
We will cover these parts of the 

book (8th edition):

2.1

2.2.1-2.2.3

2.3

2.4.1, 2.4.2, 2.4.5
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Set Theory

• Set: Collection of objects (“elements/members”)

• aA “a is an element of A”

“a is a member of A”

• aA “a is not an element of A”

• A = {a1, a2, …, an}   “A contains…” (roster method)

• Order of elements is meaningless

• It does not matter how often the same element is 

listed. (generally there are no repetitions)
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Examples for Sets

▸ “Standard” Sets:

• Natural numbers N = {0, 1, 2, 3, …}

• Integers Z = {…, -2, -1, 0, 1, 2, …} 

• Positive Integers Z+ = {1, 2, 3, 4, …}

• Real Numbers R = {47.3, -12, , …}

• Rational Numbers Q = {1.5, 2.6, -3.8, 15, …}

• Positive Real Numbers R+

• Complex Numbers C

(correct definitions will follow)
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Examples for Sets

• A =  “empty set/null set”

• A = {z} “singleton set” Note: zA, but z  {z}

• A = {{b, c}, {c, x, d}}

• A = {{x, y}} 

Note: {x, y} A, but {x, y}  {{x, y}}

• A = {x | xN  x > 7} = {8, 9, 10, …}

“set builder notation”

• [a,b] = {x | x ≥ a  x ≤ b}

“Closed interval”

• (a,b) = {x | x > a  x < b}

“Open interval” 4



Examples for Sets

▸We are now able to define the set of rational 

numbers Q:

▸Q = {a/b | aZ  bZ+} 

▸or  

▸Q = {a/b | aZ  bZ  b0} 

▸And how about the set of real numbers R?

▸R = {r | r is a real number}

That is the best we can do.
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Subsets

▸A  B “A is a subset of B”

▸A  B if and only if every element of A is also  
an element of B.

▸We can completely formalize this:

▸A  B  x (xA  xB)

▸Examples:
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A = {3, 9}, B = {5, 9, 1, 3},           A ⊆ B ? true

A = {3, 3, 3, 9}, B = {5, 9, 1, 3},   A ⊆ B ?

false

true

A = {1, 2, 3}, B = {2, 3, 4},           A ⊆ B ?



Subsets

▸ Useful rules:

• A = B  (A  B)  (B  A) 

• (A  B)  (B  C)  A  C   (see Venn Diagram)
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Subsets

▸ Useful rules:

•   A for any set A 

• A  A for any set A

▸ Proper subsets:

▸ A  B     “A is a proper subset of B”

▸ A  B  x (xA  xB)  x (xB  xA)

▸ or

▸ A  B  x (xA  xB)  x (xB  xA) 

8



Set Equality

▸Sets A and B are equal if and only if they contain 

exactly the same elements. ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) or  

(𝐴 ⊆ 𝐵) ∧ (𝐵 ⊆ 𝐴)

▸Examples:
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• A = {9, 2, 7, -3}, B = {7, 9, -3, 2} : A = B

• A = {dog, cat, horse}, 

B = {cat, horse, squirrel, dog} : A ≠ B

• A = {dog, cat, horse}, 

B = {cat, horse, dog, dog} : A = B



Cardinality of Sets

▸If a set S contains n distinct elements, nN,
we call S a finite set with cardinality n.

▸Examples:
A = {Mercedes, BMW, Porsche}, |A| = 3
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B = {1, {2, 3}, {4, 5}, 6} |B| = 4

C = ∅ |C| = 0

D = { x∈N | x ≤ 7000 } |D| = 7001

E = { x∈N | x > 7000 } E is infinite!



The Power Set

▸ 2A or P(A)           “power set of A”

▸ 2A = {B | B  A}     (contains all subsets of A)

▸ Examples:

▸ A = {x, y, z}

▸ 2A = {, {x}, {y}, {z}, {x, y}, {x, z}, {y, z}, {x, y, z}}

▸ A = 

▸ 2A = {}

▸ Note: |A| = 0,  |2A| = 1
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The Power Set
▸ Cardinality of power sets:

▸ | 2A | = 2|A|

• Imagine each element in A has an “on/off” switch

• Each possible switch configuration in A corresponds 

to one element in 2A
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A 1 2 3 4 5 6 7 8

x x x x x x x x x

y y y y y y y y y

z z z z z z z z z

• For 3 elements in A, there are 2x2x2 = 8 elements in 2A



Cartesian Product

▸The ordered n-tuple (a1, a2, a3, …, an) is an 

ordered collection of objects.

