

Star Schema Benchmark
Revision 3, June 5, 2009

Pat O'Neil, Betty O'Neil, Xuedong Chen
{poneil, eoneil, xuedchen}@cs.umb.edu

UMass/Boston

1. Star Schema Based on TPC-H
This section provides an explanation of design deci-
sions made in creating the Star Schema benchmark or
SSB. The SSB is designed to measure performance of
database products in support of classical data ware-
housing applications, and is based on the TPC-H
benchmark [TPC-H], modified in a number of ways
explained in this section.

Here are a few ground rules. First, the columns in the
SSB tables can be compressed by whatever means
available in the database system used, as long as re-
ported data retrieved by queries has the values specified
in our schemas: e.g., we report values: Monday, Tues-
day, ..., Sunday, rather than 1, 2,..., 7. Second, the au-
thors are not attempting to make this benchmark bullet-
proof by listing illegal tuning approaches. However,
any product capability used in one product database de-
sign to improve performance must be matched in the
database design for other products by an attempt to use
the same type of capability, assuming such a capability
exists and improves performance.

In outline, here are some of the schema changes we use
to change the Normalized TPC-H schema (see Figure
1.1) to the efficient star schema form of SSB (see Fig-
ure 1.2). Many reasons for these changes are taken
from [Kimball], q.v. More detailed explanations of
changes will be provided in Section 2.

1. We combine the TPC-H LINEITEM and ORDERS
tables into one sales fact table that we name
LINEORDER. This denormalization is standard in wa-
rehousing, as explained in [Kimball], pg. 121, and
makes many joins unnecessary in common queries.

2. We drop the PARTSUPP table since it would belong
to a different data mart than the ORDERS and
LINEITEM information. This is because PARTSUPP
has different temporal granularity, as explained in Sec-
tion 2.1.

3. We drop the comment attribute of a LINEITEM (27
chars), the comment for an order (49 chars), and the
shipping instructions for a LINEITEM (25 chars), be-
cause a warehouse does not store such information in a
fact table (they can’t be aggregated, and take signifi-
cant storage). See [Kimball], pg. 18. Note this change
tends

PARTKEY

 PART (P_)
SF*200,000

NAME

MFGR

BRAND

TYPE

SIZE

CONTAINER

RETAILPRICE

COMMENT

SUPPLIER (S_)
 SF*10,000
SUPPKEY

NAME

ADDRESS

NATIONKEY

PHONE

ACCTBAL

COMMENT

PARTSUPP (PS_)
 SF*800,000

PARTKEY

SUPPKEY

AVAILQTY

SUPPLYCOST

COMMENT

CUSTOMER (C_)
 SF*150,000
CUSTKEY

NAME

ADDRESS

NATIONKEY

PHONE

ACCTBAL

MKTSEGMENT

COMMENT

CUSTKEY

NAME

NAMECOMMENT

COMMENT

COMMENT

COMMENT

NATIONKEY

NATION (N_)
 25

REGIONKEY
REGIONKEY

LINEITEM (L_)
SF*6,000,000
ORDERKEY

LINENUMBER

QUANTITY

EXTENDED-
PRICE

DISCOUNT

TAX

RETURNFLAG

LINESTATUS

SHIPDATE

COMMITDATE

RECEIPTDATE

SHIPINSTRUCT

SHIPMODE

PARTKEY

SUPPKEY

REGION (R_)
 5

ORDERKEY

 ORDERS (O_)
SF*1,500,000

ORDERSTATUS

TOTALPRICE

ORDERDATE

ORDER-
PRIORITY

CLERK

SHIP-
PRIORITY

Figure 1.1 TPC-H Schema

EXTENDEDPRICE

LINEORDER (LO_)
 SF*6,000 ,000
ORDERKEY

LINENUMBER

CUSTKEY

PARTKEY

SUPPKEY

ORDERDATE

ORDPRIORITY

SHIPPRIORITY

QUANTITY

ORDTOTALPRICE

REVENUE

TAX

COMMITDATE

SHIPMODE

 PART (P_)
200,000*[1+log2 SF]

PARTKEY

NAME

MFGR

CATEGORY

BRAND1

COLOR

TYPE

SIZE

CONTAINER

CUSTOMER (C_)
 SF*30,000
CUSTKEY

NAME

ADDRESS

CITY

NATION

REGION

PHONE

MKTSEGMENT

SUPPLIER (S_)
 SF*2,000
SUPPKEY

NAME

ADDRESS

CITY

NATION

REGION

PHONE

 DATE (D_)
7 Years of Days

DATEKEY
DATE
DAYOFWEEK
MONTH
YEAR
YEARMONTHNUM

YEARMONTH
DAYNUMINWEEK

DAYNUMINMONTH

DAYNUMINYEAR

MONTHNUMINYEAR
WEEKNUMINYEAR
SELLINGSEASON
LASTDAYINMONTHFL
HOLIDAYFL

WEEKDAYFL

DISCOUNT

SUPPLYCOST

Figure 1.2 SSB Schema

-1-

to favor row stores, but is appropriate based on ware-
house design principles.

6. We add the DATE dimension table, as is standard
for a warehouse on sales.

The result of the table simplifications is a proper star
schema data mart, with LINEORDER as a central fact
table and dimension tables for customer, part, supplier,
and date. A series of tables for shipdate, receiptdate,
and returnflag, as mentioned in point 5, above could al-
so be constructed, but would result in too complicated a
schema for our simple star schema benchmark.

