5

=
8
15

=
2 · 4
3 · 5

∇3a0 = 1 − 3 · 1
3

+ 3 · 1
5

− 1
7

=
16
35

=
2 · 4 · 6
3 · 5 · 7



26 6 A DIGRESSION: ACCELERATION OF SERIES

and it appears that8

∇ka0 =
2 · 4 · . . . · 2k

3 · 5 · . . . · (2k + 1)

We can prove this by induction as follows: by definition we have

∇ka0 =
k
∑

j=0

(−1)j

2j + 1

(

k

j

)

Let us turn this into a polynomial (this may seem like magic, but it’s actually a standard technique);
we write

fk(x) =
k
∑

j=0

(−1)j x
2j+1

2j + 1

(

k

j

)

so fk(1) = ∇ka0. Differentiating, we get f ′
k(x) = (1 − x2)k. Since fk(0) = 0, then, we must have

fk(x) =
∫ x

0
(1 − t2)k dt. Starting with the integral for fk, integrating by parts, simplifying, and

setting x = 1, we get (2k + 1)fk(1) = 2kfk−1(1), which is exactly the inductive step.

Thus, we have

π

4
=

∞
∑

k=0

1
2k+1

2kk!
3 · 5 · . . . · (2k + 1)

=
1
2

∞
∑

k=0

k!
3 · 5 · . . . · (2k + 1)

and we know that the nth partial sum differs from π/4 by O(2−n).

This is a real improvement over Leibniz’s original series (not necessarily in terms of aesthetics, but
at least in terms of rate of convergence), but it is yet another linearly convergent algorithm—the
number of correct binary digits is proportional to n. In the next section we will see how much faster
algorithms were finally arrived at in 1976 by Brent and Salamin. The techniques they used actually
go back to Gauss.

Before we leave this topic, however, we note9 that another way to write the computations in the
series we have just derived is this:

π = 2 +
1
3

(

2 +
2
5

(

2 +
3
7

(

· · ·
(

2 +
i

2i+ 1

(

. . .

)))))

We will come back to this in Section 8.2.
8This is true provided we make the convention that ∇0a0 = 1. Actually, if we write the formula as

∇ka0 =
2kk!

3 · 5 · . . . · (2k + 1)

then this works out automatically, because 0! = 1.
9This is obvious if we write out each term, like this:

π = 2

(

1 +
1

3
+

1 · 2

3 · 5
+

1 · 2 · 3

3 · 5 · 7
+

1 · 2 · 3 · 4

3 · 5 · 7 · 9
+ . . .

)



27

7 Quadratically converging approximations to π

We already saw above that the arithmetic-geometric mean converges quadratically. It is a remark-
able fact that the arithmetic-geometric mean is related to π in such a way that it can be used as
the basis of a quadratically converging algorithm that computes π. The mathematics behind this
result was all known by the early 1800’s, but was not actually exhibited as an algorithm until 1976,
when Brent and Salamin independently and simultaneously derived it, no doubt motivated by the
ability to perform these computations on computers.

The connection between the arithmetic-geometric mean and π goes by way of elliptic integrals.
These are integrals involving the square root of a cubic or quartic polynomial, which cannot be
evaluated in terms of the usual elementary functions such as polynomials, the exponential and
logarithmic functions, and the trigonometric functions. They come up in many applications and
were widely studied by many mathematicians, well back into the 1700’s. There are many forms of
such integrals, and there are many transformations that take one form into another. The study of
these integrals necessarily involves trains of clever substitutions, which often seem unmotivated to
us nowadays, but which were the common practice of mathematicians until the 20th century.

In fact, Legendre showed that by means of these substitutions, all of these elliptic integrals could
be expressed in terms of three forms which he called elliptic integrals of the first, second, and third
kind. Two of these three kinds will be important to us, and here we show, by way of motivation,
how these two forms arise in applications.

7.1 Some representative elliptic integrals

7.1.1 The elliptic integral of the first kind

In first-year college physics courses, it is shown that the period of a simple pendulum is practically
independent of the amplitude of its swing, provided the angular amplitude α is small. This depends
on the approximation sinα ∼= α, which is quite accurate when α is small. In general, however, the
solution involves an elliptic integral, and does in fact depend on α.

So let us assume that our pendulum is a point mass m suspended on a massless string of length
l. At any time t, let θ denote the angle the string makes with the vertical rest position, and let v
denote the velocity of the mass. And as usual, let g denote the gravitational acceleration.

At time t, the energy of the pendulum is the sum of its kinetic and potential energies, so it is

1
2
mv2 −mgl cos θ

and this must be constant. We want to express this in terms of θ. Since v = lθ̇, this becomes10

1
2
ml2θ̇2 −mgl cos θ

Dividing by the constant 1
2ml

2, we get the necessarily constant expression

θ̇2 − 2
g

l
cos θ

10Ever since Newton, physicists have used dots to represent derivatives with respect to time, and since this is
physics, we’ll briefly follow that convention.



28 7 QUADRATICALLY CONVERGING APPROXIMATIONS TO π

α θ

Figure 10: A pendulum. θ is the displacement of the pendulum from its vertical rest position at time
t. α represents the amplitude; that is, the greatest possible value of θ; equivalently, the greatest
angular displacement at any time. Note that by convention α > 0, even though for clarity α is
represented as being negative in this figure. In fact, in the formulas we derive, it really doesn’t
matter whether α is positive or negative.

Now θ̇ = 0 when θ = ±α (i.e., when the pendulum reaches its highest points), so the value of the
constant expression must be 2 g

l cosα, and therefore we have

θ̇2 = 2
g

l
(cos θ − cosα)

Now it is convenient11 to use the identity cos 2φ = cos2 φ − sin2 φ = 1 − 2 sin2 φ, or equivalently,
cosφ = 1 − 2 sin2 1

2φ, to rewrite this as

θ̇2 = 4
g

l
(sin2 1

2α− sin2 1
2θ)

So

dθ

dt
= 2

√

g

l

√

sin2 1
2α− sin2 1

2θ

and so

dt

dθ
=

1
2

√

l

g
· 1
√

sin2 1
2α− sin2 1

2θ

11Who would think of making this substitution? Well, in those days, this was pretty standard stuff.



7.1 Some representative elliptic integrals 29

Therefore the time taken to go from the bottom point θ = 0 to a point at amplitude θ = φ must be

t(φ) =
1
2

√

l

g

∫ φ

0

dθ
√

sin2 1
2α− sin2 1

2θ

Now it is again convenient to simplify the integrand by introducing a variable ψ given by

sin 1
2θ = sin 1

2α sinψ

With this substitution, we have

dθ =
2 sin 1

2α cosψ

cos 1
2θ

dψ =
2 sin 1

2α cosψ
√

1 − sin2 1
2α sin2 ψ

dψ

and so we get

t(φ) =

√

l

g

∫ θ=φ

θ=0

dψ
√

1 − sin2 1
2α sin2 ψ

The period T of the pendulum is then 4 times the time taken in going from θ = 0 all the way to
θ = α, i.e., from ψ = 0 to ψ = π

2 . That is

T = 4t(α) = 4

√

l

g

∫ π/2

0

dψ
√

1 − sin2 1
2α sin2 ψ

And so finally,

T = 4

√

l

g
K(sin 1

2α)(16)

where

K(k) =
∫ π/2

0

dψ
√

1 − k2 sin2 ψ
(17)

is the complete elliptic integral of the first kind. (Note that |k| =
∣

∣sin 1
2α
∣

∣ ≤ 1.)

By making the substitution t = sin θ, we see also that

K(k) =
∫ 1

0

dt
√

(1 − t2)(1 − k2t2)
(18)

which shows, as promised, that K(k) is the integral of a rational function of of a quartic polynomial.
(More generally, elliptic integrals are integrals with respect to t of functions of the form R(t, w),
where R is a rational function of its two arguments and where w is the square root of a polynomial
in t of degree 3 or 4.)



30 7 QUADRATICALLY CONVERGING APPROXIMATIONS TO π

7.1.2 The elliptic integral of the second kind

The term “elliptic integral” comes from the attempt to find the perimeter of an ellipse in terms of
its major and minor axes. If the ellipse (see Figure 11) is given by the parametric equations

x = a cos θ y = b sin θ

where a > b > 0, then the differential of the arc length s is

a

b

Figure 11: An ellipse.

ds =
√

dx2 + dy2 =
√

a2 sin2 θ + b2 cos2 θ dθ

and so the perimeter of the ellipse is 4 times the perimeter of a quadrant, and so is

s = 4
∫ π/2

0

√

a2 sin2 θ + b2 cos2 θ dθ = 4
∫ π/2

0

√

a2 cos2 θ + b2 sin2 θ dθ

where the last equality is arrived at by replacing θ by π
2 − θ. This is customarily done, probably to

bring this integral into a form parallel with that for K in the next section.

Now letting e =
√

(1 − b2/a2) denote the eccentricity of the ellipse, we then have the arc length of
the ellipse given by

s = 4a
∫ π/2

0

√

1 − e2 sin2 θ dθ = 4aE(e)

where

E(k) =
∫ π/2

0

√

1 − k2 sin2 θ dθ(19)



7.1 Some representative elliptic integrals 31

is the complete elliptic integral of the second kind. (Note here again that k = e, which is between 0
and 1.)

As above, making the substitution t = sin θ yields the representation

E(k) =
∫ 1

0

√
1 − k2t2√
1 − t2

dt =
∫ 1

0

1 − k2t2
√

(1 − t2)(1 − k2t2)
dt(20)

which shows that E(k) is also an integral with respect to t of a function R(t, w) where R is a rational
function of its arguments and w is the square root of a polynomial of order 4 in t.

