
Improving MMDB Distributed Transactional Concurrency
Weiwei Gong

Dept. of Computer Science
Univ. Massachusetts Boston

wwgong@cs.umb.edu

Patrick O'Neil
Dept. of Computer Science

Univ. Massachusetts Boston
1-617-354-6460

poneil@cs.umb.edu

Elizabeth O'Neil
Dept. of Computer Science

Univ. Massachusetts Boston
1-617-354-6460

eoneil@cs.umb.edu

ABSTRACT
Main Memory Database Systems (MMDBs) have been studied

since the 80s [3,4], when memory was quite costly ($1500 per

MByte in 1984). We can now buy memory for about $10 per

GByte. An advantage of MMDBs is that serial execution of a non-

distributed transaction on a uniprocessor from start to finish saves

the work of disk I/O, locking, latching and deadlock handling [7].

The 2013 Bulletin on Data Engineering [11] had eight articles on

recent MMDBs and only three mentioned distributed transactions.

Implementing fast, serializable, distributed transactions on an

MMDB is difficult, since communication delays typically leave

some CPUs idle and reduce total throughput.

We began a project in Fall 2011 to improve distributed

transactional performance of the open-source MMDB VoltDB

system [14], which was based on an earlier academic prototype

MMDB H-Store [1]. We developed a low-overhead concurrency

method that executes consecutive Prepares with delayed Commits

on each node (CPU) and takes Write locks but not Read locks to

detect conflicts. We developed an Ordered Escrow Method, a

variant of Escrow [14] to greatly speed up transactions with

incremental updates. We named our VoltDB modification

CVoltDB (C for Concurrency) and proved it supports replica

consistency and serializability. Full TPC-B and TPC-C

benchmarks demonstrate greatly improved performance due to

new features in CVoltDB.

Categories and Subject Descriptors
C.2.4: [Distributed Systems] Distributed databases

General Terms

Algorithms, Measurement, Performance, Design.

Keywords

Concurrency Control, Distributed Database, Performance,

Escrow, Shared Nothing

Topics: Concurrency Control and Recovery, Distributed and

Parallel Databases, Database Performance, Database Services and

Applications

1. INTRODUCTION
Classical RDBMS products, such as Oracle, DB2 and SQL

Server, are Disk Resident DBs (DRDBs), with designs from the

1970s, whose data can only be read or updated after it is brought

into memory. Enormous reductions in memory prices and ever-

faster compute cycles have made disk accessed data much less

desirable for all but the largest databases. Memory-resident

transactions can run to completion on a uniprocessor with no

stalls by avoiding I/O waits and transactional user interaction.

This saves overheads for locking, latching and memory buffering,

using about 64% of the CPU time in DRDBs [7].

A shared-nothing distributed database horizontally partitions data

into shards of allied rows on distinct nodes. A bank database

typically assigns accounts of bank branches to a distinct shard,

with each node's transaction processor having exclusive access to

its shard. If all the information needed by a transaction is held in a

single shard owned by a certain node, we call the transaction a

single-node transaction. A transaction needing data from different

shards is a distributed transaction.

In a sharded MMDB running single-node transactions, latches and

locks are not needed if transactions execute one at a time on each

node and thus run without blocking. In this way, we eliminate

buffering, latching, and locking. A lightweight logging method,

for example to an SSD device, is still needed to provide recovery.

Such a system provides very high performance for single-node

transactions, as argued in [16] and shown in practice in H-Store

and VoltDB. When we run distributed transactions on a sharded

MMDB, each transaction needs to execute on several nodes and

communicate between them. Under the serial execution rule at

each node, many waits for messages will occur in mid-transaction,

and performance nose-dives.

Distributed transactions are directed from a single Coordinator

node and have two phases of execution: a Prepare P and a

Commit C (or Abort A). Single-node transactions also have

Prepare and Commit phases. With mixed distributed and single-

node transactions, a sequence such as P1 C1 P2 A2 P3 C3… runs

on each executing node. Each node of a distributed transaction

must wait for a Coordinator Commit message after a Prepare

phase completes and this is pure communication wait time. The

challenge is to find a concurrency mechanism that allows useful

work during communication wait, yet avoids re-introducing the

latching and locking disk-based systems need. We note that

communication wait times are about 100 times shorter than Disk

waits (about 30us vs. 3ms), about the same length as the

transactional work for a Prepare, so transactions need to overlap

only in a minor way to fill in communication wait times.

Our CVoltDB scheme (like the one in [8] but simpler) has

transactions perform Consecutive Prepares on a node, e.g.: P1 P2

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from

Permissions@acm.org.

IDEAS '14, July 07 - 09 2014, Porto, Portugal

Copyright 2014 ACM 978-1-4503-2627-8/14/07…$15.00.

http://dx.doi.org/10.1145/2628194.2628242.

C1 C2, or P1 P2 P3 C1 P4 C2 A3 C4, etc. Here the transactions

can be single-node or distributed and new transactions can

Prepare while distributed transactions wait for Commit messages.

We run single-threaded on the node and assume transactions

execute Prepares, and separately, Commits/Aborts in transaction

ID (TxID) order. Write locking is used to handle conflicts while

multiple Prepared transactions exist at once: Prepares that try to

read or update a column of a row updated by a prior Prepare will

block because of a conflicting Write. See Section 4 for further

details. The Escrow Method [14] addresses this delay by

supporting Escrow updates that don't block subsequent Escrow

updates of the same column. For CVoltDB, we have developed

the Ordered Escrow Method, described in Section 5.

In what follows, we describe a version of VoltDB [17] that we

improved from the version we first encountered by guaranteeing

distributed transactions on multiple nodes (CPUs) run on only the

nodes required. See Section 3.2.1. The original VoltDB

developers made little effort to optimize distributed transactions

since their customers had no need of them. With this

improvement, VoltDB is still a sharded MMDB with serial

execution on nodes. We added our concurrency schemes of the

prior paragraph, with runtime flags to allow selection of features.

Implementation is further discussed in Section 6.