As regards queries we support in SSBM, we concen-
trate on queries that select from the LINEORDER table
exactly once (no self-joins or subqueries or table que-
ries also involving LINEORDER). The classic ware-
house query selects from the fact table with restrictions
on the dimension table attributes. We also support que-
ries that appear in TPC-H and restrict on fact table
attributes. We depart from the TPC-H query format for
a number of reasons, most commonly to make an at-
tempt to provide the Functional Coverage and Selectiv-
ity Coverage features explained in [SETQ].

Functional Coverage. The benchmark queries are cho-
sen as much as possible to span the tasks performed by
an important set of Star Schema queries, so that pros-
pective users can derive a performance rating from the
weighted subset they expect to use in practice.

It is difficult to provide true functional coverage with a
small number of queries, but we at least try to provide
queries that have 1, 2, 3, and 4 dimensional restrictions.

Selectivity Coverage. The idea here is that the total
number of fact table rows retrieved will be determined
by the selectivity (i.e., total Filter Factor FF) of restric-
tions on dimensions. We wish to vary this selectivity
from queries where a lot of fact table rows are retrieved
(though the data reported out is normally aggregated) to
queries where a relatively small number of rows are re-
trieved.

The SSBM Queries are specified in Section 3.1, and a
short analysis showing how multiple sort-orders for
LINEORDER will make for efficient queries is pro-
vided in Section 3.1.

One other issue arises in running the Star Schema
Benchmark queries, and that is the caching effect that
reduces the number of disk accesses necessary when
query Q2 follows query Q1, because of overlap of data
accessed between Q1 and Q2. The approach we will try
to take is to minimize this overlap. In situations where
this cannot be done, if such arise, we will take whatever
steps are needed to reduce caching effects of one query
on another.

Reporting requirements for SSBM are covered in Sec-
tion 5: we will want to report lots of things: query
plans, numbers of rows accessed, CPU time in queries,
disk I/O, etc.

2. Detail on SSB Format
In this section, we will specify the schemas of the vari-
ous tables to be used in the Star Schema. Note that in
Appendix A, we provide a listing of the original TPC-
H tables on which the definitions that follow are based.

2.1 We drop the PARTSUPP table

Here is an argument why this is appropriate, based on
principles in [KIMBALL]. The problem is that the
LINEITEM and ORDERS tables (combined in SSBM
to make a LINEORDER table) have the finest Transac-
tion Level temporal grain, while the PARTSUPP table
has a Periodic Snapshot grain. This means that transac-
tions that add new rows over time to LINEORDER do
not modify rows in PARTSUPP, which is frozen in
time (presumably at the CURRENT date).

This would be fine if PARTSUPP and LINEORDER
were treated as SEPARATE FACT TABLES (i.e., sep-
arate Data Marts in terms of Kimball), queried sepa-
rately and not joined together. This is done in all but
one of the Queries where PARTSUPP is in the
WHERE clause: Q1, Q11, Q16 and Q20, but not in Q9,
where PARTSUPP, ORDERS, and LINEITEM all ap-
pear. Query Q9 is intended to find, for each nation and
year, the profits for certain parts ordered that year.
Profit is calculated as sum of [(l_extendedprice*(1 -
l_discount) - (ps_supplycost*l_quantity)], and the sum
is grouped by the o_orderdate for the LINEITEM col-
umns and the s_nationkey for the part supplied to the
order by the PARTSUPP table.

The problem, of course, is that it is beyond the bounds
of reason that the ps_supplycost would have remained
constant during all these past years. This difference in
grain between PARTSUPP and LINEORDER is what
causes the problem.

The presence of a Snapshot PARTSUPP table in this
design seems suspicious anyway, as if placed there to
require a non-trivial normalized join schema; it is very
much what we would expect in an update transactional
design, where in adding an order LINEITEM for some
part, we would access PARTSUPP to find the minimal
cost supplier, perhaps in some restricted region, and
would then correct ps_availqty after filling the order. In
the TPC-H benchmark, however, ps_availqty is never
updated, not even during the Refresh that inserts new
ORDERS. In a Star Schema data warehouse, it's more
reasonable to leave out the PARTSUPP table, and
create a column supplycost for each LINEORDER Fact
row to answer such questions. A data warehouse, of

-2-

course, contains derived data only, so there is no reason
to normalize to guarantee one fact in one place -- the
next order for the same part and supplier might repeat
this price, and if we delete the last part of some kind we
might lose the price charged, but that's fine since we're
trying to simplify queries. In fact, we add the lo_profit
column to the LINEORDER table to simplify calcula-
tions of this type even further. In general, there are a
number of modifications.

See Appendix A for listing of Original TPC-H Table
Layouts. Note that all tables in TPC-H and SSB scale
from a given size at Scale Factor 1 (SF = 1) to 10
times as large (for example) at SF = 10. Typically
tables have cardinalities that are multiples of SF (but
see the Part table, Section 2.3 in what follows).

2.2 Layout of LINEORDER Fact table.

We combine the LINEITEM and ORDERS tables into
one sales fact table that we name LINEORDER. This
denormalization is standard in warehousing, as ex-
plained in [Kimball], pg. 121, and makes many joins
unnecessary in common queries. Columns are classi-
fied as identifiers (any datatype but unique values for
what it is identifying), text (fixed or variable length),
and numeric (whole numbers, not floating point.) Nu-
meric identifiers must have unique values and have
numeric interpretations which provide unique numbers.
Text is in 8-bit ASCII. For numeric columns, the
needed range of numbers is indicated.