7.1.3 More representations for K(k) and E(k)

First, note that with a, b and e as above, and writing k for e as is conventional here, we have
(similarly to the computation above)

∫ π/2

0

dθ
√

a2 cos2 θ + b2 sin2 θ
=

1
a

∫ π/2

0

dθ
√

1 − k2 sin2 θ

That is, defining

I(a, b) =
∫ π/2

0

dθ
√

a2 cos2 θ + b2 sin2 θ
(21)

we have

I(a, b) =
1
a
K(k)(22)

As we’ll see, it is customary to set k′ =
√

1 − k2 (so that k2 + k′2 = 1). Then if a = 1, then b = k′,
and so

I(1, k′) = K(k)(23)

It will be useful to us later to have a similar representation for E: the computations in section 7.1.2
show that for 0 < b < a,

J(a, b) =
∫ π/2

0

√

a2 cos2 θ + b2 sin2 θ dθ = aE(k)(24)

where again

k =

√

1 − b2

a2

And similarly to (23), we have

J(1, k′) = E(k)(25)



32 7 QUADRATICALLY CONVERGING APPROXIMATIONS TO π

Now returning to (21) and making the clever substitution t = b tan θ, we have

dt = b sec2 θ dθ = b(1 + tan2 θ) dθ = b
√

1 + tan2 θ
√

1 + tan2 θ dθ =
√

b2 + t2
dθ

cos θ

and so

I(a, b) =
∫ ∞

0

1

cos θ
√

a2 + b2 tan2 θ

cos θ√
b2 + t2

dt =
1
2

∫ ∞

−∞

dt
√

(a2 + t2)(b2 + t2)
(26)

and this is the form we will find useful.

This representation makes it perfectly clear that I(a, b) = I(b, a), which could also have been proved
directly by making the substitution φ = π

2 − θ in (21).

7.2 Elliptic integrals and the arithmetic-geometric mean

7.2.1 The relation of M(a, b) to K(k)

Gauss discovered that the arithmetic-geometric mean M(a, b) is closely related to the elliptic integral
K(k). We can now derive this fact in a relatively short manner.

Following Newman (1985), we start with equation (26) and we make the change of variables

t =
x− ab

x

2

which entails

dt =
x2 + ab

2x2
dx

t2 +
(a+ b

2

)2

=
(x2 + a2)(x2 + b2)

4x2

t2 + ab =
(x2 + ab)2

4x2

so that
∫ ∞

−∞

dx
√

(x2 + a2)(x2 + b2)
=
∫ ∞

0

2 dx
√

(x2 + a2)(x2 + b2)

=
∫ ∞

−∞

dt
√

(

t2 +
(

a+b
2

)2
)

(t2 + ab)

That is to say, I(a, b) = I(a1, b1), and by induction and the fact that I(a, b) is a continuous function
of (a, b), we get I(a, b) = limn I(an, bn) = I(m,m), where m = M(a, b). Now

I(m,m) =
1
2

∫ ∞

−∞

dx

x2 +m2
=

1
2m

∫ ∞

−∞

dy

y2 + 1
=

π

2m



7.2 Elliptic integrals and the arithmetic-geometric mean 33

and so finally, we see that

M(a, b) =
π

2I(a, b)

and in particular,

M(1, k′) =
π

2K(k)(27)

7.2.2 The arc length of the lemniscate

What seems to have been historically crucial in the development of elliptic integrals and the
arithmetic-geometric mean is a topic which might seem much less significant to us today—the arc
length of the lemniscate. The lemniscate is a curve in the plane whose equation in polar coordinates
is r2 = cos 2θ (see Figure 12). The total arc length of this curve is

Figure 12: The lemniscate r2 = cos 2θ. The equation only makes sense for − π
4 ≤ θ ≤ π

4 and
3π
4 ≤ θ ≤ 5π

4 , but that is sufficient to parametrize the entire curve.

4
∫ π/4

0

(

r2 + (dr/dθ)2
)1/2

dθ = 4
∫ π/4

0

(cos 2θ)−1/2 dθ

Now we make one of the wonderful trigonometric substitutions cos 2θ = cos2 φ, and this becomes

4
∫ π/2

0

(1 + cos2 φ)−1/2 dφ = 4
∫ π/2

0

(2 cos2 φ+ sin2 φ)−1/2 dφ = 4I(
√

2, 1) = 4I(1,
√

2) =
2π

M(1,
√

2)

Now the lemniscate was a curve that people were widely interested in, and Gauss in fact had been
looking at the integral for the arc length. (He had been preceded in this by some very acute
observations of Euler and Lagrange.) He knew that it was related to π in certain ways. Gauss was
no slouch at computation, and he actually computed the ratio

2
π

∫ π/2

0

dφ
√

2 cos2 φ+ sin2 φ



34 7 QUADRATICALLY CONVERGING APPROXIMATIONS TO π

by hand to 15 decimal places12. Given what people were interested in at the time, this is perhaps not
so amazing. But what came next was: he independently was investigating the arithmetic-geometric
mean, and on May 30, 1799 he computed M(

√
2, 1) and found that its reciprocal equaled the ratio

he had computed above. He then proved all this; but the computation actually came first. Now all
this didn’t exactly come out of the blue, and in fact, Lagrange seems to have derived essentially the
same result several years earlier. But he doesn’t seem to have realized its significance; and Gauss
did.

7.3 Landen’s transformations

7.3.1 Cayley’s derivation of Landen’s transformations

The transformations by means of which we demonstrated the identity M(1, k′) = π/2K(k) are
modern polished versions of some transformations that are originally due to John Landen (1719–
1790), an obscure English mathematician who nevertheless contributed one of the foundational
results in the field of elliptic integrals. Landen’s transformations actually become fully meaningful
only in the larger realm of what is called elliptic functions (which are the inverses of elliptic integrals
and have an extensive and elegant theory which dominated much of 19th century mathematics).
We can’t even begin to go there in this survey; nor do we want to reproduce Landen’s original work,
which would be quite hard to follow, even though elementary.

But we do need his results, and to get them, we will follow Cayley (1895), Chapter XIII. Although
Cayley’s treatment of all this is fairly direct, it is nonetheless real 19th century mathematics, full
of seemingly unmotivated substitutions which miraculously come out just right. They often can be
better motivated and understood in the context of elliptic functions, but that would make the story
even longer, and in any case, it’s not how these results were originally discovered. So my suggestion
to the reader who is encountering this intricate series of geometric and algebraic computations for
the first time is simply to relax and enjoy the ride.

We will use the notations

I(a, b, θ) =
∫ θ

0

dφ
√

a2 cos2 φ+ b2 sin2 φ

J(a, b, θ) =
∫ θ

0

√

a2 cos2 φ+ b2 sin2 φdφ

for the incomplete elliptic integrals. The complete elliptic integrals are those for which θ = π/2:

I(a, b, π/2) = I(a, b)

J(a, b, π/2) = J(a, b)

In Figure 13, say the radius of the circle (i.e., the length OA = OP = OB) is r. Setting

a1 =
a+ b

2
b1 =

√
ab

12How did he evaluate the integral? Well, Euler and others had already worked on this, and Gauss was able to
evaluate it in terms of some rapidly converging infinite series. This is a topic in itself, and is surveyed in Cox (1984).



7.3 Landen’s transformations 35

a

b

c1

A

O

Q

B

P

φ

φ1

2φ

Figure 13: The geometric construction on which Landen’s transformation is based. O is the center
of the circle. Landen’s transformations relate the values of I and J at (a, b, φ) with their values at
(a1, b1, φ1).

We then have

r =
a+ b

2
= a1 c1 =

a− b

2

Note that a2
1 − b2

1 = c2
1, and for consistency we will also set c2 = a2 − b2.

There are two facts from elementary geometry we need to rely on:

• The angle at O marked 2φ really is twice the angle at B marked φ.

• A horizontal line (the dashed line in the figure) from Q to the circumference of the circle has

length
√
ab = b1.

Now we have

QP 2 = c2
1 + 2c1a1 cos 2φ+ a2

1

= 1
2 (a2 + b2) + 1

2 (a2 − b2) cos 2φ

= 1
2 (a2 + b2)(cos2 φ+ sin2 φ) + 1

2 (a2 − b2)(cos2 φ− sin2 φ)

= a2 cos2 φ+ b2 sin2 φ

Therefore

sinφ1 =
a1 sin 2φ

√

a2 cos2 φ+ b2 sin2 φ

cosφ1 =
c1 + a1 cos 2φ

√

a2 cos2 φ+ b2 sin2 φ



36 7 QUADRATICALLY CONVERGING APPROXIMATIONS TO π

Now this yields

a2
1 cos2 φ1 + b2

1 sin2 φ1 = a2
1(1 − sin2 φ1) + b2

1 sin2 φ1

= a2
1 − (a2

1 − b2
1) sin2 2φ

a2 cos2 φ+ b2 sin2 φ

=
a2

1

(

a2 cos2 φ+ b2 sin2 φ− (a2
1 − b2

1) sin2 2φ
)

a2 cos2 φ+ b2 sin2 φ

=
a2

1

(

a2 cos2 φ+ b2 sin2 φ− (a2 − 2ab+ b2) sin2 φ cos2 φ
)

a2 cos2 φ+ b2 sin2 φ

=
a2

1(a2 cos2 φ+ b2 sin2 φ− a2 sin2 φ cos2 φ+ 2ab sin2 φ cos2 φ− b2 sin2 φ cos2 φ)
a2 cos2 φ+ b2 sin2 φ

=
a2

1(a2 cos4 φ+ 2ab sin2 φ cos2 φ+ b2 cos4 φ)
a2 cos2 φ+ b2 sin2 φ

=
a2

1(a cos2 φ+ b sin2 φ)2

a2 cos2 φ+ b2 sin2 φ

and also

sin(2φ− φ1) =
1
2 (a− b) sin 2φ

√

a2 cos2 φ+ b2 sin2 φ
(this is easy)

cos(2φ− φ1) =
a cos2 φ+ b sin2 φ

√

a2 cos2 φ+ b2 sin2 φ
(just work it out)

and thence

cos(2φ− φ1) =
1
a1

√

a1 cos2 φ1 + b1 sin2 φ1

Now (see Figure 14) move P through a small angle on the circle to a point P ′. Let P ′′ be the point
on the circle centered at Q of radius QP such that P ′ is on the radius QP ′′.

