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Representing Graphs (Adjacency list)

2

a

b

c

d

a

b

c

d

Vertex
Adjacent 

Vertices

a b, c, d

b a, d

c a, d

d a, b, c

Initial 

Vertex

Terminal 

Vertices

a c

b a

c

d a, b, c



Representing Graphs

▸Definition: Let G = (V, E) be a simple graph with |V| 

= n. Suppose that the vertices of G are listed in 

arbitrary order as v1, v2, …, vn.

▸The adjacency matrix A (or AG) of G, with respect to 

this listing of the vertices, is the nn zero-one matrix 

with 1 as its (i, j)th entry when vi and vj are adjacent, 

and 0 otherwise.

▸In other words, for an adjacency matrix A = [aij], 

▸aij = 1 if {vi, vj} is an edge of G,

aij = 0 otherwise.
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Representing Graphs

▸Example: What is the adjacency 

matrix AG for the following graph 

G based on the order of vertices 

a, b, c, d ?

4

a

b

c

d

Solution:

Note: Adjacency matrices of undirected graphs are always 

symmetric.



Representing Graphs

▸For the representation of graphs with multiple

edges, we can no longer use zero-one matrices.

▸Instead, we use matrices of natural numbers.

▸The (i, j)th entry of such a matrix equals the

number of edges that are associated with {vi, vj}.

5



Representing Graphs

▸Example: What is the adjacency 

matrix AG for the following graph 

G based on the order of vertices 

a, b, c, d ?

6

Solution:

Note: For undirected graphs, adjacency matrices are 

symmetric.

a

b

c

d



Representing Graphs

▸Definition: Let G = (V, E) be a directed graph with 

|V| = n. Suppose that the vertices of G are listed in 

arbitrary order as v1, v2, …, vn.

▸The adjacency matrix A (or AG) of G, with respect to 

this listing of the vertices, is the nn zero-one matrix 

with 1 as its (i, j)th entry when there is an edge from vi

to vj, and 0 otherwise.

▸In other words, for an adjacency matrix A = [aij], 

▸aij = 1 if (vi, vj) is an edge of G,

aij = 0 otherwise.
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Representing Graphs

▸Example: What is the adjacency 

matrix AG for the following graph 

G based on the order of vertices 

a, b, c, d ?

8

a

b

c

d

Solution:





















0111

0000

0001

0100

GA



Representing Graphs

▸Definition: Let G = (V, E) be an undirected graph 
with |V| = n and |E| = m. Suppose that the vertices and 
edges of G are listed in arbitrary order as v1, v2, …, vn

and e1, e2, …, em, respectively. 

▸The incidence matrix of G with respect to this listing 
of the vertices and edges is the nm zero-one matrix 
with 1 as its (i, j)th entry when edge ej is incident with 
vertex vi, and 0 otherwise.

▸In other words, for an incidence matrix M = [mij], 

▸mij = 1 if edge ej is incident with vi

mij = 0 otherwise.
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Representing Graphs

▸Example: What is the incidence 

matrix M for the following graph G 

based on the order of vertices a, 

b, c, d and edges 1, 2, 3, 4, 5, 6?

10

Solution:





















001110

111000

000101

010011

M

Note: Incidence matrices of directed graphs contain two 1s  

per column for edges connecting two vertices and one 1 

per column for loops.

a

b

c

d

1
2

4
53

6



Isomorphism of Graphs

▸Definition: The simple graphs G1 = (V1, E1) and

G2 = (V2, E2) are isomorphic if there is a bijection

(an one-to-one and onto function) f from V1 to V2

with the property that a and b are adjacent in G1 if

and only if f(a) and f(b) are adjacent in G2, for all a

and b in V1.

▸Such a function f is called an isomorphism.

▸In other words, G1 and G2 are isomorphic if their

vertices can be ordered in such a way that the

adjacency matrices MG1
and MG2

are identical.
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Isomorphism of Graphs

▸From a visual standpoint, G1 and G2 are isomorphic 

if they can be arranged in such a way that their 

displays are identical (of course without changing 

adjacency).

