# We will cover these parts of the book (8<sup>th</sup> edition):

2.1
2.2.1-2.2.3
2.3
2.4.1, 2.4.2, 2.4.5

UMASS

#### **Set Theory**

- Set: Collection of objects ("elements/members")
- a∈A "a is an element of A" "a is a member of A"
- a∉A "a is not an element of A"
- $A = \{a_1, a_2, ..., a_n\}$  "A contains..." (roster method)
- Order of elements is meaningless
- It does not matter how often the same element is listed. (generally there are no repetitions)



## **Examples for Sets**

- Standard Sets:
- Natural numbers **N** = {0, 1, 2, 3, ...}
- Integers **Z** = {..., -2, -1, 0, 1, 2, ...}
- Positive Integers **Z**<sup>+</sup> = {1, 2, 3, 4, ...}
- Real Numbers  $\mathbf{R} = \{47.3, -12, \pi, ...\}$
- Rational Numbers **Q** = {1.5, 2.6, -3.8, 15, …}
- Positive Real Numbers R+
- Complex Numbers C (correct definitions will follow)



## **Examples for Sets**

- A = Ø "empty set/null set"
- $A = \{z\}$  "singleton set" Note:  $z \in A$ , but  $z \neq \{z\}$
- $A = \{\{b, c\}, \{c, x, d\}\}$
- A = {{x, y}} Note: {x, y}  $\in A$ , but {x, y}  $\neq$  {{x, y}}
- A = {x | x∈N ∧ x > 7} = {8, 9, 10, ...}
   "set builder notation"
- [a,b] = {x | x ≥ a ∧ x ≤ b}
   "Closed interval"
- (a,b) = {x | x > a ∧ x < b}</li>
   "Open interval"

## **Examples for Sets**

We are now able to define the set of rational numbers Q:

 $\mathbf{P} \mathbf{Q} = \{a/b \mid a \in \mathbf{Z} \land b \in \mathbf{Z^+}\}$ 

► Or

- $\bullet \mathbf{Q} = \{a/b \mid a \in \mathbf{Z} \land b \in \mathbf{Z} \land b \neq 0\}$
- And how about the set of real numbers R?
- R = {r | r is a real number}That is the best we can do.

## **Subsets**

- $\bullet A \subseteq B \qquad \text{``A is a subset of B''}$
- A ⊆ B if and only if every element of A is also an element of B.
- •We can completely formalize this:
- $\bullet A \subseteq B \Leftrightarrow \forall x \ (x \in A \rightarrow x \in B)$
- Examples:
- $A = \{3, 9\}, B = \{5, 9, 1, 3\}, A \subseteq B ?$
- $A = \{3, 3, 3, 9\}, B = \{5, 9, 1, 3\}, A \subseteq B ?$

 $A = \{1, 2, 3\}, B = \{2, 3, 4\}, A \subseteq B$ ?



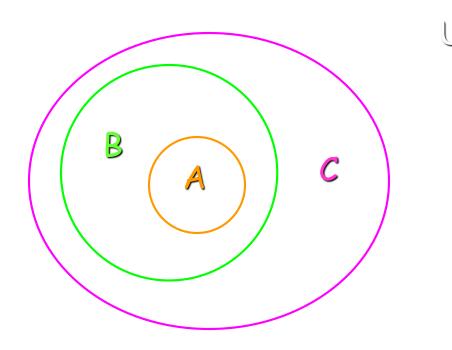
true

true

false

## **Subsets**

- Useful rules:
- $A = B \Leftrightarrow (A \subseteq B) \land (B \subseteq A)$
- $(A \subseteq B) \land (B \subseteq C) \Rightarrow A \subseteq C$  (see Venn Diagram)





## **Subsets**

- Useful rules:
- $\emptyset \subseteq A$  for any set A
- $A \subseteq A$  for any set A
- Proper subsets:
- ► A ⊂ B "A is a proper subset of B"
- $A \subset B \Leftrightarrow \forall x \ (x \in A \rightarrow x \in B) \land \exists x \ (x \in B \land x \notin A)$
- ► Or
- $A \subset B \Leftrightarrow \forall x \ (x \in A \rightarrow x \in B) \land \neg \forall x \ (x \in B \rightarrow x \in A)$