First, as P ′ → P we see that

• The line through P and P ′ approaches the tangent to the original circle at P .

• The line through P and P ′′ approaches the tangent to the dashed circle at P .

and therefore as P ′ → P ,

∠P ′′PP ′ → ∠QPO = 2φ− φ1(28)

Next, QP ′′ meets the dashed circle at a right angle, and so as P ′ → P ,

∠P ′P ′′P → a right angle(29)

Putting (28) together with (29), we see that as P ′ → P ,

PP ′′

PP ′
→ cos(2φ− φ1) =

1
a1

√

a1 cos2 φ1 + b1 sin2 φ1



7.3 Landen’s transformations 37

a

b

c1

P ′
P ′′

A

O

Q

B

P

2φ

φ1

Figure 14: The means by which the derivative dφ1/dφ is computed in geometrically meaningful
terms.

On the other hand, denoting the arc length from P to P ′ along the original circle by PP ′ and
similarly for PP ′′, we have

PP ′′ = QP∆φ1

PP ′ = r(2∆φ)

and (just as in the derivation of Archimedes’ algorithm)

PP ′′

PP ′′
=
QP · 2 sin ∆φ1

2

QP∆φ1
→ 1

PP ′

PP ′
=
QP · 2 sin ∆φ

2

QP∆φ
→ 1

so

PP ′′

PP ′
=
PP ′′

PP ′
· PP

′′

PP ′′
· PP

′

PP ′
→ QP

2r
· dφ1

dφ
=

√

a2 cos2 φ+ b2 sin2 φ

2a1

dφ1

dφ

Thus, we have

dφ
√

a2 cos2 φ+ b2 sin2 φ
=

1
2

dφ1
√

a2
1 cos2 φ1 + b2

1 sin2 φ1

(30)

and this shows that

I(a, b, θ) =
1
2
I(a1, b1, θ1)(31)



38 7 QUADRATICALLY CONVERGING APPROXIMATIONS TO π

Note that if θ = π/2, then θ1 = π, and this identity reduces to

I(a, b) = I(a, b, π/2) =
1
2
I(a1, b1, π) =

1
2

∫ π

0

dφ
√

a2
1 cos2 φ+ b2

1 sin2 φ

=
∫ π/2

0

dφ
√

a2
1 cos2 φ+ b2

1 sin2 φ
= I(a1, b1)

which we have already seen to be true.

What we are really interested in, however, is a similar formula involving the function J . Now on
the one hand we already know that

sin2 φ1 =
4a2

1 sin2 φ cos2 φ

a2 cos2 φ+ b2 sin2 φ
(32)

and if for convenience we write

X = a2 cos2 φ+ b2 sin2 φ

then

X − a2 = (b2 − a2) sin2 φ

X − b2 = (a2 − b2) cos2 φ

and so

(X − a2)(X − b2) = −4(a− b)2a2
1 sin2 φ cos2 φ

Putting this together with (32), we get

(X − a2)(X − b2) +X(a− b)2 sin2 φ1 = 0

That is,

X2 +X
(

−(a2 + b2)(sin2 φ1 + cos2 φ1) + (a− b)2 sin2 φ1

)

+ a2b2 = 0

which, after simplifying the second term, is

X2 −X
(

(a2 + b2) cos2 φ1 + 2ab sin2 φ1

)

+ a2b2 = 0

which can also be written as

(

X−
(

1
2 (a2+b2) cos2 φ1+ab sin2 φ1

)

)2

−
(

1
2 (a2+b2) cos2 φ1+ab sin2 φ1

)2
+a2b2(cos2 φ1+sin2 φ1)2 = 0

and so
(

X −
(

1
2 (a2 + b2) cos2 φ1 + ab sin2 φ1

)

)2

= 1
4 (a2 + b2)2 cos4 φ1 + (a2 + b2)ab cos2 φ1 sin2 φ1 + a2b2 sin4 φ1

− a2b2 cos4 φ1 − 2a2b2 cos2 φ1 sin2 φ1 − a2b2 sin4 φ1

= 1
4 (a2 − b2)2 cos4 φ1 + ab(a− b)2 cos2 φ1 sin2 φ1

= 4c2
1 cos2 φ1(a2

1 cos2 φ1 + b2
1 sin2 φ1)



7.3 Landen’s transformations 39

Now restoring the value of X, we get

a2 cos2 φ+ b2 sin2 φ = 1
2 (a2 + b2) cos2 φ1 + ab sin2 φ1 + 2c1 cosφ1

√

a2
1 cos2 φ1 + b2

1 sin2 φ1

= 2(a2
1 cos2 φ1 + b2

1 sin2 φ1) − b2
1 + 2c1 cosφ1

√

a2
1 cos2 φ1 + b2

1 sin2 φ1

We rewrite this as

a2 cos2 φ+ b2 sin2 φ
√

a2
1 cos2 φ1 + b2

1 sin2 φ1

= 2

(

√

a2
1 cos2 φ1 + b2

1 sin2 φ1 −
1
2b

2
1

√

a2
1 cos2 φ1 + b2

1 sin2 φ1

+ c1 cosφ

)

Putting this together with (30), we get

√

a2 cos2 φ+ b2 sin2 φdφ =

(

√

a2
1 cos2 φ1 + b2

1 sin2 φ1 −
1
2b

2
1

√

a2
1 cos2 φ1 + b2

1 sin2 φ1

+ c1 cosφ1

)

dφ1

and therefore

J(a, b, θ) = J(a1, b1, θ1) − 1
2b

2
1I(a1, b1, θ1) + c1 sin θ1(33)

In particular, when θ = π/2, θ1 = π, and we have

J(a, b) = 2J(a1, b1) − b2
1I(a1, b1)(34)

7.3.2 Iteration of Landen’s transformation for J

Now let us set a0 = a, b0 = b, and c0 = c. Let us inductively define

an+1 =
an + bn

2

bn+1 =
√

anbn

cn+1 =
an − bn

2

so as before, c2
n = a2

n − b2
n and an+1cn+1 = 1

4 (a2
n − b2

n).

We know that an and bn converge extremely rapidly to the arithmetic-geometric mean M(a, b).

We can write (34) as

(

J(a, b) − a2I(a, b)
)

= 2
(

J(a1, b1) − a2
1I(a1, b1)

)

+ I(a1, b1)(−b2
1 + 2a2

1 − a2)

and since

2a2
1 − a2 − b2

1 = − 1
2 (a2 − b2) = − 1

2c
2

this can be written as
(

J(a, b) − a2I(a, b)
)

= 2
(

J(a1, b1) − a2
1I(a1, b1)

)

− 1
2c

2I(a1, b1)(35)



40 7 QUADRATICALLY CONVERGING APPROXIMATIONS TO π

By induction from (35), and using the fact that I(an, bn) = I(a, b) for all n, this yields

(

J(a, b) − a2I(a, b)
)

= 2n
(

J(an, bn) − a2
nI(an, bn)

)

− 1
2I(a, b)

n−1
∑

j=0

2jc2
j

Further, we have (using (10) on page 15 for the inequality at the end)

J(an, bn) − a2
nI(an, bn) =

∫ π/2

0

√

a2
n cos2 φ+ b2

n sin2 φdφ+
∫ π/2

0

a2
n

√

a2
n cos2 φ+ b2

n sin2 φ
dφ

=
∫ π/2

0

(b2
n − a2

n) sin2 φ
√

a2
n cos2 φ+ b2

n sin2 φ
dφ

= O
(

2−2n−N
)

for some N and all n > N . Therefore

2n
(

J(an, bn) − a2
nI(an, bn)

)

= O
(

2n2−2n−N
)

which tends to 0 as n → ∞, and so

(

J(a, b) − a2I(a, b)
)

= − 1
2I(a, b)

∞
∑

j=0

2jc2
j

or equivalently,

J(a, b) = I(a, b)
(

a2 −
∞
∑

j=0

2j−1c2
j

)

(36)

This will be of great use to us below. And even by itself it tells us something interesting: we know
that I(a, b) can be computed by the arithmetic-geometric mean, which converges quadratically.
And the numbers {cj} are just numbers that occur in that computation, and they converge to 0
quadratically, as we saw in (11). Therefore, we can compute J(a, b) quadratically as well.

7.4 Legendre’s relation

7.4.1 The functions E′ and K ′

It is convenient to define k′ =
√

1 − k2 so that k2+k′2 = 1. (This is a standard notational convention
in this subject, and is used in many contexts.)

Now let us define functions E′ and K ′ by E′(k) = E(k′) and K ′(k) = K(k′). (Actually, these
definitions of “primed” objects are not just for convenience. But their real significance is only
apparent in the larger theory of elliptic functions.)