▸Two ordered n-tuples (a1, a2, a3, …, an) and 

(b1, b2, b3, …, bn) are equal if and only if they 

contain exactly the same elements in the same 

order, i.e., ai = bi for 1  i  n.

▸The Cartesian product of two sets is defined as:

▸AB = {(a, b) | aA  bB}

▸Example: A = {x, y}, B = {a, b, c}

AB = {(x, a), (x, b), (x, c), (y, a), (y, b), (y, c)}
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Cartesian Product

▸Note that:

• A = 

• A = 

• For non-empty sets A and B: AB  AB  BA

• |AB| = |A||B|

▸The Cartesian product of two or more sets is 

defined as:

▸A1A2…An = {(a1, a2, …, an) | aiAi for 1  i  n}
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Partitions

▸Definition: A partition of a set S is a collection of 

disjoint nonempty subsets of S that have S as their 

union. In other words, the collection of subsets Ai, 

iI, forms a partition of S if and only if 

▸
(i)   Ai   for iI

(ii) Ai  Aj = , if i  j

(iii) iI Ai = S
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Partitions

▸Examples: Let S be the set {u, m, b, r, o, c, k, s}.

Do the following collections of sets partition S ?
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{{m, o, c, k}, {r, u, b, s}} yes.

{{c, o, m, b}, {u, s}, {r}} no (k is missing).

{{b, r, o, c, k}, {m, u, s, t}} no (t is not in S).

{{u, m, b, r, o, c, k, s}} yes.

{{b, o, r, k}, {r, u, m}, {c, s}} no (r is in two sets).

{{u, m, b}, {r, o, c, k, s}, ∅} no (∅ not allowed).



Set Operations

▸ Union: AB = {x | xA  xB}

▸ Example: A = {a, b}, B = {b, c, d}

▸ AB = {a, b, c, d} 

▸ 𝐴 ∪ 𝐵 = 𝐴 + 𝐵 − |𝐴 ∩ 𝐵|

▸ Intersection: AB = {x | xA  xB}

▸ Example: A = {a, b}, B = {b, c, d}

▸ AB = {b}

17



Set Operations

▸Two sets are called disjoint if their intersection is 

empty, that is, they share no elements:

▸AB = 

▸The difference between two sets A and B contains 

exactly those elements of A that are not in B:

▸A-B = {x | xA  xB}

Example: A = {a, b}, B = {b, c, d}, A-B = {a}
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Set Operations

▸The complement of a set A contains exactly those 

elements under consideration that are not in A: 

▸-A = U-A

▸Example: U = N,  B = {250, 251, 252, …}

▸ -B = {0, 1, 2, …, 248, 249}

▸𝐴 − 𝐵 = 𝐴 ∩ ത𝐵
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Set Operations

▸How can we prove A(BC) = (AB)(AC)?

▸Method I:

▸ xA(BC)

 xA  x(BC)

 xA  (xB  xC)

 (xA  xB)  (xA  xC)
(distributive law for logical expressions)

 x(AB)  x(AC)

 x(AB)(AC)
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Set Operations

▸Method II: Membership table

▸1 means “x is an element of this set”

0 means “x is not an element of this set” 
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A   B   C BC A(BC) AB AC (AB) (AC)

0   0   0 0 0 0 0 0

0   0   1 0 0 0 1 0

0   1   0 0 0 1 0 0

0   1   1 1 1 1 1 1

1   0   0 0 1 1 1 1

1   0   1 0 1 1 1 1

1   1   0 0 1 1 1 1

1   1   1 1 1 1 1 1



Set Identities
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Identity Name

