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ABSTRACT 
Main Memory Database Systems (MMDBs) have been studied 

since the 80s [3,4], when memory was quite costly ($1500 per 

MByte in 1984). We can now buy memory for about $10 per 

GByte. An advantage of MMDBs is that serial execution of a non-

distributed transaction on a uniprocessor from start to finish saves 

the work of disk I/O, locking, latching and deadlock handling [7]. 

The 2013 Bulletin on Data Engineering [11] had eight articles on 

recent MMDBs and only three mentioned distributed transactions. 

Implementing fast, serializable, distributed transactions on an 

MMDB is difficult, since communication delays typically leave 

some CPUs idle and reduce total throughput.  

We began a project in Fall 2011 to improve distributed 

transactional performance of the open-source MMDB VoltDB 

system [14], which was based on an earlier academic prototype 

MMDB H-Store [1]. We developed a low-overhead concurrency 

method that executes consecutive Prepares with delayed Commits 

on each node (CPU) and takes Write locks but not Read locks to 

detect conflicts. We developed an Ordered Escrow Method, a 

variant of Escrow [14] to greatly speed up transactions with 

incremental updates. We named our VoltDB modification 

CVoltDB (C for Concurrency) and proved it supports replica 

consistency and serializability. Full TPC-B and TPC-C 

benchmarks demonstrate greatly improved performance due to 

new features in CVoltDB.  

Categories and Subject Descriptors 
C.2.4: [Distributed Systems] Distributed databases 

General Terms 

Algorithms, Measurement, Performance, Design.  

Keywords 

Concurrency Control, Distributed Database, Performance, 

Escrow, Shared Nothing 

Topics: Concurrency Control and Recovery, Distributed and 

Parallel Databases, Database Performance, Database Services and 

Applications 

1. INTRODUCTION  
Classical RDBMS products, such as Oracle, DB2 and SQL 

Server, are Disk Resident DBs (DRDBs), with designs from the 

1970s, whose data can only be read or updated after it is brought 

into memory. Enormous reductions in memory prices and ever-

faster compute cycles have made disk accessed data much less 

desirable for all but the largest databases. Memory-resident 

transactions can run to completion on a uniprocessor with no 

stalls by avoiding I/O waits and transactional user interaction. 

This saves overheads for locking, latching and memory buffering, 

using about 64% of the CPU time in DRDBs [7]. 

A shared-nothing distributed database horizontally partitions data 

into shards of allied rows on distinct nodes. A bank database 

typically assigns accounts of bank branches to a distinct shard, 

with each node's transaction processor having exclusive access to 

its shard. If all the information needed by a transaction is held in a 

single shard owned by a certain node, we call the transaction a 

single-node transaction. A transaction needing data from different 

shards is a distributed transaction.  

In a sharded MMDB running single-node transactions, latches and 

locks are not needed if transactions execute one at a time on each 

node and thus run without blocking. In this way, we eliminate 

buffering, latching, and locking. A lightweight logging method, 

for example to an SSD device, is still needed to provide recovery. 

Such a system provides very high performance for single-node 

transactions, as argued in [16] and shown in practice in H-Store 

and VoltDB. When we run distributed transactions on a sharded 

MMDB, each transaction needs to execute on several nodes and 

communicate between them. Under the serial execution rule at 

each node, many waits for messages will occur in mid-transaction, 

and performance nose-dives.  

Distributed transactions are directed from a single Coordinator 

node and have two phases of execution: a Prepare P and a 

Commit C (or Abort A). Single-node transactions also have 

Prepare and Commit phases. With mixed distributed and single-

node transactions, a sequence such as P1 C1 P2 A2 P3 C3… runs 

on each executing node. Each node of a distributed transaction 

must wait for a Coordinator Commit message after a Prepare 

phase completes and this is pure communication wait time. The 

challenge is to find a concurrency mechanism that allows useful 

work during communication wait, yet avoids re-introducing the 

latching and locking disk-based systems need. We note that 

communication wait times are about 100 times shorter than Disk 

waits (about 30us vs. 3ms), about the same length as the 

transactional work for a Prepare, so transactions need to overlap 

only in a minor way to fill in communication wait times. 

Our CVoltDB scheme (like the one in [8] but simpler) has 

transactions perform Consecutive Prepares on a node, e.g.: P1 P2 
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C1 C2, or P1 P2 P3 C1 P4 C2 A3 C4, etc. Here the transactions 

can be single-node or distributed and new transactions can 

Prepare while distributed transactions wait for Commit messages. 

We run single-threaded on the node and assume transactions 

execute Prepares, and separately, Commits/Aborts in transaction 

ID (TxID) order. Write locking is used to handle conflicts while 

multiple Prepared transactions exist at once: Prepares that try to 

read or update a column of a row updated by a prior Prepare will 

block because of a conflicting Write. See Section 4 for further 

details. The Escrow Method [14] addresses this delay by 

supporting Escrow updates that don't block subsequent Escrow 

updates of the same column. For CVoltDB, we have developed 

the Ordered Escrow Method, described in Section 5.  

In what follows, we describe a version of VoltDB [17] that we 

improved from the version we first encountered by guaranteeing 

distributed transactions on multiple nodes (CPUs) run on only the 

nodes required. See Section 3.2.1. The original VoltDB 

developers made little effort to optimize distributed transactions 

since their customers had no need of them. With this 

improvement, VoltDB is still a sharded MMDB with serial 

execution on nodes. We added our concurrency schemes of the 

prior paragraph, with runtime flags to allow selection of features. 

Implementation is further discussed in Section 6.  