## **Set Equality**

► Sets A and B are equal if and only if they contain exactly the same elements.  $\forall x (x \in A \leftrightarrow x \in B)$  or  $(A \subseteq B) \land (B \subseteq A)$ 

Examples:

• A = {9, 2, 7, -3}, B = {7, 9, -3, 2} :

- A = {dog, cat, horse}, B = {cat, horse, squirrel, dog} :
- A = {dog, cat, horse},
   B = {cat, horse, dog, dog} :

UMASS BOSTON

A = B

A ≠ B

A = B

## **Cardinality of Sets**

▶ If a set S contains n distinct elements,  $n \in \mathbf{N}$ , we call S a finite set with cardinality n.

 $\triangleright$  Examples: $A = \{Mercedes, BMW, Porsche\},$ |A| = 3 $B = \{1, \{2, 3\}, \{4, 5\}, 6\}$ |B| = 4 $C = \emptyset$ |C| = 0 $D = \{x \in \mathbb{N} \mid x \le 7000\}$ |D| = 7001 $E = \{x \in \mathbb{N} \mid x > 7000\}$ E is infinite!

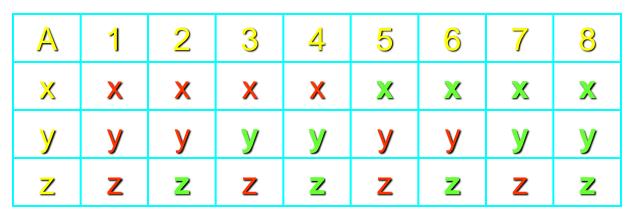


## **The Power Set**

- ► 2<sup>A</sup> or P(A) "power set of A"
- ►  $2^{A} = \{B \mid B \subseteq A\}$  (contains all subsets of A)
- Examples:
- ► A = {x, y, z}
- $2^{A} = \{\emptyset, \{x\}, \{y\}, \{z\}, \{x, y\}, \{x, z\}, \{y, z\}, \{x, y, z\}\}$
- ► A = Ø
- ▶ 2<sup>A</sup> = {∅}
- ▶ Note: |A| = 0, |2<sup>A</sup>| = 1

## **The Power Set**

- Cardinality of power sets:
- ► | 2<sup>A</sup> | = 2<sup>|A|</sup>
- Imagine each element in A has an "on/off" switch
- Each possible switch configuration in A corresponds to one element in 2<sup>A</sup>



• For 3 elements in A, there are 2x2x2 = 8 elements in 2<sup>A</sup>



## **Cartesian Product**

- The ordered n-tuple  $(a_1, a_2, a_3, ..., a_n)$  is an ordered collection of objects.
- ► Two ordered n-tuples  $(a_1, a_2, a_3, ..., a_n)$  and  $(b_1, b_2, b_3, ..., b_n)$  are equal if and only if they contain exactly the same elements in the same order, i.e.,  $a_i = b_i$  for  $1 \le i \le n$ .
- The Cartesian product of two sets is defined as:
  A×B = {(a, b) | a∈A ∧ b∈B}
  Example: A = {x, y}, B = {a, b, c}
  A×B = {(x, a), (x, b), (x, c), (y, a), (y, b), (y, c)}



## **Cartesian Product**

- ► Note that:
- Aר = Ø
- Ø×A = Ø
- For non-empty sets A and B:  $A \neq B \iff A \times B \neq B \times A$
- $|A \times B| = |A| \cdot |B|$

The Cartesian product of two or more sets is defined as:

 $A_1 \times A_2 \times \ldots \times A_n = \{(a_1, a_2, \ldots, a_n) \mid a_i \in A_i \text{ for } 1 \le i \le n\}$ 



## **Partitions**

▶ Definition: A partition of a set S is a collection of disjoint nonempty subsets of S that have S as their union. In other words, the collection of subsets  $A_i$ ,  $i \in I$ , forms a partition of S if and only if

(i)  $A_i \neq \emptyset$  for  $i \in I$ (ii)  $A_i \cap A_j = \emptyset$ , if  $i \neq j$ (iii)  $\cup_{i \in I} A_i = S$ 

## **Partitions**

Examples: Let S be the set {u, m, b, r, o, c, k, s}.
Do the following collections of sets partition S ?