▸Unfortunately, for two simple graphs, each with n 

vertices, there are n! possible isomorphisms that 

we have to check in order to show that these graphs 

are isomorphic.

▸However, showing that two graphs are not

isomorphic can be easy.
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Isomorphism of Graphs

▸For this purpose we can check invariants, that

is, properties that two isomorphic simple graphs

must both have.

▸For example, they must have

• the same number of vertices,

• the same number of edges, and

• the same degrees of vertices.

▸Note that two graphs that differ in any of these

invariants are not isomorphic, but two graphs that

match in all of them are not necessarily

isomorphic. 13



Isomorphism of Graphs

▸Example I: Are the following two graphs isomorphic?

14

d

a

b

c

e

d

a

b
c

e

Solution: Yes, they are isomorphic, because they can be 

arranged to look identical. You can see this if in the right 

graph you move vertex b to the left of the edge {a, c}. Then 

the isomorphism f from the left to the right graph is: f(a) = e, 

f(b) = a, 

f(c) = b, f(d) = c, f(e) = d. 



Isomorphism of Graphs

▸Example II: How about these two graphs?

15

d

a
b

c

e

d

a

b

c

e

Solution: No, they are not isomorphic, because they differ 

in the degrees of their vertices.

Vertex d in right graph is of degree one, but there is no 

such vertex in the left graph.



Connectivity

▸Definition: A path of length n from u to v, where n is 

a positive integer, in an undirected graph is a 

sequence of edges e1, e2, …, en of the graph such 

that f(e1) = {x0, x1}, f(e2) = {x1, x2}, …, f(en) = 

{xn-1, xn}, where x0 = u and xn = v.

▸When the graph is simple, we denote this path by 

its vertex sequence x0, x1, …, xn, since it uniquely 

determines the path.

▸The path is a circuit if it begins and ends at the 

same vertex, that is, if u = v. 
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Connectivity

▸Definition (continued): The path or circuit is said to 

pass through or traverse x1, x2, …, xn-1. 

▸A path or circuit is simple if it does not contain the 

same edge more than once.
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Connectivity

▸Definition: A path of length n from u to v, where n is 
a positive integer, in a directed multigraph is a 
sequence of edges e1, e2, …, en of the graph such 
that f(e1) = (x0, x1), f(e2) = (x1, x2), …, f(en) = 
(xn-1, xn), where x0 = u and xn = v.

▸When there are no multiple edges in the path, we 
denote this path by its vertex sequence x0, x1, …, xn, 
since it uniquely determines the path.

▸The path is a circuit if it begins and ends at the 
same vertex, that is, if u = v. 

▸A path or circuit is called simple if it does not  
contain the same edge more than once.
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Connectivity

▸Let us now look at something new:

▸Definition: An undirected graph is called connected

if there is a path between every pair of distinct vertices 

in the graph.

▸For example, any two computers in a network can 

communicate if and only if the graph of this network   

is connected.

▸Note: A graph consisting of only one vertex is 

always connected, because it does not contain 

any pair of distinct vertices.
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Connectivity

▸Example: Are the following graphs 
connected?

20

d

a
b

c

e

Yes

d

ab

c

e

No

d

a
b

c

e

Yes

d

ab

c

e

f
No



Connectivity

▸Theorem: There is a simple path between every 

pair of distinct vertices of a connected undirected 

graph.

▸Definition: A graph that is not connected is the 

union of two or more connected subgraphs, each 

pair of which has no vertex in common. These 

disjoint connected subgraphs are called the 

connected components of the graph.
21



Connectivity

▸Example: What are the connected components in 

the following graph?

22

a

b c

d
i h

g

jf

e

Solution: The connected components are the graphs with 

vertices {a, b, c, d}, {e}, {f}, {i, g, h, j}.



Connectivity

▸Definition: A directed graph is strongly connected

if there is a path from a to b and from b to a whenever 

a and b are vertices in the graph. 