In a sharded MMDB with serial execution on nodes (without 

Consecutive Prepares or Escrow), even a few distributed 

transactions in the mix makes performance nose-dive due to 

communication delay between nodes. We ran the TPC-B 

benchmark with a varying proportion of distributed transactions to 

measure the effectiveness of Consecutive Prepares and Escrow 

updates to improve performance of transactions with incremental 

updates. Our changes have no effect at 0% distributed, but at 5% 

distributed (on a 4 host cluster) our scheme improves TPS by 90% 

over that of VoltDB and by 174% at 15% distributed, the standard 

TPC-B mix. We also tested the TPC-C benchmark, with its more 

complex transactions. As expected, the quantitative results are not 

as striking, but still significant.  See Section 7 for more 

information. 

CVoltDB makes distributed transactions run faster, but still has 

problems with load balancing. Because of the tyranny of 

execution in TxID order, the system runs at the rate of the most 

loaded partition, among partitions interrelated by distributed 

transactions. VoltDB has recently changed the TxID generation 

algorithms to allow partitions assign compatible per-partition 

TxIDs to distributed transactions to help with this load balancing 

problem. 

NOTE: The CVoltDB sources are available at 

https://github.com/wwgong/CVoltDB.  

2. RELATED WORK 
Mike Stonebraker, one of the authors of [3] who foresaw main 

memory databases with lower memory prices of the future, 

spearheaded a collaborative project to implement such a system in 

2007. The academic prototype called H-Store [16], which showed 

the value of MMDB in OLTP applications, and in particular, the 

shared-nothing approach with single-threaded nodes in H-Store. 

H-Store was announced in [9] and the open-source commercial 

product based on this prototype is VoltDB.  

H-Store runs transactions one at a time on each node and this 

approach was inherited by VoltDB. In [8], an approach called 

speculative execution was built on H-Store to execute a second 

transaction on the same node with the assumption that the first 

transaction would Commit, an attempt to utilize time between 

Prepare and Commit of a distributed transaction that would 

otherwise be idle. But if the first transaction Aborts then the 

second transaction would need to Abort (under the assumption the 

second transaction might have read something changed by the 

first transaction). Paper [8] also provided a second concurrency 

approach with both Read and Write locks. This approach 

performed better than speculation at higher abort rates or higher 

distributed transaction ratios. We consider CVoltDB to be closer 

to this approach, but without Read locks. 

Many current commercial transactional MMDBs, including 

Oracle’s TimesTen and Microsoft’s Heketon, are centralized, so 

their threads access data in a single shared memory, limiting 

scale-up. Two notable commercial distributed MMDBs, VoltDB 

(open-source) and SAP’s HANA (proprietary), both described in 

[11], use shared-nothing partitioning, i.e. sharding. HANA uses 

multi-threaded nodes and distributed snapshot isolation, allowing 

read-only transactions that read from a snapshot evolving from 

OLTP transactions. VoltDB uses single-threaded nodes and is 

discussed in Section 3.  

The Calvin MMDB system developed at Yale [12,13] executes 

distributed transactions in a predetermined serial order without 

the delays of two-phase commit by pre-analyzing each transaction 

for its read and write sets, using “dry runs” if necessary, and then 

scheduling them to avoid conflicts. It uses horizontal partitioning 

and allows (limited) concurrency on each partition. The CVoltDB 

Consecutive Prepares execution qualifies as following Calvin’s 

deterministic locking, without requiring pre-analysis and usually 

fills in the two-phase locking delay with useful work. 

Escrow-like operations are so common in business applications 

that in 1976 IBM released Dieter Gawlick's IMS Fast Path [5], 

with Increment/Decrement updates of data kept in memory for 

high-speed changes that couldn't wait for regular database 

handling. This inspired the Escrow Method for non-blocking 

Aggregate-Increment update appearing in ACM TODS in 1986 

[14]. It has been used to maintain indexed summary views [6], in 

the application tier of Oracle as Compensation-Aware Data Types 

[19], and in an academic project as “B data” layered on Amazon 

S3 cloud storage [10]. But we believe this is the first time Escrow 

has been offered as a native database capability to transaction 

programmers. We will see the value of Escrow performance when 

we run benchmarks in Section 7. 

3. BACKGROUND: VoltDB & CVoltDB 

VoltDB [17] is an open-source, sharded MMDB with single-

threaded nodes that evolved from the academic prototype H-Store. 

Changes include robust error handling and many other production 

database features. VoltDB does not need buffering, latching, or 

locking, greatly simplified from any DRDB engine. After 

reviewing VoltDB code, we decided we could improve 

performance using consecutive prepares on each node and the 

Escrow Method, as discussed in the Introduction. We call our 

variant system “Concurrent VoltDB”, or CVoltDB. 

3.1 CVoltDB and VoltDB common features 
VoltDB horizontally partitions data into replicated shards of allied 

rows on distinct hosts. If one host fails during a transaction, it 

continues to run on replica shards. If the number of shards on 

distinct hosts is K+1 (K ≥ 1) then the system provides K-Safety, 



meaning K hosts can crash leaving transactions still able to run, a 

feature called High Availability (HA). Transaction programs are 

stored procedures registered in the system and dynamically loaded 

when they are to be run. During transaction initiation, VoltDB 

writes a Command Log containing a TxID, Stored Procedure ID 

and Stored Procedure arguments. The Command Log has about 

100 bytes and is quickly written (for example) to a Solid State 

Disk with a capacitor-backed memory buffer. VoltDB writes a 

Snapshot copy of the complete MMDB onto disk as of some 

committed transaction, using a copy-on-write technique. If all 

hosts crash, VoltDB and CVoltDB can recover from the last 

complete Snapshot on Disk, using later Command Logs to replay 

transactions.  

Each transaction is deterministic in VoltDB and CVoltDB, in the 

sense that no external input (e.g., system clock time) is allowed 

during transaction execution. This is to guarantee replica 

consistency, i.e. so transactional data updates on replica shards are 

consistent, since clock time at different replicas might differ. 