{{m, o, c, k}, {r, u, b, s}}

{{c, o, m, b}, {u, s}, {r}}

{{b, r, o, c, k}, {m, u, s, t}}

{{u, m, b, r, o, c, k, s}}

{{b, o, r, k}, {r, u, m}, {c, s}}

{{u, m, b}, {r, o, c, k, s}, Ø}

yes.

no (k is missing).

no (t is not in S).

yes.

no (r is in two sets).

no (Ø not allowed).



- Union:  $A \cup B = \{x \mid x \in A \lor x \in B\}$
- Example: A = {a, b}, B = {b, c, d}
- ► A∪B = {a, b, c, d}
- $|A \cup B| = |A| + |B| |A \cap B|$
- Intersection:  $A \cap B = \{x \mid x \in A \land x \in B\}$
- Example: A = {a, b}, B = {b, c, d}

► A∩B = {b}



Two sets are called disjoint if their intersection is empty, that is, they share no elements:

►A∩B = Ø

The difference between two sets A and B contains exactly those elements of A that are not in B:
A-B = {x | x∈A ∧ x∉B}

Example:  $A = \{a, b\}, B = \{b, c, d\}, A-B = \{a\}$ 



- The complement of a set A contains exactly those elements under consideration that are not in A:
  -A = U-A
- Example: U = N, B = {250, 251, 252, ...}
  -B = {0, 1, 2, ..., 248, 249}

 $\bullet A - B = A \cap \overline{B}$ 



- ► How can we prove  $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ ?
- Method I:
- x∈A∪(B∩C)
  x∈A ∨ x∈(B∩C)
  x∈A ∨ (x∈B ∧ x∈C)
  (x∈A ∨ x∈B) ∧ (x∈A ∨ x∈C)
  (distributive law for logical expressions)
  x∈(A∪B) ∧ x∈(A∪C)
  x∈(A∪B)∩(A∪C)

#### Method II: Membership table

1 means "x is an element of this set"
0 means "x is not an element of this set"

| А | В | С | B∩C | A∪(B∩C) | AUB | AUC | (A∪B) ∩(A∪C) |
|---|---|---|-----|---------|-----|-----|--------------|
| 0 | 0 | 0 | 0   | 0       | 0   | 0   | 0            |
| 0 | 0 | 1 | 0   | 0       | 0   | 1   | 0            |
| 0 | 1 | 0 | 0   | 0       | 1   | 0   | 0            |
| 0 | 1 | 1 | 1   | 1       | 1   | 1   | 1            |
| 1 | 0 | 0 | 0   | 1       | 1   | 1   | 1            |
| 1 | 0 | 1 | 0   | 1       | 1   | 1   | 1            |
| 1 | 1 | 0 | 0   | 1       | 1   | 1   | 1            |
| 1 | 1 | 1 | 1   | 1       | 1   | 1   | 1            |



## **Set Identities**

| Identity                                                                    | Name                    | Identity                                                                                                     | Name                 |
|-----------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------|----------------------|
| $A \cap U = A$ $A \cup \emptyset = A$                                       | Identity laws           | $A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$                              | Associative<br>laws  |
| $\begin{array}{c} A \cup U = U \\ A \cap \emptyset = \emptyset \end{array}$ | Domination laws         | $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$            | Distributive<br>laws |
| $A \cup A = A$ $A \cap A = A$                                               | Idempotent laws         | $\frac{\overline{(A \cap B)}}{(A \cup B)} = \overline{A} \cup \overline{B}$ $\overline{A} \cap \overline{B}$ | De Morgan's<br>laws  |
| $\overline{(\bar{A})} = A$                                                  | Complementation<br>laws | $A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$                                                              | Absorption<br>laws   |
| $A \cup B = B \cup A$ $A \cap B = B \cap A$                                 | Commutative<br>laws     | $A \cup \bar{A} = U$ $A \cap \bar{A} = \emptyset$                                                            | Complement<br>laws   |