We will need to know the behavior of these functions as k ↓ 0. It is easy to see that K(0) = E(0) =



7.4 Legendre’s relation 41

π/2. But we actually need a little more: by the binomial theorem,

(1 − k2 sin2 φ)1/2 = 1 − 1
2
k2 sin2 φ+O(k4)

(1 − k2 sin2 φ)−1/2 = 1 +
1
2
k2 sin2 φ+O(k4)

and so integrating these two quantities over [0, π/2], we get

K(k) =
π

2
− π

8
k2 +O(k4)(37)

E(k) =
π

2
+
π

8
k2 +O(k4)(38)

Further, we see easily13 that

E′(0) = E(1) =
∫ π/2

0

cosφdφ = 1(39)

The behavior of K ′ near 0 is more difficult to handle because it blows up. We need to get a bound
on how fast it blows up at 0. In fact, for our needs below, a crude bound will suffice: we have

K ′(k) = K(k′) =
∫ π/2

0

1
√

1 − k′2 sin2 φ
dφ ≤

∫ π/2

0

1√
1 − k′2

dφ = O(1/k)(40)

7.4.1.1 The precise behavior of K ′ near 0

In fact, a lot more is known about the behavior of K ′ near 0, and although we don’t need this
result, we’ll derive it anyway, for completeness. We’ll start with the representation of K ′ which we
get from Section 7.1.3, and then divide the range of integration into two parts:

K ′(k) = K(k′) = I(1, k) =
∫ ∞

0

dt
√

(1 + t2)(k2 + t2)

=
∫ α

0

dt
√

(1 + t2)(k2 + t2)
+
∫ ∞

α

dt
√

(1 + t2)(k2 + t2)

We have divided up the range of integration so that we can approximate these two integrals sepa-
rately. We have not yet decided what α will be, but we can allow it to depend on k. Now for the
first integral, we have

1√
1 + α2

∫ α

0

dt√
k2 + t2

≤
∫ α

0

dt
√

(1 + t2)(k2 + t2)
≤
∫ α

0

dt√
k2 + t2

13And we also see easily that if we substitute (37) into (16) (page 29), we find that the period of a pendulum with
small angular displacement α is

T = 2π

√

l

g

(

1 +
1

8
α2 + O(α4)

)

the first term of which is the ordinary approximation.



42 7 QUADRATICALLY CONVERGING APPROXIMATIONS TO π

And for the second integral, let us assume at any rate that k < α. Then since in fact k < α ≤ t, we
have k = (k/t)t ≤ (k/α)t, so

1
√

1 + k2

α2

∫ ∞

α

dt

t
√

1 + t2
≤
∫ ∞

α

dt
√

(1 + t2)(k2 + t2)
≤
∫ ∞

α

dt

t
√

1 + t2

For both of these approximations to work, then, we are certainly going to need both of the factors
on the left hand sides to approach 1 as k → 0. Thus, we need α → 0 and k/α → 0. That serves to
narrow things down a bit. Now let’s evaluate the approximating integrals. The first one is

∫ α

0

dt√
k2 + t2

=
∫ α/k

0

ds√
1 + s2

= log
(

√

1 + s2 + s
)

∣

∣

∣

α/k

0
= log

(

√

1 +
α2

k2
+
α

k

)

and the second is

∫ ∞

α

dt

t
√

1 + t2
= log

√
1 + s2 − 1

s

∣

∣

∣

∣

∣

∞

α

= − log

√
1 + α2 − 1

α
= − log

(

√

1 + α2 − 1
)

+ logα

where the integrated term at the upper bound of integration is 0, because

√
1 + s2 − 1

s
=

√

(

1
s2

+ 1
)

− 1
s

→ 1 as s → ∞

Putting these two results together, we have

1√
1 + α2

log
(

√

1 +
α2

k2
+
α

k

)

+
1

√

1 + k2

α2

(

− log
(

√

1 + α2 − 1
)

+ logα
)

≤ K ′(k)

≤ log
(

√

1 +
α2

k2
+
α

k

)

+
(

− log
(

√

1 + α2 − 1
)

+ logα
)

(41)

We could at this point cut a long story short and notice that setting α =
√
k not only satisfies the

two constraints we noted above but also makes the two additional factors on the left-hand side of
this inequality the same, which makes the expression a lot simpler to deal with. However, there is
another reason we might want to set α =

√
k as well:

Let us denote the right-hand side of this by U (for “upper bound”), and let us hold k fixed and
regard U as a function of α:

U(α) = log
(

√

1 +
α2

k2
+
α

k

)

+
(

− log
(

√

1 + α2 − 1
)

+ logα
)

To get the most effective approximation (at least from above), we certainly want to make U(α)
as small as possible. Calculus can help us here: The derivative of U(α) with respect to α can be
worked out easily enough; it turns out to be

U ′(α) =
1√

k2 + α2
− 1

α
√

1 + α2
(42)



7.4 Legendre’s relation 43

Differentiating once again with respect to α yields the second derivative:

U ′′(α) =
−α

(k2 + α2)3/2
+

1 + 2α2

α2(1 + α2)3/2

and assuming that 0 < k < α ≤ 1, it is straightforward14 to see that U ′′(α) > 0. Thus, U(α) is a
convex function of α and so if U ′(α) = 0 for some α in the open interval (k, 1), U(α) will have a
minimum in that interval and it will be at that point. So we take the expression for U ′(α) in (42)
and set it equal to 0, and we get k = α2. (And I imagine that this also gives the tightest bound
from below, but it’s too painful for me to check that.) And with this choice of α, as already noted
above, we do in fact have k < α < 1, and also α → 0 and k/α → 0 as k → 0.

Making the substitution α =
√
k in (41) now yields

1√
1 + k

log

√
1 + k + 1√
1 + k − 1

≤ K ′(k) ≤ log

√
1 + k + 1√
1 + k − 1

(43)

and so we see that now regarding the right-hand side U as a function of k, we have

U(k) = log

√
1 + k + 1√
1 + k − 1

and

K ′(k)
U(k)

→ 1 as k → 0

Further, since

U(k) = log

√
1 + k + 1√
1 + k − 1

= log

(√
1 + k + 1

)2

k
= log

4 +O(k)
k

= log
(

4
k

+O(1)
)

= log
4
k

+O(k)

it follows that

U(k)
log 4

k

→ 1 as k → 0

so

K ′(k)
log 4

k

→ 1 as k → 0

In this case, however, we can get a stronger result: Since 1√
1+k

= 1 −O(k), we have from (43) that

(

1 −O(k)
)

(

log
4
k

−O(k)
)

≤ K ′(k) ≤ log
4
k

+O(k)

and so for k close to 0,

∣

∣

∣

∣

K ′(k) − log
4
k

∣

∣

∣

∣

= O

(

k log
1
k

)

14First use k > 0. Then simplify and finally appeal to the fact that α ≤ 1.



44 7 QUADRATICALLY CONVERGING APPROXIMATIONS TO π

and in particular,

K ′(k) − log
4
k

→ 0 as k → 0(44)

which shows much more precisely how K ′(k) behaves near 0.

7.4.2 Legendre’s relation

First let us derive formulas for the derivatives of E and K with respect to k.

Recall that we have

E =
∫ π/2

0

√

1 − k2 sin2 φdφ K =
∫ π/2

0

dφ
√

1 − k2 sin2 φ

and so we immediately get

dE

dk
= −

∫ ∞

0

k sin2 φ
√

1 − k2 sin2 φ
dφ =

E −K

k

dK

dk
=
∫ π/2

0

k sin2 φ

(1 − k2 sin2 φ)3/2
dφ

We need to go further with dK/dk.

Remember that by convention we have k′2 = 1 − k2. It is convenient to define a variable t by

k′2

1 − k2 sin2 φ
= 1 − k2 sin2 t(45)

so that as φ increases from 0 to π/2, t decreases from π/2 to 0. Solving for sin2 t, we get

sin2 t =
1
k2

(

1 − k′2

1 − k2 sin2 φ

)

=
cos2 φ

1 − k2 sin2 φ

and so in turn we get

cos t =
√

1 − sin2 t =
k′ sinφ

√

1 − k2 sin2 φ

Since (45) is symmetric in t and φ, the last two identities hold if we switch t and φ. And from that
in turn we get

sinφ cosφ =
k′ sin t cos t
1 − k2 sin2 t

Further, differentiating and simplifying, using the last identity, we find that

dφ = − k′

1 − k2 sin2 t
dt



7.4 Legendre’s relation 45

Putting these results together we can derive

k
dK

dk
=
∫ π/2

0

k2 sin2 φ

(1 − k2 sin2 φ)3/2
dφ

=
1
k′2

∫ π/2

0

k′2

1 − k2 sin2 φ
· k2 sin2 φ
√

1 − k2 sin2 φ
· k′

1 − k2 sin2 t
dt

=
1
k′2

∫ π/2

0

(1 − k2 sin2 t) · k2 sin2 φ
√

1 − k2 sin2 φ
· k′

1 − k2 sin2 t
dt

=
k2

k′

∫ π/2

0

sinφ · cos t
k′

dt

=
k2

k′2

∫ π/2

0

cos2 t
√

1 − k2 sin2 t
dt

On the other hand, we have

E

k′2
−K =

1
k′2

∫ π/2

0

(

√

1 − k2 sin2 φ− k′2

√

1 − k2 sin2 φ

)

dφ

=
1
k′2

∫ π/2

0

1 − k2 sin2 φ− 1 + k2

√

1 − k2 sin2 φ
dφ

=
1
k′2

∫ π/2

0

k2 cos2 φ
√

1 − k2 sin2 φ
dφ

so that finally we have

k
dK

dk
=

E

k′2
−K

So we have

dE

dk
=

1
k

(E −K)

dK

dk
=

1
kk′2

(E − k′2K)

These same equations also hold with every variable “primed”. Further, since dk′/dk = −k/k′, we
can use the chain rule to get

dE′

dk
=
dE′

dk′

dk′

dk
= − k

k′2
(E′ −K ′)

dK ′

dk
=
dK ′

dk′

dk′

dk
= − 1

kk′2
(E′ − k2K ′)



46 7 QUADRATICALLY CONVERGING APPROXIMATIONS TO π

Now we calculate
d

dk
(EK ′ + E′K −KK ′) =

1
k

(E −K)K ′ + E

(

− 1
kk′2

(E′ − k2K ′)
)

+
(

− k

k′2

)

(E′ −K ′)K +E′

(

1
kk′2

)