𝐴 ∩ 𝑈 = 𝐴
𝐴 ∪ ∅ = 𝐴

Identity laws

𝐴 ∪ 𝑈 = 𝑈
𝐴 ∩ ∅ = ∅

Domination laws

𝐴 ∪ A = 𝐴
𝐴 ∩ 𝐴 = 𝐴

Idempotent laws

( ҧ𝐴) = 𝐴
Complementation 

laws

𝐴 ∪ 𝐵 = 𝐵 ∪ 𝐴
𝐴 ∩ 𝐵 = 𝐵 ∩ 𝐴

Commutative

laws

Identity Name

𝐴 ∪ 𝐵 ∪ 𝐶 = 𝐴 ∪ 𝐵 ∪ 𝐶
𝐴 ∩ 𝐵 ∩ 𝐶 = 𝐴 ∩ 𝐵 ∩ 𝐶

Associative 

laws

𝐴 ∪ 𝐵 ∩ 𝐶 = 𝐴 ∪ 𝐵 ∩ (𝐴 ∪ 𝐶)
𝐴 ∩ 𝐵 ∪ 𝐶 = 𝐴 ∩ 𝐵 ∪ (𝐴 ∩ 𝐶)

Distributive 

laws

𝐴 ∩ 𝐵 = ҧ𝐴 ∪ ത𝐵

𝐴 ∪ 𝐵 = ҧ𝐴 ∩ ത𝐵

De Morgan’s 

laws

𝐴 ∪ 𝐴 ∩ 𝐵 = 𝐴
𝐴 ∩ 𝐴 ∪ 𝐵 = 𝐴

Absorption 

laws

𝐴 ∪ ҧ𝐴 = 𝑈
𝐴 ∩ ҧ𝐴 = ∅

Complement 

laws



Proving Set Identities
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Description Method

Subset 

method

Show that each side of the identity is a subset 

of the other side.

Membership 

table

For each possible combination of the atomic 

sets, show that an element in exactly these 

atomic sets must either belong to both sides or 

belong to neither side.

Apply 

existing 

identities

Start with one side, transform it into the other 

side using a sequence of steps by applying an 

established identity.



Exercises

▸Question 1:

▸Given a set A = {x, y, z} and a set B = {1, 2, 3, 4}, 

what is the value of  | 2A  2B | ?

▸Question 2:

▸Is it true for all sets A and B that (AB)(BA) =  ?

Or do A and B have to meet certain conditions?

▸Question 3:

▸For any two sets A and B, if A – B =  and B – A = 

, can we conclude that A = B? Why or why not?
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Exercises

▸Question 1:

▸Given a set A = {x, y, z} and a set B = {1, 2, 3, 4}, 

what is the value of  | 2A  2B | ?

▸Answer:

▸| 2A  2B | = | 2A |  | 2B | = 2|A|  2|B| = 816 = 128
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Exercises

▸Question 2:

▸Is it true for all sets A and B that (AB)(BA) =  ?

Or do A and B have to meet certain conditions?

▸Answer:

▸If A and B share at least one element x, then both 

(AB) and (BA) contain the pair (x, x) and thus are 

not disjoint.

▸Therefore, for the above equation to be true, it is 

necessary that AB = .
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Exercises

▸Question 3:

▸For any two sets A and B, if A – B =  and B – A = 

, can we conclude that A = B? Why or why not?

▸Answer:

▸Proof by contradiction: Assume that A ≠ B. 

▸Then there must be either an element x such that 

xA and xB or an element y such that yB and yA.

▸If x exists, then x(A – B), and thus A – B ≠ .

▸If y exists, then y(B – A), and thus B – A ≠ .

▸This contradicts the premise A – B =  and B – A = 

, and therefore we can conclude A = B.
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… and the next section is about…

▸Functions

28



Functions

▸A function f from a set A to a set B is an assignment

of exactly one element of B to each element of A.

▸We write

▸f(a) = b

▸if b is the unique element of B assigned by the 

function f to the element a of A.

▸If f is a function from A to B, we write

▸f: AB

▸(note:  Here, ““ has nothing to do with if… then)
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Functions

▸If f:AB, we say that A is the domain of f and B is 

the codomain of f. 