## **Proving Set Identities**

| Description                     | Method                                                                                                                                                                   |  |  |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Subset<br>method                | Show that each side of the identity is a subset of the other side.                                                                                                       |  |  |
| Membership<br>table             | For each possible combination of the atomic<br>sets, show that an element in exactly these<br>atomic sets must either belong to both sides or<br>belong to neither side. |  |  |
| Apply<br>existing<br>identities | Start with one side, transform it into the other side using a sequence of steps by applying an established identity.                                                     |  |  |



#### • Question 1:

• Given a set A = {x, y, z} and a set B = {1, 2, 3, 4}, what is the value of  $|2^A \times 2^B|$ ?

#### • Question 2:

► Is it true for all sets A and B that  $(A \times B) \cap (B \times A) = \emptyset$ ? Or do A and B have to meet certain conditions?

#### Question 3:

► For any two sets A and B, if  $A - B = \emptyset$  and  $B - A = \emptyset$ , can we conclude that A = B? Why or why not?



#### • Question 1:

• Given a set A = {x, y, z} and a set B = {1, 2, 3, 4}, what is the value of  $|2^A \times 2^B|$ ?

#### Answer:

 $\bullet \mid 2^{A} \times 2^{B} \mid = \mid 2^{A} \mid \cdot \mid 2^{B} \mid = 2^{|A|} \cdot 2^{|B|} = 8 \cdot 16 = 128$ 



#### • Question 2:

► Is it true for all sets A and B that  $(A \times B) \cap (B \times A) = \emptyset$ ? Or do A and B have to meet certain conditions?

#### Answer:

If A and B share at least one element x, then both (A×B) and (B×A) contain the pair (x, x) and thus are not disjoint.

• Therefore, for the above equation to be true, it is necessary that  $A \cap B = \emptyset$ .



#### • Question 3:

► For any two sets A and B, if  $A - B = \emptyset$  and  $B - A = \emptyset$ , can we conclude that A = B? Why or why not?

#### Answer:

Proof by contradiction: Assume that A ≠ B.
Then there must be either an element x such that x∈A and x∉B or an element y such that y∈B and y∉A
If x exists, then x∈(A – B), and thus A – B ≠ Ø.
If y exists, then y∈(B – A), and thus B – A ≠ Ø.
This contradicts the premise A – B = Ø and B – A = Ø, and therefore we can conclude A = B.

#### ... and the next section is about...

## Functions



- ► A function f from a set A to a set B is an assignment of exactly one element of B to each element of A.
- ►We write
- ►f(a) = b
- ▶if b is the unique element of B assigned by the function f to the element a of A.
- ► If f is a function from A to B, we write
- ►f: A→B
- (note: Here, " $\rightarrow$ " has nothing to do with if... then)

• If  $f:A \rightarrow B$ , we say that A is the domain of f and B is the codomain of f.

• If f(a) = b, we say that b is the image of a and a is the pre-image of b.

• The range of  $f:A \rightarrow B$  is the set of all images of elements of A.

• We say that  $f:A \rightarrow B$  maps A to B.



• Let us take a look at the function  $f:P \rightarrow C$  with

- P = {Linda, Max, Kathy, Peter}
- C = {Boston, New York, Hong Kong, Moscow}
- ►f(Linda) = Moscow
- ►f(Max) = Boston
- f(Kathy) = Hong Kong
- f(Peter) = New York

► Here, the range of f is C.

Let us re-specify f as follows:

- ►f(Linda) = Moscow
- ►f(Max) = Boston
- f(Kathy) = Hong Kong
- ▶f(Peter) = Boston
- ► Is f still a function? yes

What is its range?

{Moscow, Boston, Hong Kong}



#### • Other ways to represent f:

| ×     | <mark>f(x)</mark> | Linda Boston    |
|-------|-------------------|-----------------|
| Linda | Moscow            | Max New York    |
| Max   | Boston            |                 |
| Kathy | Hong<br>Kong      | Kathy Hong Kong |
| Peter | Boston            | Peter Moscow    |

- ► If the domain of our function f is large, it is convenient to specify f with a formula, e.g.:
- F:R→R

▶...