In a sharded MMDB with serial execution on nodes (without

Consecutive Prepares or Escrow), even a few distributed

transactions in the mix makes performance nose-dive due to

communication delay between nodes. We ran the TPC-B

benchmark with a varying proportion of distributed transactions to

measure the effectiveness of Consecutive Prepares and Escrow

updates to improve performance of transactions with incremental

updates. Our changes have no effect at 0% distributed, but at 5%

distributed (on a 4 host cluster) our scheme improves TPS by 90%

over that of VoltDB and by 174% at 15% distributed, the standard

TPC-B mix. We also tested the TPC-C benchmark, with its more

complex transactions. As expected, the quantitative results are not

as striking, but still significant. See Section 7 for more

information.

CVoltDB makes distributed transactions run faster, but still has

problems with load balancing. Because of the tyranny of

execution in TxID order, the system runs at the rate of the most

loaded partition, among partitions interrelated by distributed

transactions. VoltDB has recently changed the TxID generation

algorithms to allow partitions assign compatible per-partition

TxIDs to distributed transactions to help with this load balancing

problem.

NOTE: The CVoltDB sources are available at

https://github.com/wwgong/CVoltDB.

2. RELATED WORK
Mike Stonebraker, one of the authors of [3] who foresaw main

memory databases with lower memory prices of the future,

spearheaded a collaborative project to implement such a system in

2007. The academic prototype called H-Store [16], which showed

the value of MMDB in OLTP applications, and in particular, the

shared-nothing approach with single-threaded nodes in H-Store.

H-Store was announced in [9] and the open-source commercial

product based on this prototype is VoltDB.

H-Store runs transactions one at a time on each node and this

approach was inherited by VoltDB. In [8], an approach called

speculative execution was built on H-Store to execute a second

transaction on the same node with the assumption that the first

transaction would Commit, an attempt to utilize time between

Prepare and Commit of a distributed transaction that would

otherwise be idle. But if the first transaction Aborts then the

second transaction would need to Abort (under the assumption the

second transaction might have read something changed by the

first transaction). Paper [8] also provided a second concurrency

approach with both Read and Write locks. This approach

performed better than speculation at higher abort rates or higher

distributed transaction ratios. We consider CVoltDB to be closer

to this approach, but without Read locks.

Many current commercial transactional MMDBs, including

Oracle’s TimesTen and Microsoft’s Heketon, are centralized, so

their threads access data in a single shared memory, limiting

scale-up. Two notable commercial distributed MMDBs, VoltDB

(open-source) and SAP’s HANA (proprietary), both described in

[11], use shared-nothing partitioning, i.e. sharding. HANA uses

multi-threaded nodes and distributed snapshot isolation, allowing

read-only transactions that read from a snapshot evolving from

OLTP transactions. VoltDB uses single-threaded nodes and is

discussed in Section 3.

The Calvin MMDB system developed at Yale [12,13] executes

distributed transactions in a predetermined serial order without

the delays of two-phase commit by pre-analyzing each transaction

for its read and write sets, using “dry runs” if necessary, and then

scheduling them to avoid conflicts. It uses horizontal partitioning

and allows (limited) concurrency on each partition. The CVoltDB

Consecutive Prepares execution qualifies as following Calvin’s

deterministic locking, without requiring pre-analysis and usually

fills in the two-phase locking delay with useful work.

Escrow-like operations are so common in business applications

that in 1976 IBM released Dieter Gawlick's IMS Fast Path [5],

with Increment/Decrement updates of data kept in memory for

high-speed changes that couldn't wait for regular database

handling. This inspired the Escrow Method for non-blocking

Aggregate-Increment update appearing in ACM TODS in 1986

[14]. It has been used to maintain indexed summary views [6], in

the application tier of Oracle as Compensation-Aware Data Types

[19], and in an academic project as “B data” layered on Amazon

S3 cloud storage [10]. But we believe this is the first time Escrow

has been offered as a native database capability to transaction

programmers. We will see the value of Escrow performance when

we run benchmarks in Section 7.

3. BACKGROUND: VoltDB & CVoltDB

VoltDB [17] is an open-source, sharded MMDB with single-

threaded nodes that evolved from the academic prototype H-Store.

Changes include robust error handling and many other production

database features. VoltDB does not need buffering, latching, or

locking, greatly simplified from any DRDB engine. After

reviewing VoltDB code, we decided we could improve

performance using consecutive prepares on each node and the

Escrow Method, as discussed in the Introduction. We call our

variant system “Concurrent VoltDB”, or CVoltDB.

3.1 CVoltDB and VoltDB common features
VoltDB horizontally partitions data into replicated shards of allied

rows on distinct hosts. If one host fails during a transaction, it

continues to run on replica shards. If the number of shards on

distinct hosts is K+1 (K ≥ 1) then the system provides K-Safety,

meaning K hosts can crash leaving transactions still able to run, a

feature called High Availability (HA). Transaction programs are

stored procedures registered in the system and dynamically loaded

when they are to be run. During transaction initiation, VoltDB

writes a Command Log containing a TxID, Stored Procedure ID

and Stored Procedure arguments. The Command Log has about

100 bytes and is quickly written (for example) to a Solid State

Disk with a capacitor-backed memory buffer. VoltDB writes a

Snapshot copy of the complete MMDB onto disk as of some

committed transaction, using a copy-on-write technique. If all

hosts crash, VoltDB and CVoltDB can recover from the last

complete Snapshot on Disk, using later Command Logs to replay

transactions.

Each transaction is deterministic in VoltDB and CVoltDB, in the

sense that no external input (e.g., system clock time) is allowed

during transaction execution. This is to guarantee replica

consistency, i.e. so transactional data updates on replica shards are

consistent, since clock time at different replicas might differ.

When a transaction program is compiled as a stored procedure, it

is registered in the system and later run by providing the

Procedure ID and parameter values. Transactions get unique

TxIDs based on the time they arrive (most significant bits) and the

host where they arrive. The VoltDB on which we built our

CVoltDB system executes transactions in TxID order, one at a

time on each node, ensuring replica consistency and serializability

VoltDB and CVoltDB have three transaction classes: Single node

transactions, such as a withdrawal or deposit at a bank branch, are

most common. Distributed transactions can be either one-shot or

multi-shot. A shot is a round-trip message exchange between

participant nodes of a distributed transaction and the Coordinator.