LINEORDER Table Layout SF*6,000,000
LO_ORDERKEY numeric (int up to SF 300) first 8 of
each 32 keys populated
LO_LINENUMBER numeric 1-7
LO_CUSTKEY numeric identifier FK to C_CUSTKEY
LO_PARTKEY identifier FK to P_PARTKEY
LO_SUPPKEY numeric identifier FK to S_SUPPKEY
LO_ORDERDATE identifier FK to D_DATEKEY
LO_ORDERPRIORITY fixed text, size 15 (See pg 91:
5 Priorities: 1-URGENT, etc.)
LO_SHIPPRIORITY fixed text, size 1
LO_QUANTITY numeric 1-50 (for PART)
LO_EXTENDEDPRICE numeric ≤ 55,450 (for PART)
LO_ORDTOTALPRICE numeric ≤ 388,000 (ORDER)
LO_DISCOUNT numeric 0-10 (for PART, percent)
LO_REVENUE numeric (for PART:
(lo_extendedprice*(100-lo_discnt))/100)
LO_SUPPLYCOST numeric (for PART)
LO_TAX numeric 0-8 (for PART)
LO_COMMITDATE FK to D_DATEKEY
LO_SHIPMODE fixed text, size 10 (See pg. 91: 7
Modes: REG AIR, AIR, etc.)
Compound Primary Key: LO_ORDERKEY,
LO_LINENUMBER

NOTES. (a) We drop all columns in ORDERS and
LINEITEMS that make us wait to insert a Fact row af-
ter an order is placed on ORDERDATE, For example,
we don't want to wait until we know when the order is
shipped, when it is received, and whether it is returned
before we can query the existence of an order: see pg
96 and 97 of the TPC-H Specification. Thus we drop
L_RETURNFLAG, L_LINESTATUS, L_SHIPDATE,
L_RECEIPTDATE, and O_ORDERSTATUS. We
keep L_COMMITDATE since that is the delivery date
promised to the customer at ship time. (b) We drop
O_COMMENT (text string [49]), L_COMMENT (text
string[27]), and L_SHIPINSTRUCT (text string [25]),
since data warehouse queries typically do not parse
comments and cannot aggregate them; similarly we
drop LO_CLERK (text string[15]); columns such as
these are only useful in an operational venue, though
some abstraction of this information might well be
made available in a data warehouse in a form where a
query can return quantitative results. (c) We also add
LO_SUPPLYCOST for PART,
LO_ORDSUPPLYCOST summing for ORDERS, and
bring over O_TOTALPRICE as
LO_ORDTOTALPRICE.

2.3 Layout of Part Dimension Table. New cardinality
growth relative to SF (logarithmic)

PART Table Layout 200,000*floor(1+log2SF)
P_PARTKEY identifier
P_NAME variable text, size 22 (Not unique)
P_MFGR fixed text, size 6 (MFGR#1-5, CARD = 5)
P_CATEGORY fixed text, size 7 ('MFGR#'||1-5||1-5:
CARD = 25)
P_BRAND1 fixed text, size 9 (P_CATEGORY||1-40:
CARD = 1000)
P_COLOR variable text, size 11 (CARD = 94)
P_TYPE variable text, size 25 (CARD = 150)
P_SIZE numeric 1-50 (CARD = 50)
P_CONTAINER fixed text, size 10 (CARD = 40)
Primary Key: P_PARTKEY

NOTES. (a) P_NAME is as long as 55 bytes in TPC-H,
which is unreasonably large. We reduce it to 22 by li-
miting to a concatenation of two colors (see [TPC-H],
pg 94). We also add a new column named P_COLOR
that could be used in queries where currently a color
must be chosen by substring from P_NAME. (b)
P_MFGR is fixed text, size 25 in TPC-D; we change
the values to ["MFGR",M], where M = random value
[1,5], e.g.: "MFGR#2", a total of 6 characters. (c) We
add a new column P_CATEGORY as a division of
P_MFGR (to take the place of P_BRAND in [TPC-H],
which has 25 values, an unreasonably small number of
brands; we add a new column P_BRAND1, a division
of P_CATEGORY (see [KIMBALL], pg 21, paragraph
3: P_CATEGORY might be 'Paper Products' and

-3-

P_BRAND1 is a true Brand such as 'Snap-On'). (d) We
drop P_RETAILPRICE (this is likely to change too
frequently to be in a dimension; the part price is better
determined for an order many days old as
LO_EXTENDEDPRICE/LO_QUANTITY. (e) We
drop P_COMMENT; as with O_COMMENT, we have
no use for an unparsed comment in a data warehouse
query. (f) While PARTS (or PRODUCTS) typically
form a large dimension, they do not grow so fast that
they remain in the ratio 2/15 to the number of rows in a
large ORDERS table (as they would with SF*200,000
rows). Thus we change the scaling factor to
200,000*floor(1+log2SF). There will be 200,000 parts
for 6,000,000 LINEORDER rows (SF =1), jumping to
400,000 parts when there are 12,000,000 LINEORDER
rows (SF = 2), to 600,000 parts when there are
24,000,000 LINEORDER rows (SF = 4), and so on.
Note that sublinear scaling is also a feature of the
planned benchmark presented in [TPC-DS].