- ► f(x) = 2x
- This leads to:
  f(1) = 2
  f(3) = 6
  f(-3) = -6



Let f<sub>1</sub> and f<sub>2</sub> be functions from A to R.
Then the sum and the product of f<sub>1</sub> and f<sub>2</sub> are also functions from A to R defined by:

• 
$$(f_1 + f_2)(x) = f_1(x) + f_2(x)$$

• 
$$(f_1f_2)(x) = f_1(x) f_2(x)$$

Example:

► 
$$f_1(x) = 3x$$
,  $f_2(x) = x + 5$ 
 $(f_1 + f_2)(x) = f_1(x) + f_2(x) = 3x + x + 5 = 4x + 5$ 
 $(f_1f_2)(x) = f_1(x) f_2(x) = 3x (x + 5) = 3x^2 + 15x$ 

•We already know that the range of a function  $f:A \rightarrow B$  is the set of all images of elements  $a \in A$ .

▶ If we only regard a subset S⊆A, the set of all images of elements  $s \in S$  is called the image of S.

► We denote the image of S by f(S):

 $\bullet f(S) = \{f(s) \mid s \in S\}$ 

## **Functions**

- Let us look at the following well-known function:
- ►f(Linda) = Moscow
- ▶f(Max) = Boston
- f(Kathy) = Hong Kong
- ►f(Peter) = Boston
- What is the image of S = {Linda, Max} ?
- ►f(S) = {Moscow, Boston}
- What is the image of S = {Max, Peter} ?
  f(S) = {Boston}



►A function  $f:A \rightarrow B$  is said to be one-to-one (or injective), if and only if

 $\blacktriangleright \forall x, y \in A \ (f(x) = f(y) \rightarrow x = y)$ 

In other words: f is one-to-one if and only if it does not map two distinct elements of A onto the same element of B.

Note that a function f is one-to-one if and only if  $f(a) \neq f(b)$  whenever  $a \neq b$ . This way of expressing that f is one-to-one is obtained by taking the contrapositive of the implication in the definition.

- ► And again...
- ►f(Linda) = Moscow
- ►f(Max) = Boston
- f(Kathy) = Hong Kong
- ►f(Peter) = Boston
- ►Is f one-to-one?

No, Max and Peter are mapped onto the same element of the image. g(Linda) = Moscow g(Max) = Boston g(Kathy) = Hong Kong g(Peter) = New York

ls g one-to-one?

Yes, each element is assigned a unique element of the image.

UMASS BOSTON

- ► How can we prove that a function f is one-to-one?
- Whenever you want to prove something, first take a look at the relevant definition(s):
- $\blacktriangleright \forall x, y \in A \ (f(x) = f(y) \rightarrow x = y)$
- Example:
- F:R→R
- ►  $f(x) = x^2$
- Disproof by counterexample:
- ► f(3) = f(-3), but  $3 \neq -3$ , so f is not one-to-one.



- ... and yet another example:
- F:R→R
- ►f(x) = 3x
- ► One-to-one:  $\forall x, y \in A \ (f(x) = f(y) \rightarrow x = y)$
- ► To show:  $f(x) \neq f(y)$  whenever  $x \neq y$
- ► X ≠ Y
- $\Leftrightarrow$  3x  $\neq$  3y
- $\Leftrightarrow f(x) \neq f(y),$
- so if  $x \neq y$ , then  $f(x) \neq f(y)$ , that is, f is one-to-one.



►A function f:A→B with A,B  $\subseteq$  R is called increasing, if  $\forall x, y \in A \ (x < y \rightarrow f(x) \le f(y))$ , and strictly increasing, if  $\forall x, y \in A \ (x < y \rightarrow f(x) < f(y))$ .

•f is decreasing if  $\forall x, y \in A \ (x < y \rightarrow f(x) \ge f(y))$ , and strictly decreasing if

 $\forall x, y \in A \ (x < y \rightarrow f(x) > f(y))$ 

Obviously, a function that is either strictly increasing or strictly decreasing is one-to-one.