A one-shot Distributed Transaction might be a transfer of money

from one bank branch to another on a different node. Multi-shot

transactions can have multiple shots, each returning data to the

coordinator before the next shot begins. This is needed when new

data can lead to a new decision, since each shot runs only non-

procedural SQL, but a decision can be made by the stored

procedure code from data returned to the Coordinator. Some

transactions in the TPC-C benchmark must use multi-shot

transactions, as we explain and illustrate in Section 7.

VoltDB distributed transactions have performance problems. A

single node transaction runs from start to finish without

interruption and distributed transactions runs concurrently on

many nodes, but in VoltDB a distributed transaction locks up all

nodes on all hosts. This bottleneck was removed in CVoltDB, as

explained in Section 3.2.

3.2 Changes from VoltDB to CVoltDB

preparing for Concurrency
In order for Consecutive Prepares on a node (Section 4), and

Ordered Escrow (Section 5) to work well, we needed to add

features to speed up distributed transactions as described below.

3.2.1 Distributed Transactions Limited to Needed

Nodes
When VoltDB needs to run a distributed transaction, the Initiator

sends the Stored Procedure Identifier and parameter values to a

designated node acting as a Coordinator. The Coordinator sends

out transaction code (compiled from a SQL batch) to ALL nodes.

Various nodes execute the code when their turn to run arrives.

The nodes not actually involved in the transaction will find no

matching data and return a null set to the Coordinator. Thus all

nodes are locked up during distributed transactions.

In CVoltDB we allow multiple parameters of a stored procedure

to specify which subset of nodes are actively involved in a

distributed transaction when this is fixed in advance, e.g.: in TPC-

B and TPC-C. This allows us to run many distributed transactions

concurrently on the system. We call this CVoltDB feature:

Distributed Transactions Limited to Needed Nodes. This feature is

the most important for performance of the three features

mentioned in these subsections and was also supported by H-

Store.

3.2.2 Early Code Distribution in CVoltDB
Another feature of distributed transactions in CVoltDB is named

Early Code Distribution. A VoltDB coordinator readies a

distributed transaction Tk after its work on the previous

transaction has finished. This involves running the stored

procedure, which assembles code and sends it out to the

transaction participant nodes, which may be idle, waiting for the

code. A CVoltDB Coordinator sends out code for Tk to

participating nodes before it is time for Tk to be readied on the

Coordinator. These nodes will queue this code and then run Tk as

soon as all prior transactions on the node have Prepared, allowing

Tk participants to run their Prepare phase earlier and return results

to the Coordinator. The return of results may happen even before

it is time for Tk to be readied, but the Coordinator will queue the

results and when the time for Tk to be readied arrives the

Coordinator can process the results for Tk immediately. The

inevitable wait has become a probabilistic wait (depending on

which prior transactions run on each node).

3.2.3 Optimal Coordinator Use in CVoltDB
In VoltDB systems the Coordinator node is arbitrarily chosen, but

CVoltDB lets the programmer specify that the Coordinator sit on

a node of a specified partition used by the transaction to reduce

communication in distributed transactions.

4. CONSECUTIVE PREPARES ON A

NODE

As discussed in the Introduction, CVoltDB transactions perform

Consecutive Prepares on a node while delaying Commits e.g.: P1

P2 C1 C2, or P1 P2 C1 P3 C2 A3, etc. Note we run single-

threaded on the node and all transactions run in TxID order on

each node both in Prepares and Commits/Aborts. The Prepare

phases of different transactions on a node must be executed one at

a time. But when a multi-shot transaction Prepares on a node and

returns data to its coordinator, it may have more Prepare work to

do on this node in a later shot. Thus multi-shot communication

can delay Prepares by later transactions.

With non-Escrow column updates we use Write locks on rows for

serializability and if T1 Updates a column C of a row and T2 later

Reads C, T2 need not take a Read lock on C but it must TEST if

the column has a prepared update, and if so it must block on T1’s

Write lock. The lock will be released when T1 Commits. For

example: P1 P2 (blocks) C1 P2 (unblocks) C2. If T1 Reads C, it

need not take a Read lock since even if a Write lock on C is taken

later by T2, the Read by T1 was valid at the time it was executed

until the end of T1’s Prepare phase (by the rule of one-at-a-time

Prepares), and the Write by T2 occurs later in TxID order. Note

that if T1 Write locks a column C1 of R and T2 later tries to Write

lock a different column C2 of R, T2 will block. The rationale for

this is that when T1 Updates C1 it creates a Before Image (BI) of

R, where C1 has its old value. If T2 later updates C2 than a new

BI would be needed, but the value C1 would have to be

ambiguous in this BI (old value or new value). We provide for

phantom detection of Prepared updates by creating a BI row R'

when T1 updates one of more columns in R, with both R and R'

held in index entries as in KVL locking.

5. THE ORDERED ESCROW METHOD

CVoltDB tables can have one or more Escrow columns in each

row, based on work in [14, 15].

5.1 Escrow Columns and Operations
An Escrow column such as "account_balance" can be incremented

with a positive or negative increment, INC. A transaction Ti can

make an Escrow Update Request of an Escrow column C in TBL1

below, using a SQL update statement with this special syntax:

Update TBL1 set C += INC where...

or

Update TBL1 set C -= INC where...

(Note: if INC is negative, C -= INC will add |INC|.)

After such a request succeeds, the result is an Escrow grant, and

this grant will be part of an Escrow Journal on a node as defined

below. The value of Escrow is that many increments by many

different transactions can be granted on a single Escrow column

without blocking and later committed or aborted. There can also

be Escrow requests granted by a single transaction on many

Escrow columns

Example 5.1 Consider an Escrow column with identifier ColIdx

in the table TBL1. If the Column represents (say) money in a bank

account, the largest value allowed (MAX) might be $100,000

(without a special account) and the smallest value (MIN) might be

$10 (minimum balance). We explain below how MIN and MAX

limit possible Escrow grants. VAL is the current value of the

column if all outstanding Escrow grants are Committed. Two new

values, INF and SUP, have the same type as VAL and after

multiple requests, INF is the smallest possible value if all grants

with positive increments Abort and all grants with negative

increments Commit, while SUP is the largest value in the inverse

case. Thus [INF, SUP] bracket possible committed values of

active transactions. There are six values in a so-called Escrow

column ColIdx. The data structures that hold this data are

discussed in Section 6.1.