When a transaction program is compiled as a stored procedure, it 

is registered in the system and later run by providing the 

Procedure ID and parameter values. Transactions get unique 

TxIDs based on the time they arrive (most significant bits) and the 

host where they arrive. The VoltDB on which we built our 

CVoltDB system executes transactions in TxID order, one at a 

time on each node, ensuring replica consistency and serializability 

VoltDB and CVoltDB have three transaction classes: Single node 

transactions, such as a withdrawal or deposit at a bank branch, are 

most common. Distributed transactions can be either one-shot or 

multi-shot. A shot is a round-trip message exchange between 

participant nodes of a distributed transaction and the Coordinator. 

A one-shot Distributed Transaction might be a transfer of money 

from one bank branch to another on a different node. Multi-shot 

transactions can have multiple shots, each returning data to the 

coordinator before the next shot begins. This is needed when new 

data can lead to a new decision, since each shot runs only non-

procedural SQL, but a decision can be made by the stored 

procedure code from data returned to the Coordinator. Some 

transactions in the TPC-C benchmark must use multi-shot 

transactions, as we explain and illustrate in Section 7.  

VoltDB distributed transactions have performance problems. A 

single node transaction runs from start to finish without 

interruption and distributed transactions runs concurrently on 

many nodes, but in VoltDB a distributed transaction locks up all 

nodes on all hosts. This bottleneck was removed in CVoltDB, as 

explained in Section 3.2.  

3.2 Changes from VoltDB to CVoltDB 

preparing for Concurrency 
In order for Consecutive Prepares on a node (Section 4), and 

Ordered Escrow (Section 5) to work well, we needed to add 

features to speed up distributed transactions as described below. 

3.2.1 Distributed Transactions Limited to Needed 

Nodes 
When VoltDB needs to run a distributed transaction, the Initiator 

sends the Stored Procedure Identifier and parameter values to a 

designated node acting as a Coordinator. The Coordinator sends 

out transaction code (compiled from a SQL batch) to ALL nodes. 

Various nodes execute the code when their turn to run arrives. 

The nodes not actually involved in the transaction will find no 

matching data and return a null set to the Coordinator. Thus all 

nodes are locked up during distributed transactions.  

In CVoltDB we allow multiple parameters of a stored procedure 

to specify which subset of nodes are actively involved in a 

distributed transaction when this is fixed in advance, e.g.: in TPC-

B and TPC-C. This allows us to run many distributed transactions 

concurrently on the system.  We call this CVoltDB feature: 

Distributed Transactions Limited to Needed Nodes. This feature is 

the most important for performance of the three features 

mentioned in these subsections and was also supported by H-

Store.  

3.2.2 Early Code Distribution in CVoltDB 
Another feature of distributed transactions in CVoltDB is named 

Early Code Distribution. A VoltDB coordinator readies a 

distributed transaction Tk after its work on the previous 

transaction has finished. This involves running the stored 

procedure, which assembles code and sends it out to the 

transaction participant nodes, which may be idle, waiting for the 

code. A CVoltDB Coordinator sends out code for Tk to 

participating nodes before it is time for Tk to be readied on the 

Coordinator. These nodes will queue this code and then run Tk as 

soon as all prior transactions on the node have Prepared, allowing 

Tk participants to run their Prepare phase earlier and return results 

to the Coordinator. The return of results may happen even before 

it is time for Tk to be readied, but the Coordinator will queue the 

results and when the time for Tk to be readied arrives the 

Coordinator can process the results for Tk immediately. The 

inevitable wait has become a probabilistic wait (depending on 

which prior transactions run on each node).  

3.2.3 Optimal Coordinator Use in CVoltDB 
In VoltDB systems the Coordinator node is arbitrarily chosen, but 

CVoltDB lets the programmer specify that the Coordinator sit on 

a node of a specified partition used by the transaction to reduce 

communication in distributed transactions.  

4. CONSECUTIVE PREPARES ON A 

NODE 

As discussed in the Introduction, CVoltDB transactions perform 

Consecutive Prepares on a node while delaying Commits e.g.: P1 

P2 C1 C2, or P1 P2 C1 P3 C2 A3, etc. Note we run single-

threaded on the node and all transactions run in TxID order on 

each node both in Prepares and Commits/Aborts. The Prepare 

phases of different transactions on a node must be executed one at 

a time. But when a multi-shot transaction Prepares on a node and 

returns data to its coordinator, it may have more Prepare work to 

do on this node in a later shot. Thus multi-shot communication 

can delay Prepares by later transactions. 

With non-Escrow column updates we use Write locks on rows for 

serializability and if T1 Updates a column C of a row and T2 later 

Reads C, T2 need not take a Read lock on C but it must TEST if 

the column has a prepared update, and if so it must block on T1’s 

Write lock. The lock will be released when T1 Commits. For 

example: P1 P2 (blocks) C1 P2 (unblocks) C2. If T1 Reads C, it 

need not take a Read lock since even if a Write lock on C is taken 

later by T2, the Read by T1 was valid at the time it was executed 

until the end of T1’s Prepare phase (by the rule of one-at-a-time 

Prepares), and the Write by T2 occurs later in TxID order. Note 

that if T1 Write locks a column C1 of R and T2 later tries to Write 



lock a different column C2 of R, T2 will block. The rationale for 

this is that when T1 Updates C1 it creates a Before Image (BI) of 

R, where C1 has its old value. If T2 later updates C2 than a new 

BI would be needed, but the value C1 would have to be 

ambiguous in this BI (old value or new value). We provide for 

phantom detection of Prepared updates by creating a BI row R' 

when T1 updates one of more columns in R, with both R and R' 

held in index entries as in KVL locking.  

5. THE ORDERED ESCROW METHOD 

CVoltDB tables can have one or more Escrow columns in each 

row, based on work in [14, 15].  