2.4 Layout of Supplier Dimension Table.

SUPPLIER Table Layout (SF*2,000 are populated):
S_SUPPKEY numeric identifier
S_NAME fixed text, size 25: 'Supplier'||S_SUPPKEY
S_ADDRESS variable text, size 25 (city below)
S_CITY fixed text, size 10 (10/nation:
S_NATION_PREFIX||(0-9)
S_NATION fixed text, size 15 (25 values, longest
UNITED KINGDOM)
S_REGION fixed text, size 12 (5 values: longest
MIDDLE EAST)
S_PHONE fixed text, size 15 (many values, format: 43-
617-354-1222)
Primary Key: S_SUPPKEY

NOTES. (a) We reduce the number of suppliers so as to
not have too many suppliers per customer. (b) The
S_CITY column is created using the first 9 characters
of the S_NATION (blank extended if there are fewer
than 9) followed by a digit 0-9. This column is added
because there is no other column that can be restricted
to result in a reasonably small filter factor, an unnatural
situation in real applications.

2.5 Layout of Customer Dimension Table.

CUSTOMER Table Layout (SF*30,000 are populated)
C_CUSTKEY numeric identifier
C_NAME variable text, size 25
'Cutomer'||C_CUSTKEY
C_ADDRESS variable text, size 25 (city below)
C_CITY fixed text, size 10 (10/nation:
C_NATION_PREFIX||(0-9)
C_NATION fixed text, size 15 (25 values, longest
UNITED KINGDOM)

C_REGION fixed text, size 12 (5 values: longest
MIDDLE EAST)
C_PHONE fixed text, size 15 (many values, format:
43-617-354-1222)
C_MKTSEGMENT fixed text, size 10 (longest is
AUTOMOBILE)
Primary Key: C_CUSTKEY

NOTES. (a) We drop C_ACCTBAL, which does not
match the grain of LINEORDER. (b) With SF*150,000
customers and 1,500,000 orders, this means we expect
the average customer to place 10 orders in 7 years, an
unreasonably small number. We change the number of
customers to SF*30,000, or 50 orders in 7 years, about
7 orders a year.

2.6 Layout of (NEW) Date Dimension Table.

DATE Table Layout (7 years of days)
D_DATEKEY identifier, unique id -- e.g. 19980327
(what we use)
D_DATE fixed text, size 18: e.g. December 22, 1998
D_DAYOFWEEK fixed text, size 8, Sunday..Saturday
D_MONTH fixed text, size 9: January, ..., December
D_YEAR unique value 1992-1998
D_YEARMONTHNUM numeric (YYYYMM)
D_YEARMONTH fixed text, size 7: (e.g.: Mar1998
D_DAYNUMINWEEK numeric 1-7
D_DAYNUMINMONTH numeric 1-31
D_DAYNUMINYEAR numeric 1-366
D_MONTHNUMINYEAR numeric 1-12
D_WEEKNUMINYEAR numeric 1-53
D_SELLINGSEASON text, size 12 (e.g.: Christmas)
D_LASTDAYINWEEKFL 1 bit
D_LASTDAYINMONTHFL 1 bit
D_HOLIDAYFL 1 bit
D_WEEKDAYFL 1 bit
Primary Key: D_DATEKEY

NOTES.(a) For source of Date columns, see [Kimball]
page 39. We leave out Fiscal dates. (b) Note that we
keep the DATE dimension in order by date.

3. Benchmark Queries
As in the Set Query Benchmark [O'NEIL93], we strive
in this benchmark to provide functional coverage (dif-
ferent common types of Star Schema queries) and Se-
lectivity Coverage (varying fractions of the LINEITEM
table that must be accessed to answer the queries). We
only have a small number of flights to use to provide
such coverage, but we do our best. Some model queries
will be based on the TPC-H query set, but we need to
modify these queries to vary the selectivity, resulting in
what we call a Query Flight below. Other queries that
we feel are needed will have no counterpart in TPC-H.

-4-

In Section 3.1, we provide the definitions of queries we
propose to use in SSBM. Section 3.1 provides a bit of
analysis of the benchmark, including an indication of
multiple sortorders for LINEITEM that will provide
best efficiency.

3.1 Query Definitions

Many queries in TPC-H will not translate into our
schema. For example, TPCQ1 requires knowledge of
all items shipped as of a given date and whether these
items were returned. We have decided that our
LINEORDER table will only have ordering informa-
tion, and that other data marts would be needed for
shipping, receipt, and return information (see
[KIMBALL], pg. 94). Similarly, TPCQ2 asks for the
minimum cost supplier for parts in various regions,
which requires the PARTSUPP table (assuming it's up-
to-date). TPCQ3 requires knowledge that an order is
unshipped, TPCQ4 requires knowledge of receipt date
by customer. And so on. Only a few queries from TPC-
H can be implemented on our SSBM scheme with mi-
nimal modification.

Here are the (Draft) query flights we propose.

Q1. We want to start with a query flight having restric-
tions on only one dimension. We base Q1 on TPC-H
query TPCQ6, which has rather unusual restrictions on
the Fact table as well; however the rationale for these
Fact table restrictions seems reasonable. The query is
meant to quantify the amount of revenue increase that
would have resulted from eliminating certain company-
wide discounts in a given percentage range for products
shipped in a given year. This is a "what if" query to
find possible revenue increases. Since our lineorder ta-
ble doesn't list shipdate, we will replace shipdate by or-
derdate in the flight.