ColIdx; MIN = 10 MAX = 100000

INF = 1000, VAL = 1000 SUP = 1000

Any precise numeric type can be used in Escrow, but long

integers are common (e.g.: pennies in bank balances). As

increment and decrement grants occur, a chain-linked list of

Escrow Journals for grants is created, with the header containing

the updated Escrow Column. An Escrow Journal has this layout.

Escrow Journal

TxID = 12456

INC = -20

Hashing on a row pointer lets us access these Escrow journals (see

Section 6.1). A sequence of updates to Escrow Column ColIdx is

given below (no Chain-links are shown).

Start

ColIdx; MIN = 10 MAX = 100000

INF = 1000, VAL = 1000, SUP = 1000

After Escrow grant 1 for T1

ColIdx; MIN = 10 MAX = 100000

INF = 950, VAL = 950, SUP = 1000

TxID = 1

INC = -50

After Escrow grant 2 for T2

ColIdx; MIN = 10 MAX = 100000

INF = 950, VAL = 990, SUP = 1040

ColIdx; TxID = 1

INC = -50

ColIdx; TxID = 2

INC = 40

After T1 Commits

ColIdx; MIN = 10 MAX = 100000

INF = 950, VAL = 990, SUP = 990

ColIdx; TxID = 2

INC = 40

After T2 Aborts

ColIdx; MIN = 10 MAX = 100000

INF = 950, VAL = 950, SUP = 950

If T1 and T2 both aborted, the column would return to its initial

state: INF = VAL = SUP = 1000.

5.2 The Escrow Out-of-Bounds Rule

In edge cases, we need to block Escrow requests until Commits

and Aborts can resolve ambiguity in an Escrow value. This

preserves deterministic execution, needed for replica consistency

and recovery.

Consider a request for an Escrow update by transaction Tk that

would add INC to an Escrow column C starting with a certain

[INF, SUP] interval. If INC is so large that INF+INC (and thus

SUP+INC) is larger than MAX. This request cannot be granted,

since if Tk were to Commit the ultimate committed value would

be out of acceptable bounds. Similarly a request cannot be granted

where INC is so negative that SUP+INC (and thus INF+INC) falls

below MIN. In both cases Tk must Abort.

Now if INF+INC and SUP+INC both fall in the range [MIN,

MAX], the Escrow request is perfectly acceptable. But what if

only one of these conditions failed? That is, if [INF+INC,

SUP+INC] intersects [MIN, MAX] but projects to one side or the

other. Then some possible outcome of committing and aborting

transactions might bring the committed Escrow value outside the

range [MIN, MAX]. One thing we know for sure is that all

Escrow requests prior to the one by Tk left us within the valid

[MIN, MAX] range for any combination of Aborts and Commits.

But we cannot simply Abort Tk, since it is possible that a replica

node that has made further transactional progress than ours would

immediately see it can grant Tk's request. This means we must

BLOCK this new Escrow Request until enough Aborts and

Commits have occurred so we know if the new request should

succeed or fail. Since transactions Prepare in TxID order, no

transaction that comes after this uncertain case for Tk can Prepare

until we decide whether to grant the Tk request or Abort it. We

summarize this rule below

Escrow Out-of-Bounds Rule. As an Escrow request by Tk adds

INC to column C, we have three cases

If [INF+INC, SUP+INC] falls within [MIN, MAX], the request is

granted and the new [INF, SUP] interval is set to [INF+INC,

SUP] if INC < 0 or [INF, SUP+INC] if INC > 0.

1. If [INF+INC, SUP+INC] doesn't intersect [MIN, MAX],

the request fails and Tk Aborts.

2. If [INF+INC, SUP+INC] intersects but is not contained in

[MIN, MAX], Tk blocks while all prior transactions

Commit or Abort at which point [INF+INC, SUP+INC] is a

0-length interval in or out of the [MIN, MAX] range and Tk

commits of Aborts accordingly. This decision might be

clear earlier if [INF+INC, SUP+INC] lies inside or outside

[MIN, MAX] before all prior transactions Commit or

Abort.

Example. In Example 5.1, after T1 and T2 Prepare, we have INF =

950 and SUP = 1040. If now T3 Prepares a Decrement of -1000,

[INF+INC, SUP+INC] = [-50, 40], so we must block T3 until we

find if Committing will result in a number in the [MIN, MAX]

range, [10, 10000]. If T1 Aborts and T2 Commits, then T3 can

Commit and leave a value of 40, but any other actions for T1 and

T2 will cause T3 to Abort.

An index cannot contain Escrow columns since their values are

uncertain when updates are pending. BIs replace non-Escrow

column updates in an Abort but Escrow columns handle Aborts

differently.

5.3 Ordered Escrow vs. Original Escrow

Note that a transaction Prepare may read an Escrow column, but

the read will block until Escrow updates by all prior transactions

commit. In the original Escrow paper [11], VAL was defined to

be the most recently committed value so uncommitted Escrow

updates of this column might later Commit or Abort, changing

VAL. Our definition of VAL is the assumed-commit value of

outstanding updates on the column, so if a transaction to performs

an Escrow update itself and later Reads the column; the Read will

wait for all prior transactions to Commit or Abort and then see its

own update as part of the value read.

In the original Escrow environment of [14], if we wanted to sum

the balances of two frequently updated bank accounts, the Escrow

reads of the two balances would not necessarily have been

consistent. The fact that CVoltDB executes Prepares and

Commits/Aborts in TxID order on all nodes, removes this

limitation and serializable consistency of Escrow Reads in

distributed transactions is guaranteed. Furthermore there is no

chance of deadlock among Escrow updaters as was possible in

[14], since a deadlock requires interleaved Prepares. Escrow-

related deadlock was shown in [15] to be exponentially difficult to

handle, with the NP-complete complexity of the generalized

banker’s algorithm.

Our new syntax for Escrow update in Section 5.1, using += and -

=, was not in [14], which required specialized database calls.

6. CVoltDB IMPLEMENTATION

6.1 CVoltDB Data Structures

After T1 updates a non-Escrow column in a row R, the row is said

to be dirty and a BI is created; if T2 then tries to update any non-

Escrow column in the dirty row, it must wait until T1 has

committed: T2 is blocked for non-Escrow updates. But the term

Write lock is a bit of a misnomer, since after the non-Escrow

update of R by T1, Escrow columns of R are still updatable by T2.