5.1 Escrow Columns and Operations  
An Escrow column such as "account_balance" can be incremented 

with a positive or negative increment, INC. A transaction Ti can 

make an Escrow Update Request of an Escrow column C in TBL1 

below, using a SQL update statement with this special syntax:  

Update TBL1 set C += INC where... 

or 

Update TBL1 set C -= INC where...    

(Note: if INC is negative, C -= INC will add |INC|.) 

After such a request succeeds, the result is an Escrow grant, and 

this grant will be part of an Escrow Journal on a node as defined 

below. The value of Escrow is that many increments by many 

different transactions can be granted on a single Escrow column 

without blocking and later committed or aborted. There can also 

be Escrow requests granted by a single transaction on many 

Escrow columns 

Example 5.1 Consider an Escrow column with identifier ColIdx 

in the table TBL1. If the Column represents (say) money in a bank 

account, the largest value allowed (MAX) might be $100,000 

(without a special account) and the smallest value (MIN) might be 

$10 (minimum balance). We explain below how MIN and MAX 

limit possible Escrow grants. VAL is the current value of the 

column if all outstanding Escrow grants are Committed. Two new 

values, INF and SUP, have the same type as VAL and after 

multiple requests, INF is the smallest possible value if all grants 

with positive increments Abort and all grants with negative 

increments Commit, while SUP is the largest value in the inverse 

case. Thus [INF, SUP] bracket possible committed values of 

active transactions. There are six values in a so-called Escrow 

column ColIdx. The data structures that hold this data are 

discussed in Section 6.1. 

 

ColIdx; MIN = 10 MAX = 100000 

INF = 1000, VAL = 1000 SUP = 1000 

  

Any precise numeric type can be used in Escrow, but long 

integers are common (e.g.: pennies in bank balances). As 

increment and decrement grants occur, a chain-linked list of 

Escrow Journals for grants is created, with the header containing 

the updated Escrow Column. An Escrow Journal has this layout. 

Escrow Journal 

 

TxID = 12456  

INC = -20  

 

Hashing on a row pointer lets us access these Escrow journals (see 

Section 6.1). A sequence of updates to Escrow Column ColIdx is 

given below (no Chain-links are shown). 

 

Start 

ColIdx; MIN = 10 MAX = 100000 

INF = 1000, VAL = 1000, SUP = 1000 

 

After Escrow grant 1 for T1 

 

ColIdx; MIN = 10 MAX = 100000 

INF = 950, VAL = 950, SUP = 1000 

TxID = 1 

INC = -50 

 

After Escrow grant 2 for T2 

 

ColIdx; MIN = 10 MAX = 100000 

INF = 950, VAL = 990, SUP = 1040 

ColIdx; TxID = 1 

INC = -50 

ColIdx; TxID = 2 

INC = 40 

 

After T1 Commits 

 

ColIdx; MIN = 10 MAX = 100000 

INF = 950, VAL = 990, SUP = 990 

ColIdx; TxID = 2 

INC = 40 

 

After T2 Aborts 

 

ColIdx; MIN = 10 MAX = 100000 

INF = 950, VAL = 950, SUP = 950 

 

If T1 and T2 both aborted, the column would return to its initial 

state: INF = VAL = SUP = 1000.  

5.2 The Escrow Out-of-Bounds Rule 

In edge cases, we need to block Escrow requests until Commits 

and Aborts can resolve ambiguity in an Escrow value. This 

preserves deterministic execution, needed for replica consistency 

and recovery.  

Consider a request for an Escrow update by transaction Tk that 

would add INC to an Escrow column C starting with a certain 

[INF, SUP] interval. If INC is so large that INF+INC (and thus 

SUP+INC) is larger than MAX. This request cannot be granted, 

since if Tk were to Commit the ultimate committed value would 

be out of acceptable bounds. Similarly a request cannot be granted 

where INC is so negative that SUP+INC (and thus INF+INC) falls 

below MIN. In both cases Tk must Abort. 

Now if INF+INC and SUP+INC both fall in the range [MIN, 

MAX], the Escrow request is perfectly acceptable. But what if 

only one of these conditions failed? That is, if [INF+INC, 

SUP+INC] intersects [MIN, MAX] but projects to one side or the 

other. Then some possible outcome of committing and aborting 

transactions might bring the committed Escrow value outside the 

range [MIN, MAX]. One thing we know for sure is that all 

Escrow requests prior to the one by Tk left us within the valid 

[MIN, MAX] range for any combination of Aborts and Commits. 

But we cannot simply Abort Tk, since it is possible that a replica 

node that has made further transactional progress than ours would 



immediately see it can grant Tk's request. This means we must 

BLOCK this new Escrow Request until enough Aborts and 

Commits have occurred so we know if the new request should 

succeed or fail. Since transactions Prepare in TxID order, no 

transaction that comes after this uncertain case for Tk can Prepare 

until we decide whether to grant the Tk request or Abort it. We 

summarize this rule below 

Escrow Out-of-Bounds Rule. As an Escrow request by Tk adds 

INC to column C, we have three cases 

If [INF+INC, SUP+INC] falls within [MIN, MAX], the request is 

granted and the new [INF, SUP] interval is set to [INF+INC, 

SUP] if INC < 0 or [INF, SUP+INC] if INC > 0. 

1. If [INF+INC, SUP+INC] doesn't intersect [MIN, MAX], 

the request fails and Tk Aborts. 

2. If [INF+INC, SUP+INC] intersects but is not contained in 

[MIN, MAX], Tk blocks while all prior transactions 

Commit or Abort at which point [INF+INC, SUP+INC] is a 

0-length interval in or out of the [MIN, MAX] range and Tk 

commits of Aborts accordingly. This decision might be 

clear earlier if [INF+INC, SUP+INC] lies inside or outside 

[MIN, MAX] before all prior transactions Commit or 

Abort. 