►A function f:A→B is called onto, or surjective, if and only if for every element  $b \in B$  there is an element  $a \in A$  with f(a) = b.

In other words, f is onto if and only if its range is its entire codomain.

►A function f:  $A \rightarrow B$  is a one-to-one correspondence, a bijection, if and only if it is both one-to-one and onto

• Obviously, if f is a bijection and A and B are finite sets, then |A| = |B|.

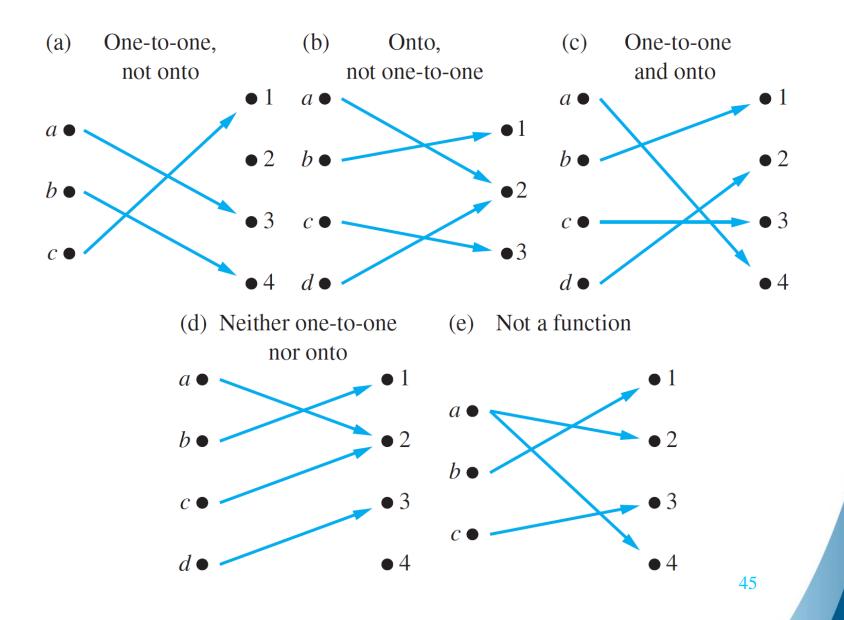


Examples:

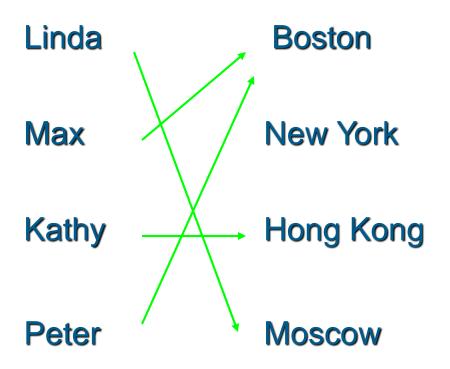
► In the following examples, we use the arrow representation to illustrate functions  $f:A \rightarrow B$ .

In each example, the complete sets A and B are shown.





UMASS



► Is f injective?

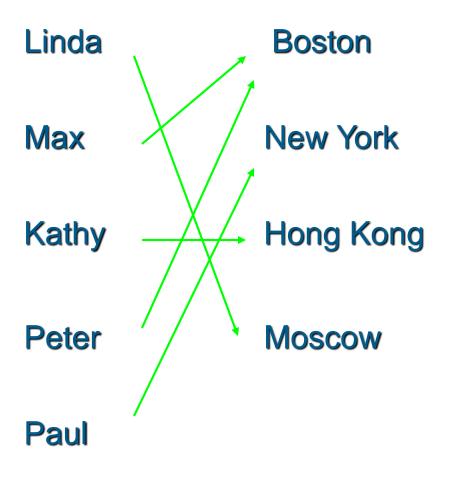
►No.

Is f surjective?

►No.

► Is f bijective?

►No.