(E − k′2K)

− 1
kk′2

(E − k′2K)K ′ −K

(

− 1
kk′2

)

(E′ − k2K ′)

=
1
k
EK ′ − 1

k
KK ′ − 1

kk′
EE′ +

k

k′2
EK ′

− k

k′2
E′K +

k

k′2
K ′K +

1
kk′2

E′E − 1
k
E′K

− 1
kk′2

EK ′ +
1
k
KK ′ +

1
kk′2

E′K − k

k′2
KK ′

= E′K

(

− k

k′2
+

1
kk′2

− 1
k

)

+ EK ′

(

k

k′2
− 1
kk′2

+
1
k

)

+KK ′

(

− 1
k

+
k

k′2
+

1
k

− k

k′2

)

= 0

Therefore the expression EK ′ +E′K−KK ′ must be constant. To see what its value is, we can just
let k → 0. Using (37), (38), (39) and (40), we get (as k ↓ 0)

E(k)K ′(k) + E′(k)K(k) −K(k)K ′(k) =
(

E(k) −K(k)
)

K ′(k) + E′(k)K(k)

= O(k2) ·O(1/k) + 1 · π
2

→ π

2

and so we have Legendre’s relation

EK ′ + E′K −KK ′ =
π

2
(46)

7.5 The algorithm of Brent and Salamin

We can now derive the algorithm of Brent and Salamin for computing π. Starting with (23) and
(25), we have

I(1, k′) = K(k) J(1, k′) = E(k)

I(1, k) = K ′(k) J(1, k) = E′(k)

Now if we start two arithmetic-geometric iterations with

a0 = 1 b0 = k′

a′
0 = 1 b′

0 = k



7.5 The algorithm of Brent and Salamin 47

and if cn and c′
n are defined in the usual manner:

cn =
an−1 − bn−1

2
c′

n =
a′

n−1 − b′
n−1

2

then from (36) on page 40 we have

E(k) =
(

1 −
∞
∑

j=0

2j−1c2
j

)

K(k)

E′(k) =
(

1 −
∞
∑

j=0

2j−1c′2
j

)

K ′(k)

Substituting in Legendre’s relation for E(k) and E′(k), we get

(

1 −
∞
∑

j=0

2j−1c2
j

)

K(k)K ′(k) +
(

1 −
∞
∑

j=0

2j−1c′2
j

)

K(k)K ′(k) −K(k)K ′(k) =
π

2

But since

K ′(k) =
π

2M(1, k)

K(k) =
π

2M(1, k′)

we then get

π

2
=

(

(

1 −
∞
∑

j=0

2j−1c2
j

)

+
(

1 −
∞
∑

j=0

2j−1c′2
j

)

− 1

)

π2

4M(1, k)M(1, k′)

Now the j = 0 terms of the two summations sum to 1
2c

2
0 + 1

2c
′2
0 = 1

2

(

(a2
0 − b2

0) + (a′2
0 − b′2

0 )
)

=
1
2 (k2 + k′2) = 1

2 . Therefore we can write this as

π

2
=

1
2

(

1 −
∞
∑

j=1

2jc2
j −

∞
∑

j=1

2jc′2
j

)

π2

4M(1, k)M(1, k′)

That is,

π =
4M(1, k)M(1, k′)

1 −
∑∞

j=1 2j(c2
j + c′2

j )

Finally, suppose we start with b0 = k = 1√
2
. Then also b′

0 = k′ = 1√
2
, and cj = c′

j for all j, and so

we have

π =
4M
(

1, 1√
2

)2

1 −∑∞
j=1 2j+1c2

j



48 8 STREAMING ALGORITHMS

which is the basis for Brent and Salamin’s algorithm for approximating π. In fact to turn it into an
algorithm, simply approximate the numerator by 4a2

n+1 and truncate the sum in the denominator15

That is, we denote the nth approximant by

πn =
4a2

n+1

1 −∑n
j=1 2j+1c2

j

(47)

This converges quadratically, as we know it must (since both the numerator and denominator
converge quadratically), and we can see this quite dramatically in Figure 15.

n πn

1 3.140579250522168248311331268975823311773440237512948335643486693345582758034902907827
2 3.141592646213542282149344431982695774314437223345602794559539484821434767220795264694
3 3.141592653589793238279512774801863974381225504835446935787330702026382137838927399031
4 3.141592653589793238462643383279502884197114678283648921556617106976026764500643061711
5 3.141592653589793238462643383279502884197169399375105820974944592307816406286208998625

Figure 15: Convergence of the approximations to π, using the algorithm of Brent and Salamin.

8 Streaming algorithms

All the algorithms we have seen so far have the property that you have to start by deciding how
accurate you want your final result to be. Then you have to ensure that each intermediate step is
computed to enough accuracy to make the final result come out right.

We will now consider a different class of algorithm. In the algorithms we will consider here, you
don’t have to decide how accurate you want your result to be. As it runs, the algorithm spits out
consecutive digits of the result (in our case, the consecutive digits of π), and you can just let it run
as long as you want. And since all the arithmetic is integer arithmetic, you don’t have to worry
about approximating intermediate results.

The discussion here is adapted from Gibbons (2006).

8.1 Multiplication

We start with a simple but instructive algorithm—multiplication. Of course we know how to mul-
tiply, and it’s easy to write an algorithm to multiply two numbers given as finite strings in their
decimal representation. But suppose we want to multiply a number—say, 87—by some other number
which is given to us as a non-terminating decimal. For instance,

12
35

= .3428571428571428571428571 . . .

15Why an+1 rather than simply an in the numerator? Well, to compute cn in the denominator, we already need to
compute an and bn, and at that point, we have an+1 almost for free. It turns out that using an+1, the algorithm yields
a considerably better approximation, although simply using an is quite good also—either way yields a quadratically
converging sequence of approximations.



8.1 Multiplication 49

Now this is really too simple, because we know that we can represent this number simply by the
fraction 12/35, and so if we wanted to multiply it by 87, say, we would just multiply 87 by (12/35),
and then turn the resulting fraction into a decimal if we wanted to.

But suppose we had a more complicated situation: suppose, for instance, we wanted to multiply 87
by

√
2. Now

√
2, being irrational, has a non-repeating decimal expansion:

√
2 = 1.414213562373009504880 . . .

If we wanted to multiply this by 87, the process would be more complicated.

We’re going to come up below with an algorithm that will work for any such infinite decimal string
provided only that the product does not end in an infinite sequence of 9’s. Such a product of course
can be represented as a terminating decimal, and in particular is rational. So if we know a priori
that the product is irrational, our algorithm will be guaranteed to work. And actually, our algorithm
works just fine for terminating decimals as well—it’s only when ordinary multiplication leads to an
infinite sequence of 9’s that there is a problem. We’ll explain all this at the end of this section.

To make things simple, let us first see what we need to do to multiply a terminating decimal by
87. Let us multiply .987436917 by 87. Normally, one does this “right-to-left”, and this makes sense,
since carries propagate to the left. However, we want to perform the multiplication left-to-right
because eventually we want to let the decimal be non-terminating—it will be a stream—and so we
can only access it from left to right. Figure 16 shows how the multiplication works.

Now the crucial point is this: we don’t have to wait until the very end to start producing numbers

in the output stream. In fact, in Figure 16, we have indicated in red the digits that we know have
been “produced for sure” at each stage.

For instance, once we have added the first two products to get 8526, we actually know that the first
digit of the output is 8. The reason we know this is that the rest of all the numbers that could
possibly be added up are at most .9999999 × 87, which is at most 87, and 87 + 8526 < 9000, so no
matter what comes next, the initial 8 will never get changed to a 9. In our pseudo-code below, this
gets implemented as

87 + 526 < 1000

How do we get 526? It is “8526 mod 1000”. And where do we get 1000? It is the smallest power of
10 with the same number of digits as 8526. It is called pow in the pseudo-code in Figure 17.

Warning: it’s not always true that each time we add a new partial product in, we can take off the
next digit of the new partial sum. We always have to perform the check, as above. If the check does
not succeed, then we just go on and add in the next partial product.

Furthermore, exactly this same reasoning holds when the input is an infinite stream.

We can write a program for this in which we multiply a stream of digits (regarding that stream as
the decimal representation of a number between 0 and 1) by a multiplier m. (In our example, m was
87.) In writing this program, we can regard this computation as dealing with three pieces of data:

• The input stream. (This was the finite stream (9 8 7 4 3 6 9 1 7) in our example.) We will
call this strm in the pseudo-code below.

• The intermediate list being processed. We will call this a-list in the pseudo-code below. In
our example, a-list starts out being the empty list, then is the list (7 8 3), then is the list (8



50 8 STREAMING ALGORITHMS

9 8 7 4 3 6 9 1 7

8 7

87 × 9 = 7 8 3

87 × 8 = 6 9 6

8 5 2 6

87 × 7 = 6 0 9

8 5 8 6 9

87 × 4 = 3 4 8

8 5 9 0 3 8

87 × 3 = 2 6 1

8 5 9 0 6 4 1

87 × 6 = 5 2 2

8 5 9 0 6 9 3 2

87 × 9 = 7 8 3

8 5 9 0 7 0 1 0 3

87 × 1 = 8 7

8 5 9 0 7 0 1 1 1 7

87 × 7 = 6 0 9

8 5 9 0 7 0 1 1 7 7 9

Figure 16: Multiplying 87 by .987436917. Each consume step adds in a partial product (87 × 9,
87 × 8, and so on). The partial sums (783, 8526, and so on) represent the situation after each
consume step. The red digits are digits that are known to be fixed at that point and can be output.
The blue digits are used below in proving that the algorithm can always make progress.

Both here and in the algorithm, we’ve left out figuring where the decimal point goes. That could
be added easily; it’s not important for the algorithm.