▸If f(a) = b, we say that b is the image of a and a is 

the pre-image of b.

▸The range of f:AB is the set of all images of 

elements of A.

▸We say that f:AB maps A to B.
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Functions

▸Let us take a look at the function f:PC with

▸P = {Linda, Max, Kathy, Peter}

▸C = {Boston, New York, Hong Kong, Moscow}

▸f(Linda) = Moscow

▸f(Max) = Boston

▸f(Kathy) = Hong Kong

▸f(Peter) = New York

▸Here, the range of f is C.
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Functions

▸Let us re-specify f as follows:

▸f(Linda) = Moscow

▸f(Max) = Boston

▸f(Kathy) = Hong Kong

▸f(Peter) = Boston

▸Is f still a function?

32

yes

{Moscow, Boston, Hong Kong}What is its range?



Functions

▸Other ways to represent f:
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x f(x)

Linda Moscow

Max Boston

Kathy
Hong 

Kong

Peter Boston

Linda

Max

Kathy

Peter

Boston

New York

Hong Kong

Moscow



Functions

▸If the domain of our function f is large, it is 
convenient to specify f with a formula, e.g.:

▸f:RR

▸f(x) = 2x

▸This leads to:

▸f(1) = 2

▸f(3) = 6

▸f(-3) = -6

▸…
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Functions

▸Let f1 and f2 be functions from A to R.

▸Then the sum and the product of f1 and f2 are 
also functions from A to R defined by:

▸(f1 + f2)(x) =  f1(x) + f2(x)

▸(f1f2)(x) =  f1(x) f2(x)

▸Example:

▸f1(x) = 3x,  f2(x) = x + 5

▸(f1 + f2)(x) =  f1(x) + f2(x) = 3x + x + 5 = 4x + 5

▸(f1f2)(x) =  f1(x) f2(x) = 3x (x + 5) = 3x2 + 15x
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Functions

▸We already know that the range of a function 

f:AB is the set of all images of elements aA.

▸If we only regard a subset SA, the set of all 

images of elements sS is called the image of S.

▸We denote the image of S by f(S):

▸f(S) = {f(s) | sS}
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Functions

▸Let us look at the following well-known function:

▸f(Linda) = Moscow

▸f(Max) = Boston

▸f(Kathy) = Hong Kong

▸f(Peter) = Boston

▸What is the image of S = {Linda, Max} ?

▸f(S) = {Moscow, Boston}

▸What is the image of S = {Max, Peter} ?

▸f(S) = {Boston}
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Properties of Functions

▸A function f:AB is said to be one-to-one (or 

injective), if and only if

▸x, yA (f(x) = f(y)  x = y)

▸In other words: f is one-to-one if and only if it does 

not map two distinct elements of A onto the same 

element of B.

▸Note that a function 𝑓 is one-to-one if and only if 

𝑓(𝑎) ≠ 𝑓(𝑏) whenever 𝑎 ≠ 𝑏. This way of 

expressing that 𝑓 is one-to-one is obtained by taking 

the contrapositive of the implication in the definition.
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Properties of Functions

▸And again…

▸f(Linda) = Moscow

▸f(Max) = Boston

▸f(Kathy) = Hong Kong

▸f(Peter) = Boston

▸Is f one-to-one?

▸No, Max and Peter are 

mapped onto the same 

element of the image.
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g(Linda) = Moscow

g(Max) = Boston

g(Kathy) = Hong Kong

g(Peter) = New York

Is g one-to-one?

Yes, each element is 

assigned a unique element 

of the image.



Properties of Functions

▸How can we prove that a function f is one-to-one?