Example. In Example 5.1, after T1 and T2 Prepare, we have INF = 

950 and SUP = 1040. If now T3 Prepares a Decrement of -1000, 

[INF+INC, SUP+INC] = [-50, 40], so we must block T3 until we 

find if Committing will result in a number in the [MIN, MAX] 

range, [10, 10000]. If T1 Aborts and T2 Commits, then T3 can 

Commit and leave a value of 40, but any other actions for T1 and 

T2 will cause T3 to Abort.  

An index cannot contain Escrow columns since their values are 

uncertain when updates are pending. BIs replace non-Escrow 

column updates in an Abort but Escrow columns handle Aborts 

differently.  

5.3 Ordered Escrow vs. Original Escrow 

Note that a transaction Prepare may read an Escrow column, but 

the read will block until Escrow updates by all prior transactions 

commit. In the original Escrow paper [11], VAL was defined to 

be the most recently committed value so uncommitted Escrow 

updates of this column might later Commit or Abort, changing 

VAL. Our definition of VAL is the assumed-commit value of 

outstanding updates on the column, so if a transaction to performs 

an Escrow update itself and later Reads the column; the Read will 

wait for all prior transactions to Commit or Abort and then see its 

own update as part of the value read.  

In the original Escrow environment of [14], if we wanted to sum 

the balances of two frequently updated bank accounts, the Escrow 

reads of the two balances would not necessarily have been 

consistent. The fact that CVoltDB executes Prepares and 

Commits/Aborts in TxID order on all nodes, removes this 

limitation and serializable consistency of Escrow Reads in 

distributed transactions is guaranteed. Furthermore there is no 

chance of deadlock among Escrow updaters as was possible in 

[14], since a deadlock requires interleaved Prepares. Escrow-

related deadlock was shown in [15] to be exponentially difficult to 

handle, with the NP-complete complexity of the generalized 

banker’s algorithm.  

Our new syntax for Escrow update in Section 5.1, using += and -

=, was not in [14], which required specialized database calls.  

6. CVoltDB IMPLEMENTATION 

6.1 CVoltDB Data Structures 

After T1 updates a non-Escrow column in a row R, the row is said 

to be dirty and a BI is created; if T2 then tries to update any non-

Escrow column in the dirty row, it must wait until T1 has 

committed: T2 is blocked for non-Escrow updates. But the term 

Write lock is a bit of a misnomer, since after the non-Escrow 

update of R by T1, Escrow columns of R are still updatable by T2. 

Recall from Section 4 that Read locks are never required in 

CVoltDB. A BI created to reverse non-Escrow column updates in 

a row during Abort must not contain the Escrow columns in that 

row. One should think of Escrow columns as lying outside the 

row of non-Escrow columns in every normal transactional sense.  

We record both non-Escrow and Escrow column updates in the 

row by creating a Row Journal, accessed by hashing on the row 

pointer. The Row Journal has the following layout.  

Row Journal 

Pointer to AI of this row:  PA         

Pointer to Row Schema:  PS 

Pointer to non-Escrow changes:  PN   

Pointer to Escrow Update data: PE 

 

 PA is a pointer to the After-Image (AI) of the row.  

 PS is a pointer to a Row Schema listing all columns, Escrow 

or non-Escrow, their type and ColIdx. 

 PN points to an information struct for non-Escrow row 

changes (if any) including: TxID, type (Insert, Delete, 

Update) and a pointer to the BI, a temporary row in the table. 

 PE points to a series of pointers to each column's Escrow 

update information shown in Section 5.1  

 

If a row has no non-Escrow changes then PN will be null. If there 

are no Escrow updates, PE will point to a null sequence and if 

there are no Escrow columns in the row, PE itself will be null. But 

if a row has no uncommitted changes at all, it will have no Row 

Journal!  

6.2 SQL Operations in CVoltDB 

CVoltDB does not itself handle schema changes or table loads, 

but does support VoltDB transactions in the transaction sequence 

that can do such work, not allowing concurrency with preceding 

or following CVoltDB transactions. CVoltDB handles all the 

DML operations, as follows. 

6.2.1 Row Insert 
We follow VoltDB practice by inserting rows immediately in the 

transaction Prepare phase, along with primary and secondary 

index entries, backing out the inserts if an Abort occurs. To avoid 

potential phantoms, we show a newly inserted row as dirty in the 

Row Journal until the transaction inserting it Commits or Aborts. 

This acts as a KVL-like phantom to stop table or index scans.  

Row Delete 

A Delete of a row R creates a Row Journal if one is not 

preexisting, to show the row is dirty; earlier Escrow column 

updates will complete in order before the Delete is committed; we 

leave the row and all index entries in place, to avoid phantoms, 

blocking later range reads until the delete of Tj Aborts or 



Commits. After the deleting transaction Tj Commits, the row will 

be invisible until it is removed during later Snapshot processing 

(Section 3.1). 

6.2.2 Non-Escrow Update Operations 
Updates of a non-Escrow column will create a BI of the row in a 

new position in the table with entries in the same indexes, while 

the AI of the row will continue with the old secondary index 

entries, updated as needed. Both row pointers hash to the same 

Row Journal so other transactions block in reading either row (by 

index range or direct search) until the transaction performing the 

update Commits. We do not permit updates of columns involved 

in unique indexes at this time. On Commit we remove the BI and 

its index entries. On Abort, the updated row reverts to values in 

the BI for non-Escrow columns and drops Escrow changes. 

6.2.3 Reading Escrow and Non-Escrow Columns 
We saw in Section 5.3 that it is possible to read (by Select or in a 

WHERE clause) the value of an Escrow column by waiting for 

pending Escrow updates of that column to Commit or Abort. Thus 

reading Escrow columns temporarily nullifies the performance 

advantage of Escrow updates. 