▸Definition: A directed graph is weakly connected

if there is a path between any two vertices in the 

underlying undirected graph. 
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Connectivity

▸Example: Are the following directed graphs strongly 

or weakly connected?

24

a

b

c

d

Weakly connected, because, for 

example, there is no path from b to d.

a

b

c

d

Strongly connected, because there 

are paths between all possible pairs   

of vertices.



Connectivity

▸Idea: The number and size of connected 

components and circuits are further invariants with 

respect to isomorphism of simple graphs.

▸Example: Are these two graphs isomorphic?

25

Solution: No, because the right graph contains circuits of 

length 3, while the left graph does not.



▸Trees

26



Trees

▸Definition: A tree is a connected undirected graph 

with no simple circuits.

▸Since a tree cannot have a simple circuit, a tree 

cannot contain multiple edges or loops.

▸Therefore, any tree must be a simple graph.

▸Theorem: An undirected graph is a tree if and only  

if there is a unique simple path between any of its 

vertices.
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Trees

▸Example: Are the following graphs trees?

28

No.

Yes.

Yes.

No.



Trees

▸Definition: An undirected graph that does not 

contain simple circuits and is not necessarily 

connected is called a forest.

▸In general, we use trees to represent hierarchical 

structures.

▸We often designate a particular vertex of a tree as 

the root. Since there is a unique path from the root   

to each vertex of the graph, we direct each edge  

away from the root.

▸Thus, a tree together with its root produces a 

directed graph called a rooted tree.
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Tree Terminology

▸If v is a vertex in a rooted tree other than the root, 

the parent of v is the unique vertex u such that there 

is a directed edge from u to v.

▸When u is the parent of v, v is called the child of u.

▸Vertices with the same parent are called siblings.

▸The ancestors of a vertex other than the root are  

the vertices in the path from the root to this vertex, 

excluding the vertex itself and including the root.
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Tree Terminology

▸The descendants of a vertex v are those vertices 

that have v as an ancestor.

▸A vertex of a tree is called a leaf if it has no children.

▸Vertices that have children are called internal 

vertices.

▸If a is a vertex in a tree, then the subtree with a as 

its root is the subgraph of the tree consisting of a    

and its descendants and all edges incident to       

these descendants.
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Tree Terminology

▸The level of a vertex v in a rooted tree is the length 

of the unique path from the root to this vertex.

▸The level of the root is defined to be zero.

▸The height of a rooted tree is the maximum of the 

levels of vertices.
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Trees

▸Example I: Family tree

33

James

Christine Bob

Frank Joyce Petra



Trees

▸Example II: File system

34

/

usr temp

bin spool ls

bin



Trees

▸Example III: Arithmetic expressions

35

×

+ -

y z x y

This tree represents the expression (y + z) × (x - y).



Trees

▸Definition: A rooted tree is called an m-ary tree if 

every internal vertex has no more than m children. 

▸The tree is called a full m-ary tree if every internal 

vertex has exactly m children.

▸An m-ary tree with m = 2 is called a binary tree.

▸Theorem: A tree with n vertices has (n – 1) edges.

▸Theorem: A full m-ary tree with i internal vertices 

contains n = mi + 1 vertices.
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Binary Search Trees

▸If we want to perform a large number of searches in 
a particular list of items, it can be worthwhile to 
arrange these items in a binary search tree to 
facilitate the subsequent searches.

▸A binary search tree is a binary tree in which each 
child of a vertex is designated as a right or left child, 
and each vertex is labeled with a key, which is one 
of the items.

▸When we construct the tree, vertices are assigned 
keys so that the key of a vertex is both larger than   
the keys of all vertices in its left subtree and smaller 
than the keys of all vertices in its right subtree.
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Binary Search Trees

▸Example: Construct a binary search tree for the 

strings math, computer, power, north, zoo, dentist, 

book.

38

math



Binary Search Trees

▸Example: Construct a binary search tree for the 

strings math, computer, power, north, zoo, dentist, 

book.

39

math

computer



Binary Search Trees

▸Example: Construct a binary search tree for the 

strings math, computer, power, north, zoo, dentist, 

book.