5 2 6), and then is the list (5 2 6) after we discover that the 8 will never change.

• The output stream.

There are also some auxiliary variables that we will find useful:

Let us denote by a the value of a-list. For instance

a-list a

(5 0 3) 503
(0 5 0 3) 503

In other words, a is insensitive to initial 0’s in a-list. Both representations are useful.

Next, given a non-empty list a-list, we will define a number pow such that



8.1 Multiplication 51

• pow is a power of 10, and

• pow is the smallest number with the same number of digits as a-list.

For instance, if a-list is (0 0 5 0), then pow is 1000.

In terms of these data structures, our algorithm can be described as follows. It consists of two basic
procedures:

consume This takes the next element off of strm, multiplies it by m, and adds it to the number
represented by a-list.

produce This takes the left-most digit off of a-list and incorporates it in the output stream.

Figure 17 illustrates some pseudo-code for these mutually recursive procedures.

(If you have studied compilers, you may find these procedures vaguely reminiscent of the shift and
reduce procedures in an LR parser. The intermediate data structure a-list here takes the place
of the stack, except that our a-list is really more like a queue.)

The whole basis of this computation is the test in action which enables us to determine when it is
safe to call produce—that is, when the most significant digit of a-list can never be changed by
any future consume.

This depends on the fact that we know that “m times strm” can never be greater than m.

Please note that this is very sketchy pseudo-code. The stream and list operations are written using
Scheme notation (cons-stream, stream-cdr, cdr). I have used C notation for expressions and flow of
control, and % for the remainder operator. Also, I have not specified how parameters are passed to
these various functions, or how the system is initialized. But the fundamental ideas are all here.

Figure 18 shows the first few steps of the algorithm.

8.1.1 Proof that we always make progress

One thing that always needs proving in an algorithm such as this is that progress can always be
made. We know, for instance, that not every consume step is followed by a produce step—for
instance in our example, 6 and 9 are consumed one after the other without any digit being produced
in between. And it is possible even for a long string of digits to be consumed before another one
is produced. But is it possible (assuming we are multiplying by an unending decimal string) for
production of digits to suddenly stop, and all the rest of the steps to be consume steps, without
anything further being produced?

The answer is yes, it is possible. For instance, if we multiply 1/9, which is .11111111 . . ., by 9, we
can see that actually no digit will ever be produced. And in fact, the product of these two numbers
is the repeating decimal .99999999 . . ., which is 1. This is really the only kind of thing that can go
wrong, as we can now see:

At the beginning of each step (i.e., at the beginning of the code for the action procedure), if m has
at least as many digits as a-list does, then either

• a-list is empty, or

• m + (a % pow) ≥ pow.



52 8 STREAMING ALGORITHMS

action:

If strm is empty, just return the finite stream consisting of the digits
in a-list.

Otherwise:

If ((a-list has at least 1 digit) AND
(m + (a % pow) < pow))

{

;; Adding "m times strm" to a can’t possibly affect the leading
;; element of a-list, so we are free to move the leading element of
;; a-list to the output stream.

produce
}

else

{

consume

}

produce:

;; move the first element of a-list to the return stream

;; and delete it from a-list.

Return what you get when you cons-stream the first element of a-list onto what
you get when you call action recursively after

replacing a by (a % pow)
replacing a-list by (cdr a-list)

;; could get leading 0’s here

consume:

return the result of calling action recursively after

replacing a by (10*a) + (m*(the first element of strm))
replacing a-list by a represented as a string with 0’s prepended if needed

to make its length > the length of the original a-list.
replacing strm by (stream-cdr strm)

Figure 17: Pseudo-code for stream multiplication

and hence the next step will be a consume step. This will increase the length of a-list, and so
eventually a-list will have more digits than m does.

In Figure 16, after each consume step (which corresponds to adding in one of the partial products),
there may be one or more produce steps, which append to the output stream of red digits. After
those produce steps are finished, we have colored blue the digits remaining in a that are “to the
left” of m—that is that are to the left of the greatest digit in m. In one case in this example, there
is no blue digit. In most of the cases, there is 1 blue digit, and in one case there are two.

A consume step always increases the number of blue digits, while a produce step turns the left-most
blue digit red.



8.2 A streaming algorithm that computes the digits of π 53

Output Stream a a-list pow Input Stream

() 0 () — (9 8 7 4 3 6 9 1 7)
a-list is empty; consume

() 783 (7 8 3) 100 (8 7 4 3 6 9 1 7)
87 + 83 ≥ 100; consume

() 8526 (8 5 2 6) 1000 (7 4 3 6 9 1 7)
87 + 526 < 1000; produce

(8) 526 (5 2 6) 100 (7 4 3 6 9 1 7)
87 + 26 ≥ 100; consume

(8) 5869 (5 8 6 9) 1000 (4 3 6 9 1 7)
87 + 869 < 1000; produce

(85) 869 (8 6 9) 100 (4 3 6 9 1 7)

Figure 18: The first few steps of the multiplication algorithm.

The crucial point then is this: each consume step adds a number to a, but the digits of that number
do not lie below any of the blue digits in a. (That’s because the number that is added is at most m,
or equivalently, at most 10 ∗ m is added to 10 ∗ a.)

Therefore, each blue digit can only change if a carry is propagated into it. If there is more than
1 blue digit, all except the left-most one must be 9. This is because when we add two decimal
numbers, no matter how long, the “carry” at each digit is always at most 1. Therefore if any blue
digit (other than the left-most one) was less than 9, it would still be ≤ 9 after anything was carried
into it, and therefore no carries would propagate to its left, and all the blue digits to its left would
be ready to be produced. That is, in such a case we are guaranteed that we can produce something.

Thus, the only way we could stop making progress is if after some point, all the new blue digits
created were 9. This would stop any production of red digits. And the only way this could happen
is if the product that we are computing ended in a repeating chain of 9’s.

So as long as we are not computing a product which ends in an infinite sequence of 9’s, we are
guaranteed that there will be an infinite number of produce steps, and with that stipulation, that
concludes the proof that the algorithm always makes progress.

8.2 A streaming algorithm that computes the digits of π

We will base our algorithm on the series

π = 2 +
1
3

(

2 +
2
5

(

2 +
3
7

(

· · ·
(

2 +
i

2i+ 1

(

. . .

)))))

The way you understand this computation is like this: looking at footnote 9 on page 26, it is really
a sequence of approximations to π:



54 8 STREAMING ALGORITHMS

2 +
1
3

(

2

)

= 2.66666666666 . . .

2 +
1
3

(

2 +
2
5

(

2

))

= 2.93333333333 . . .

2 +
1
3

(

2 +
2
5

(

2 +
3
7

(

2

)))

= 3.04761904761 . . .

2 +
1
3

(

2 +
2
5

(

2 +
3
7

(

2 +
4
9

(

2

))))

= 3.09841269841 . . .

2 +
1
3

(

2 +
2
5

(

2 +
3
7

(

2 +
4
9

(

2 +
5
11

(

2

)))))

= 3.12150072150 . . .

2 +
1
3

(

2 +
2
5

(

2 +
3
7

(

2 +
4
9

(

2 +
5
11

(

2 +
6
13

(

2

))))))

= 3.13215673215 . . .

. . .

Actually (and we’ll come back to this later), we didn’t have to apply all these computations to the
inner value 2—we could have started with any value, and the sequence of approximations would
still converge to π.

8.2.1 Linear fractional transformations

There is a clever way we can rewrite this formula which will enable us to perform these computations
efficiently: We can think of the first computation above as f1(2), where f1 is the function given by

f1(x) = 2 +
1
3
x =

1 · x+ 6
3

The second computation can be regarded as f1

(

f2(2)
)

, where f1 is as just defined, and f2 is the
function given by

f2(x) =
2 · x+ 10

5

and we see that we can write the nth computation as

f1 ◦ f2 ◦ · · · ◦ fn(2)

where for any k,

fk(x) =
k · x+ (4k + 2)

2k + 1



8.2 A streaming algorithm that computes the digits of π 55

This kind of function is what is known as a linear fractional transformation. The most general linear
fractional transformation is a function of the form

f(x) =
ax+ b

cx+ d

One of the really nice properties of linear fractional transformations is that it is easy to form their
composition, because they correspond naturally to matrices: If we associate the linear fractional
transformation

f(x) =
a11x+ a12

a21x+ a22

with the matrix

A =
(

a11 a12

a21 a22

)

and if we similarly associate the linear fractional transformation

g(x) =
b11x+ b12

b21x+ b22

with the matrix

B =
(

b11 b12

b21 b22

)

then it turns out (and it’s easy to prove; if you’ve never done it before, you should do it now) that
f ◦ g is the linear fractional transformation that is associated in the same way with the matrix AB
(using ordinary matrix multiplication). In particular, the set of linear fractional transformations is
closed under composition.

Note that a number of common functions are really linear fractional transformations. For instance:

• The function f(x) = c (i.e., a constant) is just the linear fractional transformation that
corresponds to the matrix

(

0 c
0 1

)

(This is generally considered a “degenerate” transformation because it is not invertible.)

• The function f(x) = cx (where c is a constant) is just the linear fractional transformation that
corresponds to the matrix

(

c 0
0 1

)

• The function f(x) = ax+ b is just the linear fractional transformation that corresponds to the
matrix

(

a b
0 1

)



56 8 STREAMING ALGORITHMS

8.2.2 The algorithm

So now we are ready to construct an algorithm to compute π based on this sequence of products of
linear fractional transformations. Remember that we are computing

lim
n→∞

f1 ◦ f2 ◦ f3 ◦ · · · ◦ fn(2)

where

fk(x) =
k · x+ (4k + 2)

2k + 1

which is the linear fractional transformation corresponding to the matrix

(

k 4k + 2
0 2k + 1

)

We will structure this computation in a manner which is similar to that of the previous problem.
That is, we will have

• An input stream strm. This is just the stream f1, f2, f3, . . . of linear fractional transforma-
tions, each one represented as a matrix.