Recall from Section 4 that Read locks are never required in

CVoltDB. A BI created to reverse non-Escrow column updates in

a row during Abort must not contain the Escrow columns in that

row. One should think of Escrow columns as lying outside the

row of non-Escrow columns in every normal transactional sense.

We record both non-Escrow and Escrow column updates in the

row by creating a Row Journal, accessed by hashing on the row

pointer. The Row Journal has the following layout.

Row Journal

Pointer to AI of this row: PA

Pointer to Row Schema: PS

Pointer to non-Escrow changes: PN

Pointer to Escrow Update data: PE

 PA is a pointer to the After-Image (AI) of the row.

 PS is a pointer to a Row Schema listing all columns, Escrow

or non-Escrow, their type and ColIdx.

 PN points to an information struct for non-Escrow row

changes (if any) including: TxID, type (Insert, Delete,

Update) and a pointer to the BI, a temporary row in the table.

 PE points to a series of pointers to each column's Escrow

update information shown in Section 5.1

If a row has no non-Escrow changes then PN will be null. If there

are no Escrow updates, PE will point to a null sequence and if

there are no Escrow columns in the row, PE itself will be null. But

if a row has no uncommitted changes at all, it will have no Row

Journal!

6.2 SQL Operations in CVoltDB

CVoltDB does not itself handle schema changes or table loads,

but does support VoltDB transactions in the transaction sequence

that can do such work, not allowing concurrency with preceding

or following CVoltDB transactions. CVoltDB handles all the

DML operations, as follows.

6.2.1 Row Insert
We follow VoltDB practice by inserting rows immediately in the

transaction Prepare phase, along with primary and secondary

index entries, backing out the inserts if an Abort occurs. To avoid

potential phantoms, we show a newly inserted row as dirty in the

Row Journal until the transaction inserting it Commits or Aborts.

This acts as a KVL-like phantom to stop table or index scans.

Row Delete

A Delete of a row R creates a Row Journal if one is not

preexisting, to show the row is dirty; earlier Escrow column

updates will complete in order before the Delete is committed; we

leave the row and all index entries in place, to avoid phantoms,

blocking later range reads until the delete of Tj Aborts or

Commits. After the deleting transaction Tj Commits, the row will

be invisible until it is removed during later Snapshot processing

(Section 3.1).

6.2.2 Non-Escrow Update Operations
Updates of a non-Escrow column will create a BI of the row in a

new position in the table with entries in the same indexes, while

the AI of the row will continue with the old secondary index

entries, updated as needed. Both row pointers hash to the same

Row Journal so other transactions block in reading either row (by

index range or direct search) until the transaction performing the

update Commits. We do not permit updates of columns involved

in unique indexes at this time. On Commit we remove the BI and

its index entries. On Abort, the updated row reverts to values in

the BI for non-Escrow columns and drops Escrow changes.

6.2.3 Reading Escrow and Non-Escrow Columns
We saw in Section 5.3 that it is possible to read (by Select or in a

WHERE clause) the value of an Escrow column by waiting for

pending Escrow updates of that column to Commit or Abort. Thus

reading Escrow columns temporarily nullifies the performance

advantage of Escrow updates.

A Select statement or WHERE clause can retrieve one or more

Escrow or non-Escrow column values from a row or a range of

such rows. The query processor hashes on the row pointer of any

row it encounters to read the Row Journal (Section 6.1). A range

search to locate rows must block, as in KVL locking, if it finds a

row with an updated column it retrieves or one that is involved in

the WHERE clause. If the query blocks, it must delay its read

until updates Commit or Abort. With an Escrow column, there

can be multiple transactions updating it, which must all resolve

before we can read that column.

Note we have more freedom performing reads of non-Escrow

columns than in classical databases, where an update takes a full

Write lock on the row. For single-variable search conditions, we

can read columns of rows without blocking as long as the columns

we read don't include columns being updated: the Row Journal

PN (Section 6.1) points to a Boolean array that shows updated

non-Escrow columns. The granularity of our locking is generally

the same as in KVL locking.

6.3 Serializability and Replica Consistency
Given one-at-a-time Prepares on a node, all operations of a TxID

are Prepared before operations of a later TxID can begin

Preparing. Distributed transactions Prepare on several nodes, each

in proper TxID order on that node. Thus all conflicts among

transactions on each single node yield edges in the Precedence

graph going from transactions with lower TxID to ones with

higher TxID. A Precedence graph thus cannot have a cycle and

the system provides serializable execution in TxID order.

For Replica Consistency we need to show two replicas cannot

have divergent outcomes in CVoltDB. As explained in Section

3.1, transactions are deterministic in CVoltDB in the sense that no

external input (e.g., system clock time) is accessed during

transaction execution. Two Replicas will Prepare and Commit the

same transactions in the same order, but they might Prepare and

Commit at different times. If the transactions have only standard

operations (non-Escrow), serializable execution on the two

Replicas would have identical results.

Of course all Escrow updates will have identical increments on all

replicas, but the replicas could have different numbers of recent

uncommitted transactions at any point and thus different [INF,

SUP] intervals. We will show that two replicas cannot diverge in

outcomes because of this. Consider the first decision point in

prepare Pi that has different decisions (succeed vs. fail) on

different replicas, possibly at the end of a blocked period caused

by the Escrow Out-of-Bounds Rule. All earlier Escrow grants

were made consistently so they are the same for all replicas at this

decision point in Pi. All previous prepares have completed, so the

same sequence of commits/aborts are in process.

Although two replicas could have different [INF, SUP] intervals

valid in Pi, they both contain one common point, the committed

value implied by all Escrow grants on the column value, resulting

from the already-determined (but not yet processed) sequence of

commits and aborts of the earlier transactions. Because of the

non-empty intersection between the two [INF, SUP] intervals, it is

impossible that one [INF, SUP] interval will end up entirely

inside [MIN, MAX] and the other one entirely outside.

7. BENCHMARKS
In this Section, we compare the performance of CVoltDB against

VoltDB in two benchmarks, the TPC-B benchmark (no longer

officially recognized) and the current TPC-C [18] benchmark.

This is clearly an unfair comparison, since VoltDB was not

optimized for distributed transactions, but it seems to be a proper

comparison to characterize the new performance features of

CVoltDB. NOTE: we ran TPC-B and TPC-C without replication

of benchmark data on our rather limited four-host cluster. We did

test replication and snapshot processing separately to ensure that

CVoltDB fully supports them.