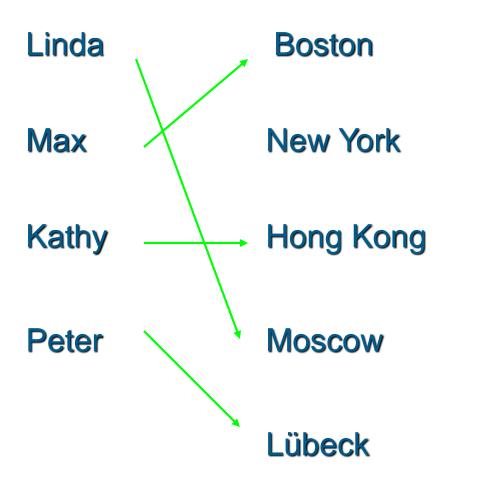


► Is f injective?

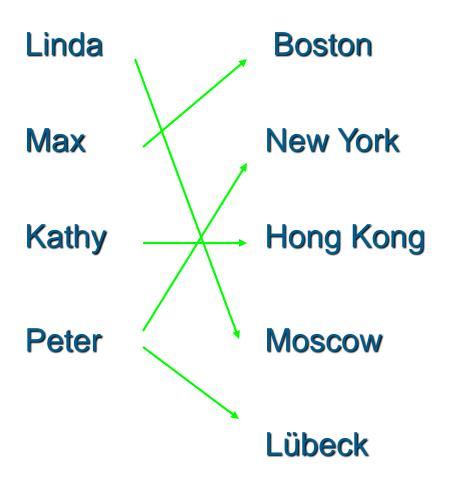
►No.

- ► Is f surjective?
- ►Yes.
- ►Is f bijective?

►No.



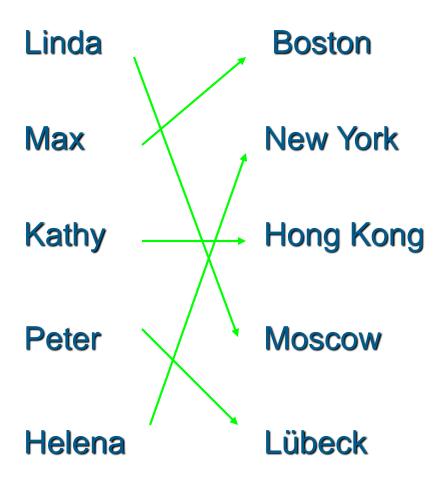
- ► Is f injective?
- ►Yes.
- Is f surjective?
- ►No.
- Is f bijective?
- ►No.



Is f injective?
No! f is not even a function!

49



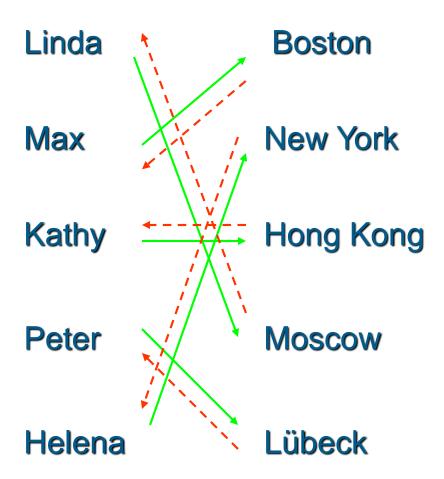


- ► Is f injective?
- ►Yes.
- ► Is f surjective?
- ►Yes.
- Is f bijective?
- ►Yes.

An interesting property of bijections is that they have an inverse function.

The inverse function of the bijection f:A→B is the function f<sup>-1</sup>:B→A with
f<sup>-1</sup>(b) = a whenever f(a) = b.







52



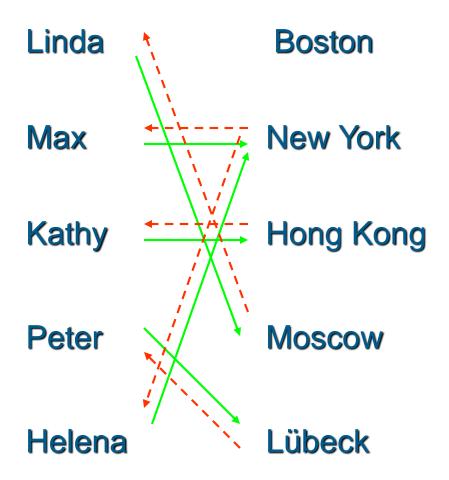
#### Example:

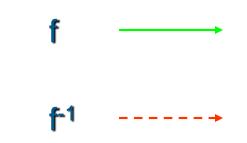
f(Linda) = Moscow f(Max) = Boston f(Kathy) = Hong Kong f(Peter) = Lübeck f(Helena) = New York

Clearly, f is bijective.