• An intermediate data structure called a. a will itself be a linear fractional transformation.

• An output stream consisting of the digits of π.

Each step of the computation is a (recursive) call to the procedure action, which in turn calls one
of two procedures:

consume: Multiply a on the right by the first element of strm and make that the new a. Replace
strm by the stream you get when you remove its first element. (Of course, I really mean by
this that you make a recursive call to action, passing new values of a and strm as defined
here.)

produce: Extract the next decimal digit of π from a (and incorporate that digit in the output
stream), and multiply a on the left by a linear fractional transformation that reflects the fact
that it has “lost that value”.

(Actually, these procedures are so simple that they can just as well be inlined. But it’s convenient
to think of them this way.)

There are two open questions here, both having to do with produce:

• How do we know if we are allowed to take a digit from a—and how do we get that digit in
any case?

• How do we modify a when we do extract a digit from it?

Fortunately, we’re in good luck here because these transformations are really pretty simple. Here
are some important properties of this sequence of transformations—the first three are all easy to
prove:



8.2 A streaming algorithm that computes the digits of π 57

• Each fractional linear transformation in strm is a monotonic increasing map, and the same is
true for any finite product of these fractional linear transformations.

• Each fractional linear transformation in strm maps the interval [3, 4] into a sub-interval of [3, 4].
And again, the same is true for any finite product of those fractional linear transformations.

• Each fractional linear transformation in strm maps any interval into an interval of less than
half its length.

• As I mentioned before, in the computations above, we didn’t have to apply all the functions
to the number 2—we could have used any fixed number. (This is not obvious, but it’s true
because of the particular properties of the linear fractional transformations in strm. We’ll
prove it in the next section.) It will be convenient for us to use 3 instead of 2.

Now we know that π lies in the interval [3, 4]. So we start out by computing products of the first
elements of strm. We do this until we find a product transformation which maps 3 and 4 into
numbers that have the same integral part (that is, into numbers that have the same floor).

Actually, this happens immediately, by what we have said. So now we can take that value (which
must be 3) and make it the first element of the output stream. Then we have to adjust a to reflect
the fact that we have “taken away a 3”. We do this by multiplying a on the left by the matrix

(

10 −10 · 3
0 1

)

This just corresponds to multiplying by 10 and subtracting 30—in other words, we shift the decimal
expansion to the left 1 digit and delete the left-most digit, which is 3.

Now we proceed. We consume successive elements of strm until again a applied to 3 and a applied
to 4 yield numbers having the same floor. Note that now the floor is not guaranteed to be 3, because
a has been modified by multiplying it on the left, as above. Say the floor is n. We then produce,
passing n on to the output stream, and multiplying a on the left by the matrix

(

10 −10 · n
0 1

)

And that’s pretty much it. By the way, when I say “apply a to 3”, what I mean is “regard a as a
linear fractional transformation and apply it to 3”.

8.2.3 Proof that we always make progress

How do we know that in the algorithm a applied to 3 and a applied to 4 will always eventually have
the same floor? We’ll prove that now, and along with it, we’ll prove that numbers we get from this
algorithm converge to π no matter what number we start with.

The argument depends on two things: 1) the “contraction” property of these linear fractional
transformations in strm, and 2) the fact that π is irrational, or even more simply that it does not
have a terminating decimal expansion.

First, it is convenient to establish some notation:



58 8 STREAMING ALGORITHMS

• Let Tn = f1 ◦ f2 ◦ · · · fn. So Tn+1 = Tn ◦ fn+1.

• Let sn denote the nth result which we get from the computation starting from 3, and tn be
the nth result starting from 4. That is,

sn = Tn(3)

tn = Tn(4)

Now it is easy to see that if x ≤ 3, then f1(x) ≥ x and for k > 1, fk(x) > x. And similarly, if y ≥ 4,
then for all k ≥ 1, fk(y) < y. And since each transformation fk as well as each product of these
transformations, is a strictly increasing function, we have

sn+1 = Tn+1(3) = Tn

(

fn+1(3)
)

≥ Tn(3) = sn

tn+1 = Tn+1(4) = Tn

(

fn+1(4)
)

≤ Tn(4) = tn

In fact, let’s be a little more general: let s0 be any number ≤ 3 and t0 be any number ≥ 4, and set

sn = Tn(s0)

tn = Tn(t0)

Then just as above, we see that sn increases with n, and tn decreases with n. And further, as
we have seen, |tn+1 − sn+1| ≤ 1

2 |tn − sn|. So certainly sn and tn converge to the same number.
Further, if we start with s0 ≤ s′

0 ≤ t′0 ≤ t0 and produce sequences {sn}, {s′
n}, {t′n}, and {tn}, then

s′
n and t′n get squeezed in between sn and tn and therefore must have the same limit. And this is

even true if s0 and/or t0 is between 3 and 4. This verifies the claim made earlier: it doesn’t matter
what number we start with—the algorithm will converge to a unique value.

And actually, we know the value: we have already seen that starting with s0 = 2 we get a limit of
π (this was after all, just Euler’s transformation applied to Leibniz’s formula)

So our algorithm is guaranteed to produce sequences sn and tn approaching π from below and above,
respectively.

That’s almost the whole story. We just have to ensure that the decimal digits in sn and tn keep
agreeing on longer and longer intervals.

Now the only way this might not happen is if from some point on, sn and tn looked something like
this:

sn = x1.x2x3x4x5 . . . xp799999993524

tn = x1.x2x3x4x5 . . . xp800010325796

(Of course, we know that x1 = 3, x2 = 1, and so on. But that’s not important for this argument.)

In other words, all the digits up to xp agree, the next digit differs by 1, and sn continues with a
series of 9’s, while tn continues with some 0’s. And further, since sn and tn have to get closer and
closer together, the sequence of 9’s and the sequence of 0’s would have to get longer and longer as
n became greater.



59

But if this really was true, then both sn and tn would approach the number

x1.x2x3x4x5 . . . xp8

which is certainly a rational number. And we know that π is irrational. So this situation cannot
occur, and while we may have to wait awhile (in case something like this does happen for a number
of iterations), we will always make progress, just as we did in the multiplication algorithm. The
algorithm will continue to generate successive digits of π as long as it is kept running.

And further, assuming that the decimal expansion of π is not overwhelmed by long sequences of
9’s16, we can be assured also that our algorithm will spit out a digit roughly every 3 or 4 iterations,
since we are doubling the accuracy with every iteration.

9 Algorithmic efficiency

The Brent-Salamin algorithm, as we have seen, converges quadratically—each successive iteration
roughly doubles the number of significant digits. All the other algorithms we have considered
converge linearly—the number of significant digits is proportional to the number of iterations.

Of course, these are somewhat crude measures. For instance, we really should include in our
estimates the cost of an individual iteration. If the cost goes up rapidly enough, then a quadratically
converging algorithm might be swamped by the expense of the later iterations.

In our case, this does not happen—the arithmetic-geometric mean based algorithms are in fact
extremely efficient.

Really however, the best way to look at the efficiency of these algorithms is not in terms of the
“operational cost”, (i.e.., the number of operations needed to compute each successive digit), since
the cost of each operation may vary, and in fact typically increases as the algorithm progresses. The
real measure of cost is the “cost per bit”, or equivalently, the number of bit operations needed to
compute each successive digit. And there is a trivial lower bound here: it costs a small fixed amount
simply to output each digit, so the cost to output n digits cannot be smaller than O(n).

Now this may seem like a great disappointment when compared with the quadratic convergence
that we have seen in the Brent-Salamin algorithm. Nevertheless, it is really not bad at all. And in
fact, in terms of cost per bit, the Brent-Salamin algorithm is an n log n algorithm, and this is the
kind of algorithm we computer scientists have learned to love.

On the other hand, we can look more closely at the other algorithms and see if we have really got
the best estimate for their efficiency. In particular, let us look at the streaming algorithm of the last
section, which although it is nowhere near as efficient as the Brent-Salamin algorithm, does have
some inherent interest of its own.

There is no doubt that just in terms of operational cost, it is a linear algorithm—we know that
the interval getting squeezed contracts by a factor of about 1/2 each iteration, so between 3 and 4
iterations are needed for each additional decimal digit to be emitted.

But it’s actually more expensive than this would imply, because each iteration deals with larger and
larger numbers, which cost more and more to multiply, and so the cost of each iteration actually
increases. In fact, at each iteration we multiply by a 2 × 2 matrix whose greatest element is

16If π is normal, there will be arbitrarily long sequences of 9’s in its decimal expansion. But they will not “over-
whelm” the sequence of digits—they will be quite rare.



60 9 ALGORITHMIC EFFICIENCY

O
(

(Cn)!
)

, for some C. The number of digits in such a number is O
(

log(Cn)!
)

= O(n log n). So the

cost of the nth iteration is some constant times the cost of multiplying a number with n digits by a
number with n log n digits, and using the fastest way of multiplying integers currently known, this
is O(n log n log log n). So the cost certainly increases with n.

It then follows that the cost of computing the first n digits is O(n2 log n log logn). And as we’ve
noted, this compares pretty unfavorably with the cost of computing the first n digits using the
Brent-Salamin algorithm—i.e., O(n log n), which is strikingly better. On the other hand, this is a
streaming algorithm, which is really very nice. So we might ask the next question: How good can
a streaming algorithm be in principle? There are two versions of this question that come naturally
to mind, and we consider them in the next two sections.

We may as well assume that we have a streaming algorithm in which each iteration consists of a
fixed (or at any rate, bounded) number of computations and which takes a bounded number of
iterations to produce each successive digit (at least on average).17 Then the cost of each digit is
pretty much the same as the cost of each iteration.