40

math

computer power



Binary Search Trees

▸Example: Construct a binary search tree for the 

strings math, computer, power, north, zoo, dentist, 

book.

41

math

computer power

north



Binary Search Trees

▸Example: Construct a binary search tree for the 

strings math, computer, power, north, zoo, dentist, 

book.

42

math

computer power

north zoo



Binary Search Trees

▸Example: Construct a binary search tree for the 

strings math, computer, power, north, zoo, dentist, 

book.

43

math

computer power

north zoodentist



Binary Search Trees

▸Example: Construct a binary search tree for the 

strings math, computer, power, north, zoo, dentist, 

book.

44

math

computer power

north zoodentistbook



Binary Search Trees

▸To perform a search in such a tree for an item x, we 

can start at the root and compare its key to x. If x is 

less than the key, we proceed to the left child of the 

current vertex, and if x is greater than the key, we 

proceed to the right one.

▸This procedure is repeated until we either found the 

item we were looking for, or we cannot proceed any 

further.

▸In a balanced tree representing a list of n items, 

search can be performed with a maximum of 

log(n + 1) steps (compare with binary search).
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Binary Search Trees

46



Spanning Trees

▸Definition: Let G be a simple graph. A spanning tree 

of G is a subgraph of G that is a tree containing every 

vertex of G.

▸Note: A spanning tree of G = (V, E) is a connected 

graph on V with a minimum number of edges 

(|V| - 1).

▸Example: Since winters in Boston can be very cold, 

six universities in the Boston area decide to build a 

tunnel system that connects their libraries.

47



Spanning Trees

▸The complete graph including all possible tunnels:

48

Brandeis Harvard

MIT

TuftsBU

UMass

The spanning trees of this graph connect all libraries with a 

minimum number of tunnels. 



Spanning Trees

▸Example for a spanning tree:

49

Brandeis Harvard

MIT

TuftsBU

UMass

Since there are 6 libraries, 5 tunnels are sufficient to       

connect all of them. 



Spanning Trees

▸Theorem: A simple graph is connected if and only if 

it has a spanning tree.

▸Now imagine that you are in charge of the tunnel 

project. How can you determine a tunnel system of 

minimal cost that connects all libraries?

▸Definition: A minimum spanning tree in a 

connected weighted graph is a spanning tree that has 

the smallest possible sum of weights of its edges.

▸How can we find a minimum spanning tree?
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Spanning Trees

▸The complete graph with cost labels (in billion $):

51

The least expensive tunnel system costs $20 billion. 

Brandeis Harvard

MIT

Tufts
BU

UMass

7

8

9

9 6

64 5 3

4

4

2

4
5

5



Spanning Trees

▸Prim’s Algorithm:

• Begin by choosing any edge with smallest weight

and putting it into the spanning tree,

• successively add to the tree edges of minimum 

weight that are incident to a vertex already in 

the tree and not forming a simple circuit with 

those edges already in the tree,

• stop when (n – 1) edges have been added. 

52



Spanning Trees

▸Example: Use Prim’s algorithm to design a 

minimum spanning tree for the libraries’ graph.

53

Brandeis Harvard

MIT

Tufts
BU

UMass

2

44

3

6

Minimum cost: 19



Spanning Trees

▸Kruskal’s Algorithm:

▸Kruskal’s algorithm is identical to Prim’s algorithm, 

except that it does not demand new edges to be 

incident to a vertex already in the tree.

▸Both algorithms are guaranteed to produce a 

minimum spanning tree of a connected weighted 

graph.
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Spanning Trees

▸Example: Use Kruskal’s algorithm to design a 

minimum spanning tree for the libraries’ graph.

55

Brandeis Harvard

MIT

Tufts
BU

UMass

2

44

3

6

Minimum cost: 19



Spanning Trees

▸Prim vs. Kruskal:

▸The two algorithms differ in the way they can be 

implemented and their efficiency under different 

conditions.

▸As a rule of thumb, Prim’s algorithm is more 

efficient when initially there are many more edges 

than vertices.