All performance tests for TPC-B and TPC-C are run on our 4-host

cluster, with 4 Dell minitower systems, quad-core Core i5-3450

3.10GHz CPUs and 16GB memory. The systems are connected by

a Gigabyte Ethernet switch, and run 64-bit Ubuntu Linux 12.04

LTS (Linux version 3.2).

We ran benchmarks four ways, each Successive Configuration

adding new CVoltDB features.

Configurations

1. Original VoltDB. VoltDB 2.1.3, with one performance bug

fix to avoid unnecessary shots.

2. Basic Features. CVoltDB with the additional features of

Section 3.2, but still running only one transaction at a time

on each node.

3. Consecutive Prepares. CVoltDB with its additional features

of Section 3.2, and those of Section 4.

4. Ordered Escrow. Full CVoltDB processing, with Escrow

Columns.

7.1 The TPC-B Benchmark
The TPC-B benchmark measures performance of banking

transactions, with four tables, as follows.

Table Name # of Rows Row size Primary key

Branch N 100 bytes B_ID

Teller 10N 100 bytes T_ID

Account 100,000N 100 bytes A_ID

History Varies 50 bytes

TPC-B explicitly allows horizontal partitioning, and appropriate

partitioning is by B_ID. For each successive transaction, a Driver

sends to the database four separate integers, Aid, Tid, Bid and Del

(values for A_ID, T_ID, B_ID and a Delta Increment). The

transaction returns the Account Balance to the Driver.

Transaction Logic Profile: Given Aid, Tid, Bid and Del and a

Timestamp TS from the Driver. We use the Escrow += extension

to SQL syntax explained in Section 5.1.

BEGIN TRANSACTION

Update Account set Balance += Del where A_ID = Aid; -- Escrow

Select Balance from Account where A_ID = Aid; -- Read Escrow

Update Teller set Balance += Del where T_ID = Tid;

Update Branch set Balance += Del where B_ID = Bid;

Insert into History Values (Aid, Tid, Bid, Del, TS);

COMMIT TRANSACTION

Return Account Balance Aid to Driver (i.e., Client);

Note that this program uses normal SQL updates until the Escrow

capability is added in Configuration 4.

A transaction is single-node if the Account’s Branch, Aid/100,000

equals Bid; if they're different, it is a distributed transaction with

two Branches, the Branches are in two partitions and the

transaction is distributed. By design, 85% of the transactions use a

single branch and 15% a second foreign Branch at random. TPC-

B has no test that balances remain in a given range, a surprising

lack. The Select from the Account Balance will force all prior

transactions updating this row to Commit (unlikely, since there

are 100,000 Accounts to a Branch) and return this value to the

Driver. Note that the Account Balance, Teller cash and Branch

balance are all updated by the amount of the Account change.

Note too that there is a scaling rule in TPC-B requiring a Branch

row for each nominal TPS recorded, which would require, for a

measurement of 10,000 TPS, at least 100 billion bytes for

Account tables. We ignore this requirement. Some TPC rules

were clearly intended to guarantee that no little upstart company

would be able to challenge IBM, Oracle or Teradata. For example

neither Vertica nor Sybase IQ were allowed to run the query

benchmark TPC-D because of a rule that no vertical partitioning

was allowed. Why not? Unfair competition!

7.2 TPC-B Benchmark Performance
Although the TPC-B benchmark is officially obsolete, it provides

a well-known distributed workload that has hot-spot behavior.

The benchmark specifies that 15% of transactions should involve

two branches, thus two partitions, and others just one. We scale

this distributed percent from 0 to 100% to see the effect of the

mix.

Figure 7.1 TPC-B by distributed%, on 2 hosts

Figure 7.2 TPC-B TPS by distributed%, on 4 hosts

Figure 7.3: Figure 7.2 with log-log scale

Figure 7.4 TPC-B TPS by # of hosts, 15% distributed

These graphs show VoltDB runs pure single-node transactions

(Distributed=0%) faster than CVoltDB, but as soon as 1% of

transactions are distributed, CVoltDB is much faster, about ten

times faster at 15%, the standard TPC-B mix. Figure 7.4 shows

how CVoltDB scales up in all its versions. The original VoltDB

was very slow for distributed transactions because they locked up

all nodes.

Basic H-Store [8] pre-loaded stored procedures so Early Code

Distribution wasn't needed. It ran transactions one at a time on

each node and distributed transactions were limited to needed

nodes. In that form H-Store had comparable performance to

VoltDB with Basic Features (Red curves of Figures above). H-

Store can also do dynamic loading in its current form.

Consecutive Prepares but no Escrow (green curve) improves

distributed transactions, but not by much. All transactions update

the branch balance by a non-Escrow operation and thus each one

blocks until the previous transaction Commits. The Escrow

Method makes a big performance difference.

7.3 The TPC-C Benchmark
VoltDB programmers wrote TPC-C Benchmark code and we

made changes to optimize shots and add Escrow updates in our

version. The TPC-C benchmark has nine different tables and five

different transactional profiles to order, pay for, and deliver goods

from warehouses. Figure 7.5 lists the TPC-C transactions and

their properties.

Transaction

RO = read only

% in

mix

%

distributed

#Partitions

involved

New-Order 45% 10% 1-15

Payment 45% 15% 1-2

Delivery 4% 0% 1

Order-Status (RO) 4% 0% 1

Stock-Level (RO) 4% 0% 1

Figure 7.5. Transactions in TPC-C

The TPC-C benchmark scales by number of warehouses W, with a

total of 500,000W rows, plus 100,000 rows for Item. We used one

warehouse for each node, and at least 4-12 nodes/host, so W = 16-

48 for 4 hosts, with 8.1M to 24.1M rows.

7.3.1 The Home Warehouse Partition
TPC-C data can be partitioned by warehouse by TPC-C designer

intention. Each transaction relates to a specific home warehouse

(data in the home warehouse partition) and accesses only this

home partition’s data for Delivery, Order-Status, Stock-Level and

most cases of New-Order and Payment, making them single-node

transactions. As listed in Figure 7.5, distributed transactions are

used for 10% of executions for New-Order and 15% for Payment.