9.1 Can the cost of each iteration be bounded?

No, it can’t. The reason for this is quite simple: if the cost of each iteration was bounded, then in
effect we would have a finite state machine: each iteration consists of a finite sequence of operations,
and if the cost of each iteration was bounded, the numbers being operated on would have to have a
bounded number of digits, so there could be only a finite number of states that the algorithm could
be in. It follows that the stream of digits that would be generated would have to be ultimately
periodic, which could only be true if π was rational, which it is not.

So certainly the cost per iteration cannot be bounded. On the other hand, we really don’t know how
slowly the cost has to increase. Perhaps, for instance, there is a streaming algorithm for the digits
of π in which the cost of each iteration is O(n) or even O(logn). I don’t know if this is possible or
not. And the argument I gave here is quite crude: I only used the fact that π was irrational. So
this argument applies to any irrational number, and π is of course a very special one.

There is another interesting question that comes up in this connection: if π really is a normal
number, then its digits could be used as a good pseudo-random number sequence. Now the most
commonly used algorithms for pseudo-random number generation provide each successive digit at
a fixed incremental cost. As we’ve just seen, this could only be the case if the generated sequence
was ultimately periodic, and in fact, these pseudo-random number sequences are periodic—usually
with extremely long periods. Since the modern algorithms for computing π are so extraordinarily
efficient, however, there has been some interest in seeing if the sequence of digits of π could be used
instead; we know a priori that this sequence, at least, is not periodic.

9.2 Can the cost of each iteration be bounded on average?

I don’t know the situation for π, but I do know that for some irrational numbers, the average cost
can indeed be bounded. Here are some examples:

17For what we’re doing here, it’s not worth reasoning about this in any greater generality.



9.2 Can the cost of each iteration be bounded on average? 61

Liouville numbers Consider the number

L =
∞
∑

n=1

2−n!

The cost of computing the first n! binary digits of this number is a (small) fixed cost for each
digit plus the cost of computing “where all the ones go”, i.e., the cost of computing all the
factorials up to n!, which can be very easily but crudely bounded by n2 log2 n. So the cost is
O(n! + n2 log2 n) = O(n!), and so the average cost of computing each of the first n! digits is
O(n!)/n! = O(1).

We called this number L because it is a Liouville number, and perhaps you are thinking that
this is a really exceptional case. For instance, it’s nowhere near a normal number—in fact,
the fraction of 1’s in the first n digits tends to 0 as n becomes large.

The Thue-Morse number Now of course any number for which we could get a result like this
must have some special property. But still, we can find numbers which look a lot more
“random” and still have an average fixed cost for computing each digit.

One such number is the Thue-Morse number (let us call it T ), whose binary expansion is

T = .0110100110010110 . . .

The simplest definition of this number is that its nth digit is the parity (i.e., the number of
ones mod 2) in the binary expansion of n. (Actually, this number isn’t normal either18, but it
certainly appears to be a lot more regular than L.)

Now to compute the nth digit of T , we need to compute the parity of n. To compute this from
scratch, we need to know all the digits of n, and there are logn of them. So just to do this
naively would require a cost of

n
∑

j=1

log j = logn! ≈ n log n

for the first n digits.

However, we can do better. Let us use two data structures, which hold at the end of iteration
j − 1

• The last parity computed, i.e., the parity of the binary representation of j − 1.

• The binary representation of j − 1.

At the jth step we compute the binary representation of j. As we do this, we keep track of
whether or not the parity of j changed from that of j − 1, and we use that to decide whether
or not to toggle the first bit of data.

Now how expensive is this? It’s less expensive than you might think. For instance, suppose
that the binary representation of j − 1 is

j − 1 = 1101000110111

18For instance, as Thue already showed around 1906, it doesn’t contain the strings 000 or 111.



62 REFERENCES

Then to compute the binary representation of j, we just add 1 in the usual way, starting from
the right. And it’s easy to see that to do this, we just have to replace the rightmost string of
the form 01∗ by a string 10∗ of equal length19. And in doing this, we also know whether the
parity changed or not. In the example here, the parity does not change, because 1000 has the
same parity as 0111.

The reason that this is cheap on the average is that most of the time we don’t have to inspect
every digit in j − 1. In fact, half the numbers end in 0 to begin with, so we only have to
inspect 1 digit. Half of the rest end in 01, so we only have to inspect 2 digits. And we see
that in general, the average number of digits we need to inspect is no more than

1
2

· 1 +
1
4

· 2 +
1
8

· 3 + · · · =
∞
∑

j=0

1
2j

· j

and it’s not hard to see that this entire series converges. That is, the average cost per iteration
is bounded, even though the individual cost of each iteration is not—there will be some values
of j for which we need to inspect all the digits in their binary representation. But there won’t
be many of them.

Champernowne’s number Finally, let us consider Champernowne’s number

C = .012345678910111213141516 . . .

where the decimal expansion is produced by concatenating the decimal representations of the
integers starting from 0. This number is known to be normal (at least in base 10).

How easy is it to compute? Well, if we have used all the integers up to n, then we have gen-
erated roughly

∑n
j=1 log j = logn! ∼ n log n decimal places. Further, the average incremental

cost of computing each successive number is bounded (by the same argument as above). Hence
(roughly speaking) the cost of computing n log n digits is O(n log n+n) = O(n log n), so again
the average cost of computing each successive digit is bounded.

Of course, none of this tells us what the cost is for π. No one at this point knows enough about any
special properties of π that would help us answer this kind of question.

References

Akhiezer, N. I. (Naum Il’ich). 1990. Elements of the Theory of Elliptic Functions, Translation of Mathematical

Monographs, Vol. 79, American Mathematical Society, Providence, RI. [QA343.A3813].

Almkvist, Gert and Bruce Berndt. 1988. Gauss, Landen, Ramanujan, the Arithmetic-Geometric Mean, Ellipses, pi,

and the Ladies Diary, American Mathematical Monthly 95, no. 7, 585–608.

Bailey, David H. 1988. The Computation of π to 29,360,000 Decimal Digits Using Borweins’ Quartically Convergent

Algorithm, Mathematics of Computation 50, no. 181, 283–296.

Berggren, Lennart, Peter B. Borwein, and Jonathan M. Borwein. 2000. Pi: a Source Book, 2nd edition, Springer-

Verlag, New York. [QA484.P5 2000].

Borwein, Jonathan M. and Peter B. Borwein. 1984. The Arithemetic-Geometric Mean and Fast Computation of

Elementary Functions, SIAM Review 26, no. 3, 351–366. Reprinted in Berggren et al., Pi, a Source Book.

19I’m using regular expression notation here, of course.



REFERENCES 63

. 1987. Pi and the AGM: a study in analytic number theory and computational complexity, Wiley, New York.

[QA241.B774 1987].

Borwein, Jonathan M., Peter B. Borwein, and David H. Bailey. 1989. Ramanujan, Modular Equations, and Approx-

imations to Pi or How to Compute One Billion Digits of Pi, American Mathematical Monthly 96, no. 3, 201–219.

Reprinted in Berggren et al., Pi, a Source Book.

Brent, Richard P. 1976. Fast Multiple-Precision Evaluation of Elementary Functions, Journal of the Association of

Computing Machinery 23, no. 2, 242–251. Reprinted in Berggren et al., Pi, a Source Book.

Cayley, Arthur. 1895. An Elementary Treatise on Elliptic Functions, 2nd edition, Cambridge University Press,

Cambridge (England). [QA343.C38].

Cohen, Henri, Fernando Rodrigues Villegas, and Don Zagier. 2000. Convergence Acceleration of Alternating Series,

Experimental Mathematics 9, no. 1, 3–12.

Cox, David A. 1984. The Arithmetic-Geometric Mean of Gauss, L’Enseignement Mathématique 30, 275–330.

Reprinted in Berggren et al., Pi, a Source Book.

Gauss, Carl Friedrich. 1800. De Origine Proprietatibusque Generalibus Numerorum Mediorum Arithm. Geometri-

corum. Manuscript, unpublished during Gauss’s lifetime. Werke, Vol. 3, 361–371.

. 1863. Carl Friedrich Gauss Werke, Königlichen Gesellschaft der Wissenschaften zu Göttingen, Göttingen.

[QA3.G3].

Gibbons, Jeremy. 2006. Unbounded Spigot Algorithms for the Digits of Pi, American Mathematical Monthly 113,
no. 4, 318–328.

Hilbert, David and S. Cohn-Vossen. 1999. Geometry and the Imagination, 2nd edition, American Mathematical So-

ciety, Providence, Rhode Island. Translated from the German Anschauliche Geometrie by P. Nemenyi and originally

published in English by Chelsea Publishing. [QA685.H515 1999].

Lawden, Derek F. 1989. Elliptic Functions and Applications, Springer-Verlag, New York-Berlin-Heidelberg.

[QA343.L39].

Newman, Donald J. 1985. A Simplified Version of the Fast Algorithms of Brent and Salamin, Mathematics of

Computation 44, no. 169, 207–210. Reprinted in Berggren et al., Pi, a Source Book.

Roy, Ranjan. 1990. The Discovery of the Series Formula for π by Leibniz, Gregory and Nilakantha, Mathematics

Magazine 63, 291–306. Reprinted in Berggren et al., Pi, a Source Book.

Salamin, Eugene. 1976. Computation of π Using Arithmetic-Geometric Mean, Mathematics of Computation 30,

no. 135, 565–570. Reprinted in Berggren et al., Pi, a Source Book.

Wagon, Stan. 1985. Is π Normal?, The Mathematical Intelligencer 7, no. 3, 65–67. Reprinted in Berggren et al., Pi,

a Source Book.

Whittaker, E. T. and G. N. Watson. 1927. A Course of Modern Analysis, 4th edition, Cambridge University Press,

Cambridge (England). [QA401.W624].