▸For graphs with initially only few edges in 

comparison to the number of vertices, Kruskal’s

algorithm typically performs more efficiently.
56



▸Boolean Algebra

57



Boolean Algebra

▸Boolean algebra provides the operations and the 

rules for working with the set {0, 1}.

▸These are the rules that underlie electronic circuits, 

and the methods we will discuss are fundamental to 

VLSI design.

▸We are going to focus on three operations:

• Boolean complementation,

• Boolean sum, and

• Boolean product
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Boolean Operations

▸The complement is denoted by a bar. It is defined by

▸ത0 = 1   and   ത1 = 0.

▸The Boolean sum, denoted by + or by OR, has the 
following values:

▸1 + 1 = 1,    1 + 0 = 1,    0 + 1 = 1,    0 + 0 = 0

▸The Boolean product, denoted by  or by AND, 
has the following values:

▸1  1 = 1,    1  0 = 0,    0  1 = 0,    0  0 = 0
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Boolean Functions and Expressions

▸Definition: Let B = {0, 1}. The variable x is called a 

Boolean variable if it assumes values only from B.

▸A function from Bn, the set {(x1, x2, …, xn) |xiB, 

1  i  n}, to B is called a Boolean function of 

degree n.

▸Boolean functions can be represented using 

expressions made up from Boolean variables and 

Boolean operations.
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Boolean Functions and Expressions

▸Question: How many different Boolean functions of 

degree 1 are there?

▸Solution: There are four of them, F1, F2, F3, and F4:
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x F1 F2 F3 F4

0 0 0 1 1

1 0 1 0 1



Boolean Functions and Expressions

▸Question: How many different Boolean functions of 

degree 2 are there?

▸Solution: There are 16 of them, F1, F2, …, F16:
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1

0

0

0

F2

0

0

0

0

F1

010

101

011

000

F3yx

1

1

1

0

F8

0

1

1

0

F7

0

0

0

1

F9

0

0

1

0

F5

1

1

0

0

F4

1

0

1

0

F6

0

1

0

1

F11

1

0

0

1

F10

0

1

1

1

F12

1

0

1

1

F14

0

0

1

1

F13

1

1

0

1

F15

1

1

1

1

F16



Boolean Functions and Expressions

▸Question: How many different Boolean functions of 

degree n are there?

▸Solution:

▸There are 2n different n-tuples of 0s and 1s.

▸A Boolean function is an assignment of 0 or 1 to 

each of these 2n different n-tuples.

▸Therefore, there are 22n
different Boolean functions
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Boolean Functions and Expressions

▸The Boolean expressions in the variables x1, x2, …, 

xn are defined recursively as follows:

• 0, 1, x1, x2, …, xn are Boolean expressions.

• If E1 and E2 are Boolean expressions, then (𝐸1), 

(E1E2), and (E1 + E2) are Boolean expressions.

▸Each Boolean expression represents a Boolean 

function. The values of this function are obtained by 

substituting 0 and 1 for the variables in the 

expression.
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Boolean Functions and Expressions

▸For example, we can create Boolean expression in 

the variables x, y, and z using the “building blocks”

0, 1, x, y, and z, and the construction rules:

▸Since x and y are Boolean expressions, so is xy.

▸Since z is a Boolean expression, so is ( ҧ𝑧).

▸Since xy and ( ҧ𝑧) are Boolean expressions, 

so is xy + ( ҧ𝑧).

▸… and so on…
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Boolean Functions and Expressions

▸Example: Give a Boolean expression for the 

Boolean function F(x, y) as defined by the following 

table:
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x y F(x, y)

0 0 0

0 1 1

1 0 0

1 1 0

Possible solution: F(x, y) = 𝑥 . 𝑦



Boolean Functions and Expressions

▸Another Example:

67

Possible solution I:

F(x, y, z) = (𝑥𝑧 + 𝑦)

0

0

1

1

F(x, y, z)

1

0

1

0

z

00

10

10

00

yx

0

0

0

1

1

0

1

0

11

11

01

01

Possible solution II:

F(x, y, z) = (𝑥𝑧) (𝑦)



Boolean Functions and Expressions

▸Definition: The Boolean functions F and G of n 

variables are equal if and only if F(b1, b2, …, bn) = 

G(b1, b2, …, bn) whenever b1, b2, …, bn belong to B.