Q1 select sum(lo_extendedprice*lo_discount) as reve-
nue
 from lineorder, date
 where lo_orderdate = d_datekey
 and d_year = [YEAR] -- Specific values below
 and lo_discount between [DISCOUNT] - 1
 and [DISCOUNT] + 1 and lo_quantity <
 [QUANTITY];

In TPC-H: d_year = [YEAR], random year in
[1993..1997] FF = 1/7, lo_quantity < [QUANTITY] a
random quantity in [24..25], FF ≈ 47/100, lo_discount
value [DISCOUNT] random [2..9], FF = 3/11

In our Q1 Query flight we will restrict lo_quantity, not
just to the lower half of the range, but to different
ranges with different filter factors. Query flight Q1 has
three queries.

Q1.1 YEAR = 1993, DISCOUNT = 2, QUANTITY =
25, so predicates are d_year = 1993, lo_quantity < 25,
lo_discount between 1 and 3.

select sum(lo_extendedprice*lo_discount) as revenue
 from lineorder, date
 where lo_orderdate = d_datekey
 and d_year = 1993
 and lo_discount between1 and 3
 and lo_quantity < 25;

FF = (1/7)*0.5*(3/11) = 0.0194805. Number of li-
neorder rows selected, for SF = 1, is
0.0194805*6,000,000 ≈ 116,883.

Q1.2 d_yearmonthnum = 199401, lo_quantity between
26 and 35, lo_discount between 4 and 6.

select sum(lo_extendedprice*lo_discount) as revenue
 from lineorder, date
 where lo_orderdate = d_datekey
 and d_yearmonthnum = 199401
 and lo_discount between4 and 6
 and lo_quantity between 26 and 35;

FF = (1/84)*(3/11)*0.2 = 0.00064935. Number of li-
neorder rows selected, for SF = 1:
0.00064935*6,000,000 ≈ 3896.

Q1.3 d_weeknuminyear = 6 and d_year = 1994,
lo_quantity between 36 and 40, lo_discount between 5
and 7.

select sum(lo_extendedprice*lo_discount) as revenue
 from lineorder, date
 where lo_orderdate = d_datekey
 and d_weeknuminyear = 6
 and d_year = 1994
 and lo_discount between 5 and 7
 and lo_quantity between 26 and 35;

FF = (1/364)*(3/11)*0.1 = .000075. Number of li-
neorder rows selected, for SF = 1, is
.000075*6,000,000 ≈ 450.

NOTE that each of the selections of these three queries
is disjoint in lineorder and even in restrictions on col-
umns, so there should be no overlap where caching
might make results vary from cold access.

Q2. For a second query flight, we want a query type
with restrictions on two dimensions. Our query will
compare revenue for some product classes, for suppli-
ers in a certain region, grouped by more restrictive
product classes and all years of orders; since TPC-H
has no query of this description, we add it here.

-5-

Q2.1: p_category = 'MFGR#12', s_region =
'AMERICA'

select sum(lo_revenue), d_year, p_brand1
from lineorder, date, part, supplier

 where lo_orderdate = d_datekey
 and lo_partkey = p_partkey
 and lo_suppkey = s_suppkey
 and p_category = 'MFGR#12'
 and s_region = 'AMERICA'
 group by d_year, p_brand1
 order by d_year, p_brand1;

p_category = 'MFGR#12', FF = 1/25; s_region, FF=1/5.
So LINEORDER FF = (1/25)*(1/5) = 1/125. Number
of lineorder rows selected, for SF = 1, is
(1/125)*6,000,000 ≈ 48,000

Q2.2 Change p_category = 'MFGR#12' to p_brand1 be-
tween 'MFGR#2221' and 'MFGR#2228' and s_region to
'ASIA'.

select sum(lo_revenue), d_year, p_brand1
 from lineorder, date, part, supplier
 where lo_orderdate = d_datekey
 and lo_partkey = p_partkey
 and lo_suppkey = s_suppkey
 and p_brand1 between
 'MFGR#2221' and 'MFGR#2228'
 and s_region = 'ASIA'
 group by d_year, p_brand1
 order by d_year, p_brand1;

So lineorder FF = (1/125)*(1/5) = 1/625. Number of li-
neorder rows selected, for SF = 1, is (1/625)*6,000,000
≈ 9600.

Q2.3 Change p_category = 'MFGR#12' to p_brand1 =
'MFGR#2339' and s_region = 'EUROPE'.

select sum(lo_revenue), d_year, p_brand1
 from lineorder, date, part, supplier
 where lo_orderdate = d_datekey
 and lo_partkey = p_partkey
 and lo_suppkey = s_suppkey
 and p_brand1 = 'MFGR#2221'
 and s_region = 'EUROPE'
 group by d_year, p_brand1
 order by d_year, p_brand1;

So lineorder FF = (1/1000)*(1/5) = 1/5000. Number of
lineorder rows selected, for SF = 1, is
(1/5000)*6,000,000 ≈ 1200. One of the Group By
clauses has only one value.

NOTE again, each of the selections of these four que-
ries is disjoint in lineorder and even in restrictions on

columns among themselves and also with flight Q1, so
there should be no overlap where caching might make
results vary from cold access.

Q3. In our third query flight, we want to place restric-
tions on three dimensions, including the remaining di-
mension, customer. We base our query on TPCQ5. The
query is intended to provide revenue volume for li-
neorder transactions by customer nation and supplier
nation and year within a given region, in a certain time
period.