▸Whenever you want to prove something, first take a 

look at the relevant definition(s):

▸x, yA (f(x) = f(y)  x = y)

▸Example:

▸f:RR

▸f(x) = x2

▸Disproof by counterexample:

▸f(3) = f(-3), but 3  -3, so f is not one-to-one.
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Properties of Functions

▸… and yet another example:

▸f:RR

▸f(x) = 3x

▸One-to-one: x, yA (f(x) = f(y)  x = y)

▸To show: f(x)  f(y) whenever x  y

▸x  y

 3x  3y

 f(x)  f(y), 

so if x  y, then f(x)  f(y), that is, f is one-to-one.
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Properties of Functions

▸A function f:AB with A,B  R is called increasing, 

if 𝑥, 𝑦𝐴 (𝑥 < 𝑦 𝑓(𝑥) ≤ 𝑓(𝑦)), and strictly 

increasing, if 𝑥, 𝑦𝐴 𝑥 < 𝑦 𝑓 𝑥 < 𝑓 𝑦 .

▸f is decreasing if 𝑥, 𝑦𝐴 (𝑥 < 𝑦 𝑓 𝑥 ≥ 𝑓(𝑦)), 
and strictly decreasing if

▸ 𝑥, 𝑦𝐴 (𝑥 < 𝑦 𝑓 𝑥 > 𝑓(𝑦))

▸Obviously, a function that is either strictly increasing 

or strictly decreasing is one-to-one.
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Properties of Functions

▸A function f:AB is called onto, or surjective, if and 

only if for every element bB there is an element aA 

with f(a) = b.

▸In other words, f is onto if and only if its range is its 

entire codomain.

▸A function f: AB is a one-to-one correspondence, or 

a bijection, if and only if it is both one-to-one and onto.

▸Obviously, if f is a bijection and A and B are finite 

sets, then |A| = |B|.
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Properties of Functions

▸Examples:

▸In the following examples, we use the arrow 

representation to illustrate functions f:AB. 

▸In each example, the complete sets A and B are 

shown.

44



Properties of Functions
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Properties of Functions

▸Is f injective?

▸No.

▸Is f surjective?

▸No.

▸Is f bijective?

▸No.
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Properties of Functions

▸Is f injective?

▸No.

▸Is f surjective?

▸Yes.

▸Is f bijective?

▸No.
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Linda

Max

Kathy

Peter

Boston

New York

Hong Kong

Moscow
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Properties of Functions

▸Is f injective?

▸Yes.

▸Is f surjective?

▸No.

▸Is f bijective?

▸No.

48

Linda

Max

Kathy

Peter

Boston

New York

Hong Kong
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Properties of Functions

▸Is f injective?

▸No! f is not even

a function!
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Properties of Functions

▸Is f injective?

▸Yes.

▸Is f surjective?

▸Yes.

▸Is f bijective?

▸Yes.
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Inversion

▸An interesting property of bijections is that they 

have an inverse function.

▸The inverse function of the bijection f:AB is 

the function f-1:BA with 

▸f-1(b) = a whenever f(a) = b. 
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Inversion
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Inversion
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Example:

f(Linda) = Moscow

f(Max) = Boston

f(Kathy) = Hong Kong

f(Peter) = Lübeck

f(Helena) = New York

Clearly, f is bijective.

The inverse function  f-1 is 

given by:

f-1(Moscow) = Linda

f-1(Boston) = Max

f-1(Hong Kong) = Kathy

f-1(Lübeck) = Peter

f-1(New York) = Helena

Inversion is only possible for 

bijections

(= invertible functions)



Inversion

▸f-1:CP is no 

function, because it 

is not defined for all 

elements of C and 

assigns two 

images to the pre-

image New York.
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Composition

▸The composition of two functions g:AB and  
f:BC, denoted by  fg, is defined by 

▸(fg)(a) = f(g(a))

▸This means that 

• first, function g is applied to element aA,
mapping it onto an element of B,

• then, function f is applied to this element of 
B, mapping it onto an element of C.

• Therefore, the composite function maps 
from A to C.
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Composition

▸Example:

▸f(x) = 7x – 4, g(x) = 3x,

▸f:RR, g:RR

▸(fg)(5) = f(g(5)) = f(15) = 105 – 4 = 101

▸(fg)(x) = f(g(x)) = f(3x) = 21x - 4
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Composition

▸Composition of a function and its inverse:

▸(f-1f)(x) = f-1(f(x)) = x

▸The composition of a function and its inverse is 

the identity function i(x) = x.
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Graphs

▸The graph of a function f:AB is the set of 

ordered pairs {(a, b) | aA and f(a) = b}.