For the distributed Payment transaction, exactly two partitions are

accessed, the home warehouse and one other, called the remote

warehouse partition. For distributed New-Order, up to 15 remote

partitions might be accessed, but most cases access only one or

two remote partitions for up to 15 line items, each remotely

stocked only 1% of the time.

7.3.2 TPC-C Transactions
New-Order. A new order is placed for a Customer (a row in the

Customer table). The home warehouse is the customer’s, and its

node is the optimal Coordinator in CVoltDB (See Section 3.2.3).

The order inserts a row in the Order table, a row in New-Order,

and 5 to 15 rows in Order-Line. Some Line Items may be stored in

remote warehouses, and require remote stock-level adjustments.

Here are the major steps of New-Order:

1. An average of 10 stock items are deducted from quantity on

hand in Stock table (with 1% chance of each item being

remote). If remote, Stock-related data returns to the

Coordinator.

2. The transaction Aborts if an Item is not found (1% non-

existence required by the spec). On the home partition, inserts

occur for Order, New-Order and Order-Line rows using data

gathered in Step 1.

On VoltDB, in the fastest case where the coordinator runs on the

home partition, Figure 7.6 shows shots performed for steps 1 and

2 and then Commit in the distributed case. The Java stored

procedure runs on Coordinator (J) and sends work to the remote

node; then both nodes execute step-1 work “111”. Results are

returned to the coordinator (second J) where the program runs

again and sends out step-2 work to the remote node, and both

nodes executes the step-2 work “222”. Results are returned to the

program (third J), the commit decision is made, and Commit sent

to the remote node, then acknowledged back.

Figure 7.6. Time-Line for NewOrder on VoltDB

Figure 7.7. Time-Line for NewOrder on CVoltDB

The exclusive period for VoltDB, the period on a node when no

other transaction can execute, runs from Prepare start to Commit

time, since no other transaction can start on the node until after

Commit. Figure 7.6 shows the exclusive period is 3RTT on the

Coordinator and 2RTT on non-Coordinator nodes.

Figure 7.7 shows CVoltDB execution of the same New-Order

transaction. Early Code Distribution (Section 3.2.2) is shown as J

at the Coordinator, well ahead of the step-1 execution (“111”) on

the home warehouse partition, the optimal location (Section

3.2.3). The second work step occasionally needs remote access for

a required update to add to stock levels if they've fallen too low. If

not, CVoltDB runs on the Coordinator only for one step.

By Figure 7.7, the exclusive period for CVoltDB is possibly less

than one RTT, but if the remote node needs to finish earlier

transactions before executing this one, it may be longer. On the

one remote node, the exclusive period extends to the Commit,

roughly one RTT.

Payment Program The Payment program accepts a payment for a

customer, possibly belonging to a remote warehouse, increments

the customer balance and also increments the home warehouse

and district year-to-date values, all increments using Escrow.

Then it inserts to the History table.

Delivery (Single node Transaction) delivers the oldest

undelivered order for the district. Its row is deleted from New-

Order, and its Order-Line rows updated. The Customer balance is

decremented, by Escrow update.

Order-Status (Single node Transaction, Read-Only) queries the

status of a customer's last order, including the customer balance,

an Escrow quantity.

Stock-Level (Single node Transaction, Read-Only) determines

which of the items ordered by the last twenty orders in a given

warehouse and district, have fallen below a specified threshold

value.

Coordinator: J111 J222 J C

 \ / \ / \ /

 \ / \ / \ /

Remote node: 111 222 C

Coordinator: J 111 J222J C

 \ / \ /

 \ / \ /

Remote node: 111 C

7.4 TPC-C Benchmark Performance
Figure 7.8 (below) shows the performance dependence on the

number of nodes per host in use. With a quad-core system, we

expect to use at least 4 nodes per host, and a typical value is 6

nodes per host even for pure single-node executions. We ran

multiple nodes per host up to 12 nodes per host. The fact that

additional nodes (more than 1.5 per CPU) provide better

performance means the system is encountering significant delays

on each node, although not as great as VoltDB. This situation is

also reflected in observed CPU percentages well below 100%.

VoltDB cannot take much advantage of additional nodes because

each distributed transaction takes over the entire cluster.

Figure 7.8 TPC-C performance on 4 hosts

Figure 7.9 TPC-C performance by count of hosts

Figure 7.9 shows the scale-up of TPC-C on CVoltDB once

multiple hosts are in use. It is not surprising that the change from

one to two hosts degrades performance, because some of the

distributed transactions are now communicating between hosts

rather than just between nodes on the same host.

In summary, TPC-C is not as perfect a fit as TPC-B for CVoltDB,

because the incremental manipulations of the customer balance

are only part of the transactional work, and some of the

distributed transactions are multi-shot. Still, we are seeing

significant improvement in performance, in a fairly realistic

setting.

8. FUTURE WORK
Several aspects of the CVoltDB system are incomplete. Schema

changes and table loads may not be executed in a CVoltDB

transaction, but instead must be done in a separate VoltDB

transaction. Escrow columns depend on a naming convention for

designation.

CVoltDB guarantees that transaction Prepares and Commits take

place in TxID order. However Commit ordering is not required

for serialization and replica consistency as long as Prepares are in

TxID order, so some additional performance may be possible to

allow out-of-order commits of transactions (but final command

logging of transactions must occur in TxID order, so commit

results must be queued on the coordinator node in this order).

Although CVoltDB has been able to utilize the wait time of the

second phase of two-phase commit, the nodes still become idle

between shots of a multi-shot transaction. To utilize this time, we

would need to add Read locks and deadlock detection, as was

done in [8], or wound-wait locks as in Google’s Spanner [2] for

deadlock avoidance. The latter option is particularly promising

because it avoids possible distributed deadlocks at the cost of

possible extra aborts, requiring retry. Note that these proposals

still maintain single-threaded nodes to avoid latching.

The current version of VoltDB (starting from version 3) has a new

transaction initiation protocol that reduces latency and may

improve load-balancing behavior. However, it coordinates all the

distributed transactions from a single node, creating a bottleneck

if a significant fraction of transactions are distributed (common in

our benchmarks but not in current VoltDB deployments). Possibly

the new approach could be reworked to remove this bottleneck

and still help with load balancing and latency.