Q3 select c_nation, s_nation, d_year, sum(lo_revenue)
as revenue from customer, lineorder, supplier, date
 where lo_custkey = c_custkey
 and lo_suppkey = s_suppkey
 and lo_orderdate = d_datekey
 and c_region = 'ASIA' and s_region = 'ASIA'
 and d_year >= 1992 and d_year <= 1997
 group by c_nation, s_nation, d_year
 order by d_year asc, revenue desc;

Q3.1 Q3 as written: c_region = 'ASIA' so FF = 1/5 for
customer, FF = 1/5 for supplier, and 6-year period FF =
6/7 for d_year; Thus LINEORDER FF =
(1/5)*(1/5)*(6/7) = 6/175 and the number of lineorder
rows selected, for SF = 1, is (6/175)*6,000,000 ≈
205,714.

Q3.2 Change restriction to a certain nation, and within
that nation, revenue by customer city and supplier city,
and year.

select c_city, s_city, d_year, sum(lo_revenue) as reve-
nue from customer, lineorder, supplier, date
 where lo_custkey = c_custkey
 and lo_suppkey = s_suppkey
 and lo_orderdate = d_datekey
 and c_nation = 'UNITED STATES'
 and s_nation = 'UNITED STATES'
 and d_year >= 1992 and d_year <= 1997
 group by c_city, s_city, d_year
 order by d_year asc, revenue desc;

Here the c_nation and s_nation restriction has FF =
(1/25); so lineorder FF is (1/25)*(1/25)*(6/7) = 6/4375.
The number of lineorder rows selected, for SF = 1, is
(6/4375)*6,000,000 ≈ 8,228.

Q3.3 Change restriction to two cities in 'UNITED
KINGDOM'; retrieve c_city and group by c_city.

select c_city, s_city, d_year, sum(lo_revenue) as reve-
nue from customer, lineorder, supplier, date
 where lo_custkey = c_custkey
 and lo_suppkey = s_suppkey
 and lo_orderdate = d_datekey
 and (c_city='UNITED KI1'
 or c_city='UNITED KI5')

-6-

 and (s_city='UNITED KI1'
 or s_city=’UNITED KI5')
 and d_year >= 1992 and d_year <= 1997
 group by c_city, s_city, d_year
 order by d_year asc, revenue desc;

Here the c_nation and s_nation restriction has FF =
(2/10)(1/25)= 1/125; so lineorder FF is
(1/125)*(1/125)*(6/7) = 6/109375. The number of li-
neorder rows selected, for SF = 1, is
(6/109375)*6,000,000 ≈ 329.

Q 3.4 Drill down in time to just one month, to create a
“needle-in-haystack” query.

select c_city, s_city, d_year, sum(lo_revenue) as reve-
nue from customer, lineorder, supplier, date
 where lo_custkey = c_custkey
 and lo_suppkey = s_suppkey
 and lo_orderdate = d_datekey
 and (c_city='UNITED KI1' or
 c_city='UNITED KI5')
 and (s_city='UNITED KI1' or
 s_city='UNITED KI5')
 and d_yearmonth = 'Dec1997'
 group by c_city, s_city, d_year
 order by d_year asc, revenue desc;
so lineorder FF is (1/125)*(1/125)*(1/84) =
1/1,312,500. The number of lineorder rows selected,
for SF = 1, is (1/1,312,500)*6,000,000 ≈ 5.

NOTE again, each of the selections of these queries is
disjoint in lineorder and also with flights Q1 and Q2,
except for Q3.4 vs. Q 3.3, so there should be no over-
lap where caching might make results vary from cold
access, except for Q3.4.

Q4. The following query flight represents a "What-If"
sequence, of the OLAP type. We start with a group by
on two dimensions and rather weak constraints on three
dimensions, and measure the aggregate profit, meas-
ured as (lo_revenue - lo_supplycost).

select d_year, c_nation, sum(lo_revenue -
lo_supplycost) as profit from date, customer, supplier,
part, lineorder
 where lo_custkey = c_custkey
 and lo_suppkey = s_suppkey
 and lo_partkey = p_partkey
 and lo_orderdate = d_datekey
 and c_region = 'AMERICA'
 and s_region = 'AMERICA'
 and (p_mfgr = 'MFGR#1' or p_mfgr = 'MFGR#2')
 group by d_year, c_nation
 order by d_year, c_nation

Q4.1 Query Q4 as written. Restriction on region re-
striction FFs 1/5 each, p_mfgr restriction 2/5. FF on li-
neorder = (1/5)(1/5)*(2/5) = 2/125. So the number of

lineorder rows selected for SF = 1 is (2/125)*6,000,000
≈ 96000.

Assume that in Q4.1 output we find a surprising growth
of 40% in profit from year 1997 to year 1998, uniform
across c_nation. (This need not be true in the data we
actually examine.) We would probably want to pivot to
group by year, s_nation and a further breakdown by
p_category to see where the change arises.

Q4.2 select d_year, s_nation, p_category,
 sum(lo_revenue - lo_supplycost) as profit
 from date, customer, supplier, part, lineorder
 where lo_custkey = c_custkey
 and lo_suppkey = s_suppkey
 and lo_partkey = p_partkey
 and lo_orderdate = d_datekey
 and c_region = 'AMERICA'
 and s_region = 'AMERICA'
 and (d_year = 1997 or d_year = 1998)
 and (p_mfgr = 'MFGR#1'
 or p_mfgr = 'MFGR#2')

group by d_year, s_nation, p_category
order by d_year, s_nation, p_category

This has the same FF as Q4.1 except in time and ac-
cesses 2/7 of the same lineorder data; for that data it
simply has a different group by dimension breakout. Its
FF = (2/7)*(2/125) = 4/875. So the number of lineorder
rows selected for SF = 1 is (4/875)*6,000,000 ≈
27,428.