A Select statement or WHERE clause can retrieve one or more 

Escrow or non-Escrow column values from a row or a range of 

such rows. The query processor hashes on the row pointer of any 

row it encounters to read the Row Journal (Section 6.1). A range 

search to locate rows must block, as in KVL locking, if it finds a 

row with an updated column it retrieves or one that is involved in 

the WHERE clause. If the query blocks, it must delay its read 

until updates Commit or Abort. With an Escrow column, there 

can be multiple transactions updating it, which must all resolve 

before we can read that column. 

Note we have more freedom performing reads of non-Escrow 

columns than in classical databases, where an update takes a full 

Write lock on the row. For single-variable search conditions, we 

can read columns of rows without blocking as long as the columns 

we read don't include columns being updated: the Row Journal 

PN (Section 6.1) points to a Boolean array that shows updated 

non-Escrow columns. The granularity of our locking is generally 

the same as in KVL locking. 

6.3 Serializability and Replica Consistency  
Given one-at-a-time Prepares on a node, all operations of a TxID 

are Prepared before operations of a later TxID can begin 

Preparing. Distributed transactions Prepare on several nodes, each 

in proper TxID order on that node. Thus all conflicts among 

transactions on each single node yield edges in the Precedence 

graph going from transactions with lower TxID to ones with 

higher TxID. A Precedence graph thus cannot have a cycle and 

the system provides serializable execution in TxID order.  

For Replica Consistency we need to show two replicas cannot 

have divergent outcomes in CVoltDB. As explained in Section 

3.1, transactions are deterministic in CVoltDB in the sense that no 

external input (e.g., system clock time) is accessed during 

transaction execution. Two Replicas will Prepare and Commit the 

same transactions in the same order, but they might Prepare and 

Commit at different times. If the transactions have only standard 

operations (non-Escrow), serializable execution on the two 

Replicas would have identical results. 

Of course all Escrow updates will have identical increments on all 

replicas, but the replicas could have different numbers of recent 

uncommitted transactions at any point and thus different [INF, 

SUP] intervals. We will show that two replicas cannot diverge in 

outcomes because of this. Consider the first decision point in 

prepare Pi that has different decisions (succeed vs. fail) on 

different replicas, possibly at the end of a blocked period caused 

by the Escrow Out-of-Bounds Rule. All earlier Escrow grants 

were made consistently so they are the same for all replicas at this 

decision point in Pi. All previous prepares have completed, so the 

same sequence of commits/aborts are in process.  

Although two replicas could have different [INF, SUP] intervals 

valid in Pi, they both contain one common point, the committed 

value implied by all Escrow grants on the column value, resulting 

from the already-determined (but not yet processed) sequence of 

commits and aborts of the earlier transactions. Because of the 

non-empty intersection between the two [INF, SUP] intervals, it is 

impossible that one [INF, SUP] interval will end up entirely 

inside [MIN, MAX] and the other one entirely outside.  

7. BENCHMARKS 
In this Section, we compare the performance of CVoltDB against 

VoltDB in two benchmarks, the TPC-B benchmark (no longer 

officially recognized) and the current TPC-C [18] benchmark. 

This is clearly an unfair comparison, since VoltDB was not 

optimized for distributed transactions, but it seems to be a proper 

comparison to characterize the new performance features of 

CVoltDB. NOTE: we ran TPC-B and TPC-C without replication 

of benchmark data on our rather limited four-host cluster. We did 

test replication and snapshot processing separately to ensure that 

CVoltDB fully supports them. 

All performance tests for TPC-B and TPC-C are run on our 4-host 

cluster, with 4 Dell minitower systems, quad-core Core i5-3450 

3.10GHz CPUs and 16GB memory. The systems are connected by 

a Gigabyte Ethernet switch, and run 64-bit Ubuntu Linux 12.04 

LTS (Linux version 3.2).  

We ran benchmarks four ways, each Successive Configuration 

adding new CVoltDB features. 

Configurations 

1. Original VoltDB. VoltDB 2.1.3, with one performance bug 

fix to avoid unnecessary shots. 

2. Basic Features. CVoltDB with the additional features of 

Section 3.2, but still running only one transaction at a time 

on each node. 

3. Consecutive Prepares. CVoltDB with its additional features 

of Section 3.2, and those of Section 4. 

4. Ordered Escrow. Full CVoltDB processing, with Escrow 

Columns.  

7.1 The TPC-B Benchmark 
The TPC-B benchmark measures performance of banking 

transactions, with four tables, as follows. 

Table Name  # of Rows Row size  Primary key 

Branch N 100 bytes B_ID 

Teller   10N 100 bytes T_ID 

Account 100,000N      100 bytes A_ID 

History Varies 50 bytes  

  

TPC-B explicitly allows horizontal partitioning, and appropriate 

partitioning is by B_ID. For each successive transaction, a Driver 

sends to the database four separate integers, Aid, Tid, Bid and Del 



(values for A_ID, T_ID, B_ID and a Delta Increment). The 

transaction returns the Account Balance to the Driver.  

Transaction Logic Profile: Given Aid, Tid, Bid and Del and a 

Timestamp TS from the Driver. We use the Escrow += extension 

to SQL syntax explained in Section 5.1.  

BEGIN TRANSACTION 

Update Account set Balance += Del where A_ID = Aid;  -- Escrow 

Select Balance from Account where A_ID = Aid;  -- Read Escrow 

Update Teller set Balance += Del where T_ID = Tid; 

Update Branch set Balance += Del where B_ID = Bid; 

Insert into History Values (Aid, Tid, Bid, Del, TS); 

COMMIT TRANSACTION 

Return Account Balance Aid to Driver (i.e., Client);  

Note that this program uses normal SQL updates until the Escrow 

capability is added in Configuration 4.  