▸Two different Boolean expressions that represent 

the same function are called equivalent.

▸For example, the Boolean expressions xy, xy + 0, 

and xy1 are equivalent.
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Boolean Functions and Expressions

▸The complement of the Boolean function F is the 

function ത𝐹, where ത𝐹(b1, b2, …, bn) = 𝐹(b1, b2, …, bn).

▸Let F and G be Boolean functions of degree n. The 

Boolean sum F+G and Boolean product FG are  

then defined by

▸(F + G)(b1, b2, …, bn) = F(b1, b2, …, bn)+G(b1, b2, …, bn)

▸(FG)(b1, b2, …, bn) = F(b1, b2, …, bn) G(b1, b2, …, bn)
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Identities

▸There are useful identities of Boolean expressions 

that can help us to transform an expression A into an 

equivalent expression B, e.g.:
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Identities
▸These identities come in pairs. To explain the relationship 

between the two identities in each pair we use the concept of a 

dual. 

▸The dual of a Boolean expression is obtained by interchanging 

Boolean sums and Boolean products and interchanging 0s and 1s.

▸The dual of a Boolean function F represented by a Boolean 

expression is the function represented by the dual of this 

expression. 

▸This dual function, denoted by 𝐹𝑑, does not depend on the 

particular Boolean expression used to represent F. 

▸An identity between functions represented by Boolean 

expressions remains valid when the duals of both sides of the 

identity are taken. This result, called the duality principle, is 

useful for obtaining new identities.
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Definition of a Boolean Algebra

▸All the properties of Boolean functions and 

expressions that we have discovered also apply to 

other mathematical structures such as propositions 

and sets and the operations defined on them.

▸If we can show that a particular structure is a 

Boolean algebra, then we know that all results 

established about Boolean algebras apply to this 

structure.

▸For this purpose, we need an abstract definition  

of a Boolean algebra.
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Definition of a Boolean Algebra

▸Definition: A Boolean algebra is a set B with two 
binary operations  and , elements 0 and 1, and a 
unary operation ҧ such that the following properties 
hold for all x, y, and z in B:

▸x  0 = x   and   x  1 = x    (identity laws)

▸x  ( ҧ𝑥) = 1   and   x  ( ҧ𝑥) = 0  (domination laws)

▸(x  y)  z = x  (y  z)   and   
(x  y)  z = x  (y  z)    (associative laws)

▸x  y = y  x  and x  y = y  x (commutative laws)

▸x  (y  z) = (x  y)  (x  z) and
x  (y  z) = (x  y)  (x  z)      (distributive laws)
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Representing Boolean Functions

▸There is a simple method for deriving a Boolean 

expression for a function that is defined by a table. 

This method is based on minterms.

▸Definition: A literal is a Boolean variable or its 

complement. A minterm of the Boolean variables x1, 

x2, …, xn is a Boolean product y1y2…yn, where yi = xi

or yi =ഥ𝑥𝑖.

▸Hence, a minterm is a product of n literals, with 

one literal for each variable.
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Representing Boolean Functions

▸Consider F(x,y,z) again:

75

F(x, y, z) = 1 if and only if:

x = y = z = 0  or

x = y = 0, z = 1 or

x = 1, y = z = 0

Therefore,

F(x, y, z) = ( 𝑥 )( 𝑦 )( 𝑧 )   + 

( 𝑥 )( 𝑦 )z + x( 𝑦 )( 𝑧 )

0

0

1

1

F(x, y, z)

1

0

1

0

z

00

10

10

00

yx

0

0

0

1

1

0

1

0

11

11

01

01



Logic Gates

▸Electronic circuits consist of so-called gates.
There are three basic types of gates:
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x

y

x+y
OR gate

AND gate

x

y

xy

x 𝑥
inverter