9. CONCLUSIONS

In this paper we have introduced features into CVoltDB that

provide much faster distributed transaction performance. We

simplified the lightweight locking concurrency method of [7] by

dropping Read locks, while keeping Write locks. Read locks are

not needed since Prepares are executed one at a time on a node,

and replica consistency follows from execution in TxID order. We

also devised an Ordered Escrow method for OLTP MMDB

systems that speeds up incremental operations while maintaining

serializability and replica consistency. Escrow quantities can be

read at the cost of synchronizing the stream of Escrow updates.

The Escrow capability is provided to programmers with a simple

and expressive SQL extension.

10. ACKNOWLEDGMENTS
Our thanks to Vertica for supporting Weiwei Gong.

11. REFERENCES
[1] Abadi, D., Hugg, J., Jones, E., Kallman, Kimura, R. H.,

Madden, S., Natkins, J., Pavlo, A., Rasin, A.M., Stonebraker,

M., Zdonik, S., Zhang, Y. 2008. H-Store: A High-

Performance, Distributed Main Memory Transaction

Processing System. PVLDB, 1,2 (2008) 1496–1499.

[2] Corbett, J, Dean, J, Epstein, M, Fikes, A, Frost, C., Furman,

J., Ghemawat, S., Gubarev, A., Heiser, C., Hochschild, P.,

Hsieh,W., Kanthak,S., Kogan, E., Li, H., Lloyd, A.,

Melnik,S., Mwaura,D., Nagle,D., Quinlan, S., Rao, R Rolig,

L., Saito,Y., Szymaniak,M., Taylor,C., Wang, R., Woodford,

D. 2012 Spanner: Google’s globally-distributed database.

Proceedings of the 10th USENIX conference on Operating

SystemsDesign and Implementation, OSDI’12, 251–264.

[3] DeWitt, D. J., Katz, R. H., Olken, F. , Shapiro, L. D.,

Stonebraker, M., Wood, D. A. 1984. Implementation

Techniques for Main Memory Database Systems. ACM

SIGMOD 2014, 2 (June 1984) 1 – 8.

[4] Garcia-Molina, H., and Salem, K. 1992. Main Memory

Database Systems: An Overview. IEEE Trans. Knowl. Data

Eng. 4(6)(1992) 509-516.

[5] Gawlick, D. and Kinkade, D. 1985.Varieties of Concurrency

Control in IMS/VS Fast Path. IEEE Database Eng. Bulletin

8,2 (June 1985) 3-10.

[6] Graefe, G., Zwilling, M. J., 2004. Transaction support for

indexed views. ACM SIGMOD 2004: 323-334.

[7] Harizopoulos, S., Abadi, D. J., Madden, S. and Stonebraker,

M. 2008. OLTP through the looking glass, and what we

found there. In ACM SIGMOD (2008), 981–992.

[8] Jones, E. P. C., Abadi, D. J., and Madden, S. 2010. Low

Overhead Concurrency Control for Partitioned Main

Memory Databases. ACM SIGMOD 2010, 603-614.

[9] Kallman, R., H. Kimura, Natkins, J., Pavlo, A., Rasin, A.,

Zdonik, S., Jones, E. P. C. , Madden, S. , Stonebraker, M.,

Zhang, Y. , Hugg, J., Abadi, D.J. 2008. H-Store: a High-

Performance, Distributed Main Memory Transaction

Processing System. Proc. VLDB, 1, 2 (2008) 1496-1499.

[10] Kraska, T., Hentschel, M., Alonso, G., Kossmann, D. 2009.

Consistency Rationing in the Cloud: Pay only when it

matters. Proc.VLDB, 2, 1 (August 2009) 253-264.

[11] Lomet, D., ed., 2013. IEEE Data Engineering Bulletin 36, 2

(June 2013).

[12] Thomson, A, Abadi, D.2010: The Case for Determinism in

Database Systems. Proc.VLDB, 3,1: 70-80

[13] Thomson, A, Abadi, D.2013 :Modularity and Scalability in

Calvin. IEEE Data Engineering Bulletin, 36, 2 (June 2013)
48-55

[14] O'Neil, P. E. 1986. The Escrow Transactional Method. ACM

Transactions on Database Systems 11, 4, 406-430.

[15] O'Neil, P. E. 1991. Deadlock Prediction for Escrow

Transactions. Information Systems. 16, 1 (1991), 13-20.

[16] Stonebraker, M., Madden, S., Abadi, D. J. , Harizopoulos, S.,

Hachem, N., Helland, P., 2007. The end of an Architectural

Era: (It’s Time for a Complete Rewrite). Proc. VLDB, 2007,

1150-1160.

[17] Stonebraker, M. and Weisberg, A. 2013. The VoltDB Main

Memory DBMS. IEEE Data Engineering Bulletin, 36, 2

(June 2013) 21-27.

[18] Transaction Processing Performance Council, www.tpc.org.

[19] Yalamanchi, A., Gawlick,D 2009. Compensation-aware data

types in RDBMS. ACM SIGMOD 2009 931-938.

http://www.dblp.org/db/indices/a-tree/d/DeWitt:David_J=.html
http://www.dblp.org/db/indices/a-tree/k/Katz:Randy_H=.html
http://www.dblp.org/db/indices/a-tree/o/Olken:Frank.html
http://www.dblp.org/db/indices/a-tree/s/Shapiro:Leonard_D=.html
http://www.dblp.org/db/indices/a-tree/s/Stonebraker:Michael.html
http://www.dblp.org/db/indices/a-tree/w/Wood:David_A=.html
http://www.informatik.uni-trier.de/~ley/pers/hd/y/Yalamanchi:Aravind.html
http://www.informatik.uni-trier.de/~ley/pers/hd/y/Yalamanchi:Aravind.html
http://www.informatik.uni-trier.de/~ley/pers/hd/a/Abadi:Daniel_J=.html
http://www.informatik.uni-trier.de/~ley/pers/hd/a/Abadi:Daniel_J=.html
http://www.tpc.org/
http://www.informatik.uni-trier.de/~ley/pers/hd/y/Yalamanchi:Aravind.html
http://www.informatik.uni-trier.de/~ley/pers/hd/y/Yalamanchi:Aravind.html
http://www.informatik.uni-trier.de/~ley/db/conf/sigmod/sigmod2009.html#YalamanchiG09