A transaction is single-node if the Account’s Branch, Aid/100,000 

equals Bid; if they're different, it is a distributed transaction with 

two Branches, the Branches are in two partitions and the 

transaction is distributed. By design, 85% of the transactions use a 

single branch and 15% a second foreign Branch at random. TPC-

B has no test that balances remain in a given range, a surprising 

lack. The Select from the Account Balance will force all prior 

transactions updating this row to Commit (unlikely, since there 

are 100,000 Accounts to a Branch) and return this value to the 

Driver. Note that the Account Balance, Teller cash and Branch 

balance are all updated by the amount of the Account change.  

Note too that there is a scaling rule in TPC-B requiring a Branch 

row for each nominal TPS recorded, which would require, for a 

measurement of 10,000 TPS, at least 100 billion bytes for 

Account tables. We ignore this requirement. Some TPC rules 

were clearly intended to guarantee that no little upstart company 

would be able to challenge IBM, Oracle or Teradata. For example 

neither Vertica nor Sybase IQ were allowed to run the query 

benchmark TPC-D because of a rule that no vertical partitioning 

was allowed. Why not? Unfair competition!  

7.2 TPC-B Benchmark Performance 
Although the TPC-B benchmark is officially obsolete, it provides 

a well-known distributed workload that has hot-spot behavior. 

The benchmark specifies that 15% of transactions should involve 

two branches, thus two partitions, and others just one.  We scale 

this distributed percent from 0 to 100% to see the effect of the 

mix.  

 

Figure 7.1 TPC-B by distributed%, on 2 hosts  

 

Figure 7.2 TPC-B TPS by distributed%, on 4 hosts 

 

Figure 7.3: Figure 7.2 with log-log scale  

 

Figure 7.4 TPC-B TPS by # of hosts, 15% distributed 

These graphs show VoltDB runs pure single-node transactions 

(Distributed=0%) faster than CVoltDB, but as soon as 1% of 

transactions are distributed, CVoltDB is much faster, about ten 

times faster at 15%, the standard TPC-B mix.  Figure 7.4 shows 

how CVoltDB scales up in all its versions. The original VoltDB 

was very slow for distributed transactions because they locked up 

all nodes.  

Basic H-Store [8] pre-loaded stored procedures so Early Code 

Distribution wasn't needed. It ran transactions one at a time on 

each node and distributed transactions were limited to needed 

nodes. In that form H-Store had comparable performance to 

VoltDB with Basic Features (Red curves of Figures above). H-

Store can also do dynamic loading in its current form.  



Consecutive Prepares but no Escrow (green curve) improves 

distributed transactions, but not by much. All transactions update 

the branch balance by a non-Escrow operation and thus each one 

blocks until the previous transaction Commits. The Escrow 

Method makes a big performance difference.  

7.3 The TPC-C Benchmark  
VoltDB programmers wrote TPC-C Benchmark code and we 

made changes to optimize shots and add Escrow updates in our 

version. The TPC-C benchmark has nine different tables and five 

different transactional profiles to order, pay for, and deliver goods 

from warehouses. Figure 7.5 lists the TPC-C transactions and 

their properties.  

 

Transaction  

RO = read only 

% in 

mix 

% 

distributed 

#Partitions 

involved 

New-Order 45% 10%  1-15 

Payment 45% 15% 1-2 

Delivery 4% 0% 1 

Order-Status (RO) 4% 0% 1 

Stock-Level (RO) 4% 0% 1 

Figure 7.5. Transactions in TPC-C 

The TPC-C benchmark scales by number of warehouses W, with a 

total of 500,000W rows, plus 100,000 rows for Item. We used one 

warehouse for each node, and at least 4-12 nodes/host, so W = 16-

48 for 4 hosts, with 8.1M to 24.1M rows. 

7.3.1 The Home Warehouse Partition 
TPC-C data can be partitioned by warehouse by TPC-C designer 

intention. Each transaction relates to a specific home warehouse 

(data in the home warehouse partition) and accesses only this 

home partition’s data for Delivery, Order-Status, Stock-Level and 

most cases of New-Order and Payment, making them single-node 

transactions. As listed in Figure 7.5, distributed transactions are 

used for 10% of executions for New-Order and 15% for Payment. 

For the distributed Payment transaction, exactly two partitions are 

accessed, the home warehouse and one other, called the remote 

warehouse partition.  For distributed New-Order, up to 15 remote 

partitions might be accessed, but most cases access only one or 

two remote partitions for up to 15 line items, each remotely 

stocked only 1% of the time.  

7.3.2 TPC-C Transactions 
New-Order. A new order is placed for a Customer (a row in the 

Customer table). The home warehouse is the customer’s, and its 

node is the optimal Coordinator in CVoltDB (See Section 3.2.3). 

The order inserts a row in the Order table, a row in New-Order, 

and 5 to 15 rows in Order-Line. Some Line Items may be stored in 

remote warehouses, and require remote stock-level adjustments. 

Here are the major steps of New-Order:  

1. An average of 10 stock items are deducted from quantity on 

hand in Stock table (with 1% chance of each item being 

remote). If remote, Stock-related data returns to the 

Coordinator. 

2. The transaction Aborts if an Item is not found (1% non-

existence required by the spec). On the home partition, inserts 

occur for Order, New-Order and Order-Line rows using data 

gathered in Step 1.  

On VoltDB, in the fastest case where the coordinator runs on the 

home partition, Figure 7.6 shows shots performed for steps 1 and 

2 and then Commit in the distributed case. The Java stored 

procedure runs on Coordinator (J) and sends work to the remote 

node; then both nodes execute step-1 work “111”. Results are 

returned to the coordinator (second J) where the program runs 

again and sends out step-2 work to the remote node, and both 

nodes executes the step-2 work “222”. Results are returned to the 

program (third J), the commit decision is made, and Commit sent 

to the remote node, then acknowledged back.  