▸The graph is a subset of AB that can be used 

to visualize f in a two-dimensional coordinate 

system.

▸From the definition, the graph of a function 𝑓 from 

𝐴 to 𝐵 is the subset of 𝐴 × 𝐵 containing the 

ordered pairs with the second entry equal to the 

element of 𝐵 assigned by f to the first entry.
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Floor and Ceiling Functions

▸The floor and ceiling functions map the real 

numbers onto the integers (RZ).

▸The floor function assigns to rR the largest zZ

with zr, denoted by r.

▸Examples: 2.3 = 2, 2 = 2, 0.5 = 0, -3.5 = -4

▸The ceiling function assigns to rR the smallest 

zZ with zr, denoted by r.

▸Examples: 2.3 = 3, 2 = 2, 0.5 = 1, -3.5 = -3 
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Floor and Ceiling Functions

▸Useful properties of the Floor and Ceiling functions 
(𝑛 is an integer and 𝑥 is a real number)
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Sequences

▸Sequences represent ordered lists of elements.

▸A sequence is defined as a function from a subset 
of N to a set S. We use the notation an to denote the 
image of the integer n. We call an a term of the 
sequence.

▸Example:

▸subset of N:           1   2   3   4    5   …
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S:                          2    4  6  8   10  …



Sequences

▸We use the notation {an} to describe a sequence.

▸Important: Do not confuse this with the {} used in 

set notation.

▸It is convenient to describe a sequence with an 

equation.

▸For example, the sequence on the previous slide 

can be specified as {an}, where an = 2n. 
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The Equation Game

▸1, 3, 5, 7, 9, …
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an = 2n - 1

-1, 1, -1, 1, -1, … an = (-1)n

2, 5, 10, 17, 26, … an = n2 + 1

0.25, 0.5, 0.75, 1, 1.25 … an = 0.25n

3, 9, 27, 81, 243, … an = 3n

What are the equations that describe the following 

sequences a1, a2, a3, … ?



Strings

▸Finite sequences are also called strings, denoted 

by a1a2a3…an.

▸The length of a string S is the number of terms 

that it consists of.

▸The empty string contains no terms at all. It has 

length zero.
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Summations

▸What does σ𝑗=𝑚
𝑛 𝑎𝑗 stand for?

▸It represents the sum am + am+1 + am+2 + … + an.

▸The variable j is called the index of summation, 

running from its lower limit m to its upper limit n. 

We could as well have used any other letter to 

denote this index. 

65



Geometric and Arithmetic progressions

▸The sequence 𝑎, 𝑎𝑟, 𝑎𝑟2, … , 𝑎𝑟𝑛, … is a geometric 

progression where the initial term 𝑎 and the 

common ratio 𝑟 are real numbers.

▸The sequence 𝑎, 𝑎 + 𝑑, 𝑎 + 2𝑑,… , 𝑎 + 𝑛𝑑,… is an 

arithmetic progression where the initial term 𝑎 and 

the common difference d are real numbers.
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Some useful Summation Formulae
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Summations

▸It is 1 + 2 + 3 + 4 + 5 + 6 = 21.
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We write it as σ𝑗=1
1000 𝑗2

What is the value of            ?


6

1j

j

It is so much work to calculate this…

What is the value of            ?


100

1j

j

How can we express the sum of the first 1000 terms of the 

sequence {an} with an=n2 for 

n = 1, 2, 3, … ?



Summations

▸It is said that Carl Friedrich Gauss came up with the 

following formula:
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When you have such a formula, the result of any summation 

can be calculated much more easily, for example:

5050
2

10100

2

)1100(100100

1





j

j



Double Summations

▸ Corresponding to nested loops in C or Java, there is 

also double (or triple etc.) summation. To evaluate the 

double sum, first expand the inner summation and 

then continue by computing the outer summation:

▸Example:

▸σ𝑖=1
4 σ𝑗=1

3 𝑖𝑗 =σ𝑖=1
4 (𝑖 + 2𝑖
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