Assume that as a result of Q4.2, a great percentage of
the profit increase from year 1997 to 1998 comes from
s_nation = 'UNITED STATES' and p_category =
'MFGR1#4'. Now we might want to drill down to cities
in the United States and into p_brand1 (within
p_category).

Q4.3 select d_year, s_city, p_brand1, sum(lo_revenue
- lo_supplycost) as profit
 from date, customer, supplier, part, lineorder
 where lo_custkey = c_custkey
 and lo_suppkey = s_suppkey
 and lo_partkey = p_partkey
 and lo_orderdate = d_datekey
 and c_region = 'AMERICA'
 and s_nation = 'UNITED STATES'
 and (d_year = 1997 or d_year = 1998)
 and p_category = 'MFGR#14'

group by d_year, s_city, p_brand1
order by d_year, s_city, p_brand1

The FF for c_region is 1/5. and for s_nation is 1/25; the
FF for d_year remains at 2/7, and the restriction on
p_category is now 1/25. Thus the lineorder FF is:
(1/5)*(1/25)*(2/7)*(1/25) = 2/21875. The number of

-7-

-8-

lineorder rows retrieved for SF = 1 is
(2/21875)*6,000,000 ≈ 549.

The lineorder rows retrieved by query flight Q4 are dis-
joint from those of Q1, Q2, and Q3. However succes-
sive queries of the Q4 flight retrieve subsets of the
rows retrieved in the first flight. This is realistic, how-
ever, and measures how well lineorder rows are cached
and how efficient the new indexing restrictions can be
evaluated.

3.2 Analysis of Queries
Table 3.1 provides Filter Factors (FF) of queries given
in Section 3.1, allowing an analysis of the most restric-
tive indexable dimension column predicates for each
query.

Query FF LINE-
ORDER
restriction

Dimensions: FFs of indexable predicates
on dimension columns

FF Combined on
LINEORDER

 FF time FF part:
brand roll-
up

FF suppli-
er: city
roll-up

FF cus-
tomer: city
roll-up

Q1.1 .47*3/11 1/7 .019
Q1.2 .2*3/11 1/84 .00065
Q1.3 .1*3/11 1/364 .000075
Q2.1 1/25 1/5 1/125 = .0080
Q2.2 1/125 1/5 1/625 = .0016
Q2.3 1/1000 1/5 1/5000 = .00020
Q3.1 6/7 1/5 1/5 6/175 = .034
Q3.2 6/7 1/25 1/25 6/4375 = .0014
Q3.3 6/7 1/125 1/125 6/109375 =.000055
Q3.4 1/84 1/125 1/125 1/1312500=.00000076
Q4.1 2/5 1/5 1/5 2/125 = .016
Q4.2 2/7 2/5 1/5 1/5 4/875 = .0046
Q4.3 2/7 1/25 1/25 1/5 2/21875 = .000091

Table 3.1. FF Analysis of Queries in Section 3.1

The underlined FF for each query distinguishes the
smallest FF over the indexable dimension column pre-
dicate. The most valuable way we can speed up a query
which has an indexable dimension column restriction is
to sort the LINEORDER by that column; Otherwise,
indexes on such columns will probably not limit the
number of disk pages that must be accessed. Note that
by breaking ties for underlining away from supplier, we
can avoid underlines in the supplier city roll-up column
in Table 3.1. Thus we can avoid a LINEORDER sort
by s_city. The query set suggests sorts by time, part
brand roll-up and (customer roll-up, supplier roll-up).

We see that Q4 shifts from customer-sort to part-sort as
best match between Q4.1 and Q4.3.

4. Load and Refresh
There is a DBGEN load provided with SSBM Specifi-
cation Draft 2; it works pretty much as specified in
TPC-H, but with data modifications as specified above.
It will be documented separately.

Refresh (Insert and Delete multiple LINEORDER
rows) will also follow TPC-H to reflect accumulated
changes.(One one-thousandth of the LINEORDER ta-
ble will be deleted and one one-thousandth inserted
with each refresh, with the original LINEORDER table
coming back into existence after 1000 refresh pairs.)
As with TPC-H, we will allow inserts and deletes while
queries are running or while queries are quiesced. Re-
fresh is likely to affect What-If analysis query sets if
queries are ongoing.

5. Performance Measurement
Performance measurement on each DBMS will result in
a Report with the name of the DBMS being tested in
the title, page numbers, and the following information.
First, the processor model, memory space, disk setup,
number of processors being used in the test with break-
down of schema by processor, and any other parameter
of the system that impinges on performance must be
listed.

After a load on a DBMS, the space utilization of all
tables, indexes, materialized views, and any other ob-
jects that incur space utilization will be listed. The pur-
pose of any object other than a table for performance
accelleration will be clearly explained.

The query plan of each of the queries of SSBM will be
generated and included in a report.

We will perform all queries, one after another in se-
quence (this is called a Power Test in TPC-H). For each
query, we will list the Query number (e.g., Q3.1), num-
ber of rows accessed (do a count in one run), wall clock
time to execute, CPU time utilized, and I/O utilization.
(We will in at least one run gather CPU time and I/O
utilization statistics between queries. This process
should be automated to handle multiple measurements
after changes in queries, tuning, etc.) We have tried to
specify the queries so that memory caching from one
query to the next will be minimal, but this will be vali-
dated at some point by bringing the system down and
starting it up again before executing successive queries.