 

Figure 7.6. Time-Line for NewOrder on VoltDB               

 

 

Figure 7.7. Time-Line for NewOrder on CVoltDB 

The exclusive period for VoltDB, the period on a node when no 

other transaction can execute, runs from Prepare start to Commit 

time, since no other transaction can start on the node until after 

Commit. Figure 7.6 shows the exclusive period is 3RTT on the 

Coordinator and 2RTT on non-Coordinator nodes.  

Figure 7.7 shows CVoltDB execution of the same New-Order 

transaction. Early Code Distribution (Section 3.2.2) is shown as J 

at the Coordinator, well ahead of the step-1 execution (“111”) on 

the home warehouse partition, the optimal location (Section 

3.2.3). The second work step occasionally needs remote access for 

a required update to add to stock levels if they've fallen too low. If 

not, CVoltDB runs on the Coordinator only for one step.  

By Figure 7.7, the exclusive period for CVoltDB is possibly less 

than one RTT, but if the remote node needs to finish earlier 

transactions before executing this one, it may be longer. On the 

one remote node, the exclusive period extends to the Commit, 

roughly one RTT.  

Payment Program The Payment program accepts a payment for a 

customer, possibly belonging to a remote warehouse, increments 

the customer balance and also increments the home warehouse 

and district year-to-date values, all increments using Escrow. 

Then it inserts to the History table.  

Delivery (Single node Transaction) delivers the oldest 

undelivered order for the district. Its row is deleted from New-

Order, and its Order-Line rows updated. The Customer balance is 

decremented, by Escrow update.  

Order-Status (Single node Transaction, Read-Only) queries the 

status of a customer's last order, including the customer balance, 

an Escrow quantity.  

Stock-Level (Single node Transaction, Read-Only) determines 

which of the items ordered by the last twenty orders in a given 

warehouse and district, have fallen below a specified threshold 

value.  

Coordinator:  J111     J222      J     C 

                \     /   \     / \   / 

                 \   /     \   /   \ / 

Remote node:      111       222     C 

 

Coordinator:    J    111 J222J     C 

                 \      /     \   / 

                  \    /       \ / 

Remote node:       111          C 

 



7.4 TPC-C Benchmark Performance 
Figure 7.8 (below) shows the performance dependence on the 

number of nodes per host in use. With a quad-core system, we 

expect to use at least 4 nodes per host, and a typical value is 6 

nodes per host even for pure single-node executions. We ran 

multiple nodes per host up to 12 nodes per host. The fact that 

additional nodes (more than 1.5 per CPU) provide better 

performance means the system is encountering significant delays 

on each node, although not as great as VoltDB. This situation is 

also reflected in observed CPU percentages well below 100%. 

VoltDB cannot take much advantage of additional nodes because 

each distributed transaction takes over the entire cluster.  

 

Figure 7.8 TPC-C performance on 4 hosts  

 

 

Figure 7.9 TPC-C performance by count of hosts 

 

Figure 7.9 shows the scale-up of TPC-C on CVoltDB once 

multiple hosts are in use. It is not surprising that the change from 

one to two hosts degrades performance, because some of the 

distributed transactions are now communicating between hosts 

rather than just between nodes on the same host.  

In summary, TPC-C is not as perfect a fit as TPC-B for CVoltDB, 

because the incremental manipulations of the customer balance 

are only part of the transactional work, and some of the 

distributed transactions are multi-shot. Still, we are seeing 

significant improvement in performance, in a fairly realistic 

setting.  

8. FUTURE WORK 
Several aspects of the CVoltDB system are incomplete. Schema 

changes and table loads may not be executed in a CVoltDB 

transaction, but instead must be done in a separate VoltDB 

transaction. Escrow columns depend on a naming convention for 

designation.  

CVoltDB guarantees that transaction Prepares and Commits take 

place in TxID order. However Commit ordering is not required 

for serialization and replica consistency as long as Prepares are in 

TxID order, so some additional performance may be possible to 

allow out-of-order commits of transactions (but final command 

logging of transactions must occur in TxID order, so commit 

results must be queued on the coordinator node in this order). 

Although CVoltDB has been able to utilize the wait time of the 

second phase of two-phase commit, the nodes still become idle 

between shots of a multi-shot transaction. To utilize this time, we 

would need to add Read locks and deadlock detection, as was 

done in [8], or wound-wait locks as in Google’s Spanner [2] for 

deadlock avoidance. The latter option is particularly promising 

because it avoids possible distributed deadlocks at the cost of 

possible extra aborts, requiring retry. Note that these proposals 

still maintain single-threaded nodes to avoid latching.  

The current version of VoltDB (starting from version 3) has a new 

transaction initiation protocol that reduces latency and may 

improve load-balancing behavior. However, it coordinates all the 

distributed transactions from a single node, creating a bottleneck 

if a significant fraction of transactions are distributed (common in 

our benchmarks but not in current VoltDB deployments). Possibly 

the new approach could be reworked to remove this bottleneck 

and still help with load balancing and latency. 

9. CONCLUSIONS 

In this paper we have introduced features into CVoltDB that 

provide much faster distributed transaction performance. We 

simplified the lightweight locking concurrency method of [7] by 

dropping Read locks, while keeping Write locks. Read locks are 

not needed since Prepares are executed one at a time on a node, 

and replica consistency follows from execution in TxID order. We 

also devised an Ordered Escrow method for OLTP MMDB 

systems that speeds up incremental operations while maintaining 

serializability and replica consistency. Escrow quantities can be 

read at the cost of synchronizing the stream of Escrow updates. 

The Escrow capability is provided to programmers with a simple 

and expressive SQL extension. 
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