We also want to think in terms of running the queries
on concurrent streams to measure parallelism effects (a
Throughput Test in TPC-H). Two streams can run the
same sequence to see if inter-query buffer sharing is
working properly (piggybacking on each others buf-
fered data). Multiple streams can run sequences that
are non-cache-intersecting for a TPCH-like Throughput
test.

Appendix A. TPC-H Tables [TPC-H]
PART Table Layout
P_PARTKEY identifier SF*200,000 are populated
P_NAME variable text, size 55
P_MFGR fixed text, size 25
P_BRAND fixed text, size 10
P_TYPE variable text, size 25
P_SIZE integer
P_CONTAINER fixed text, size 10
P_RETAILPRICE decimal
P_COMMENT variable text, size 23
Primary Key: P_PARTKEY

SUPPLIER Table Layout
S_SUPPKEY identifier SF*10,000 are populated
S_NAME fixed text, size 25
S_ADDRESS variable text, size 40
S_NATIONKEY identifier Foreign key reference to
N_NATIONKEY
S_PHONE fixed text, size 15
S_ACCTBAL decimal
S_COMMENT variable text, size 101
Primary Key: S_SUPPKEY

PARTSUPP Table Layout

PS_PARTKEY identifier Foreign key reference to
P_PARTKEY
PS_SUPPKEY identifier Foreign key reference to
S_SUPPKEY
PS_AVAILQTY integer
PS_SUPPLYCOST decimal
PS_COMMENT variable text, size 199
Compound Primary Key: PS_PARTKEY,
PS_SUPPKEY

CUSTOMER Table Layout
C_CUSTKEY identifier SF*150,000 are populated
C_NAME variable text, size 25
C_ADDRESS variable text, size 40
C_NATIONKEY identifier Foreign key reference to
C_NATIONKEY
C_PHONE fixed text, size 15
C_ACCTBAL decimal
C_MKTSEGMENT fixed text, size 10
C_COMMENT variable text, size 117
Primary Key: C_CUSTKEY

ORDERS Table Layout
O_ORDERKEY identifier SF*1,500,000 are sparsely
populated
O_CUSTKEY identifier Foreign key reference to
 C_CUSTKEY
O_ORDERSTATUS fixed text, size 1
O_TOTALPRICE decimal
O_ORDERDATE date
O_ORDERPRIORITY fixed text, size 15
O_CLERK fixed text, size 15
O_SHIPPRIORITY integer
O_COMMENT variable text, size 79
Primary Key: O_ORDERKEY

Comment: Orders are not present for all customers. In
fact, one-third of the customers do not have any order
in the database. The orders are assigned at random to
two-thirds of the customers (see Clause 4). The purpose
of this is to exercise the capabilities of the DBMS to
handle "dead data" when joining two or more tables.

LINEITEM Table Layout
L_ORDERKEY identifier Foreign key reference to
O_ORDERKEY
L_PARTKEY identifier Foreign key reference to
P_PARTKEY, Compound
Foreign Key Reference to (PS_PARTKEY,
PS_SUPPKEY) with L_SUPPKEY
L_SUPPKEY identifier Foreign key reference to
S_SUPPKEY, Compound
Foreign key reference to (PS_PARTKEY,
PS_SUPPKEY) with L_PARTKEY

-2-

-3-

L_LINENUMBER integer
L_QUANTITY decimal
L_EXTENDEDPRICE decimal
L_DISCOUNT decimal
L_TAX decimal
L_RETURNFLAG fixed text, size 1
L_LINESTATUS fixed text, size 1
L_SHIPDATE date
L_COMMITDATE date
L_RECEIPTDATE date
L_SHIPINSTRUCT fixed text, size 25
L_SHIPMODE fixed text, size 10
L_COMMENT variable text size 44
Compound Primary Key: L_ORDERKEY,
L_LINENUMBER

NATION Table Layout
N_NATIONKEY identifier 25 nations are populated
N_NAME fixed text, size 25
N_REGIONKEY identifier Foreign key reference to
R_REGIONKEY
N_COMMENT variable text, size 152
Primary Key: N_NATIONKEY

REGION Table Layout
R_REGIONKEY identifier 5 regions are populated
R_NAME fixed text, size 25
R_COMMENT variable text, size 152
Primary Key: R_REGIONKEY

References
[Kimball] Ralph Kimball and Margy Ross, “The Data
Warehouse Toolkit”, Second Edition, Wiley, 2002.

[SETQ] Pat O'Neil, "The Set Query Benchmark", The
Benchmark Handbook for Database and Transaction
Processing Systems, Jim Gray, Editor, Morgan Kauf-
mann 1991/1993, pp. 209-245. Download this text
from
http://www.sigmod.org/dblp/db/books/collections/gray
91.html .

[TPC-DS] Meikel Poess, Bryan Smith, Lubor Kollar
and Paul Larson, "TPC-DS, Taking Decision Support
Benchmarking to the Next Level", ACM SIGMOD
2002, pp. 582-587.

[TPC-H] TPC-H Version 2.4.0 in PDF Form from:
http://www.tpc.org/tpch/default.asp

http://www.tpc.org/tpch/default.asp

	Star Schema Benchmark
	Revision 3, June 5, 2009
	Pat O'Neil, Betty O'Neil, Xuedong Chen
	{poneil, eoneil, xuedchen}@cs.umb.edu
	UMass/Boston
	1. Star Schema Based on TPC-H
	2. Detail on SSB Format
	3. Benchmark Queries
	3.2 Analysis of Queries
	4. Load and Refresh
	5. Performance Measurement
	Appendix A. TPC-H Tables [TPC-H]
	References