The inverse function f<sup>-1</sup> is given by:  $f^{1}(Moscow) = Linda$  $f^{1}(Boston) = Max$ f<sup>1</sup>(Hong Kong) = Kathy f<sup>1</sup>(Lübeck) = Peter f<sup>1</sup>(New York) = Helena Inversion is only possible for bijections (= invertible functions)







►  $f^{-1}: C \rightarrow P$  is no function, because it is not defined for all elements of C and assigns two images to the preimage New York.



# Composition

► The composition of two functions  $g:A \rightarrow B$  and  $f:B \rightarrow C$ , denoted by  $f^{\circ}g$ , is defined by

- $\blacktriangleright (f^{\circ}g)(a) = f(g(a))$
- This means that
- first, function g is applied to element a∈A, mapping it onto an element of B,
- then, function f is applied to this element of B, mapping it onto an element of C.
- Therefore, the composite function maps from A to C.



## Composition

#### • Example:

- ► f(x) = 7x 4, g(x) = 3x, ►  $f: \mathbf{R} \rightarrow \mathbf{R}$ ,  $g: \mathbf{R} \rightarrow \mathbf{R}$
- $\blacktriangleright(f^{\circ}g)(5) = f(g(5)) = f(15) = 105 4 = 101$
- ►  $(f^{\circ}g)(x) = f(g(x)) = f(3x) = 21x 4$

#### Composition

Composition of a function and its inverse:

►  $(f^{-1} \circ f)(x) = f^{-1}(f(x)) = x$ 

The composition of a function and its inverse is the identity function i(x) = x.



#### Graphs

► The graph of a function  $f:A \rightarrow B$  is the set of ordered pairs {(a, b) | a ∈ A and f(a) = b}.

The graph is a subset of A×B that can be used to visualize f in a two-dimensional coordinate system.

From the definition, the graph of a function f from A to B is the subset of  $A \times B$  containing the ordered pairs with the second entry equal to the element of B assigned by f to the first entry.



## **Floor and Ceiling Functions**

- The floor and ceiling functions map the real numbers onto the integers  $(\mathbf{R}\rightarrow\mathbf{Z})$ .
- ► The floor function assigns to  $r \in \mathbf{R}$  the largest  $z \in \mathbf{Z}$  with  $z \leq r$ , denoted by  $\lfloor r \rfloor$ .
- ► **Examples:**  $\lfloor 2.3 \rfloor = 2, \lfloor 2 \rfloor = 2, \lfloor 0.5 \rfloor = 0, \lfloor -3.5 \rfloor = -4$
- The ceiling function assigns to  $r \in \mathbf{R}$  the smallest  $z \in \mathbf{Z}$  with  $z \ge r$ , denoted by  $\lceil r \rceil$ .
- ► Examples:  $\lceil 2.3 \rceil = 3, \lceil 2 \rceil = 2, \lceil 0.5 \rceil = 1, \lceil -3.5 \rceil = -3$



## **Floor and Ceiling Functions**

• Useful properties of the Floor and Ceiling functions (*n* is an integer and *x* is a real number)

(1a) |x| = n if and only if  $n \le x < n + 1$ (1b) [x] = n if and only if  $n - 1 < x \le n$ (1c) |x| = n if and only if  $x - 1 < n \le x$ (1d) [x] = n if and only if  $x \le n < x + 1$ (2)  $x - 1 < |x| \le x \le [x] < x + 1$ (3a) |-x| = -[x](3b) [-x] = -|x|(4a) |x+n| = |x| + n(4b) [x+n] = [x] + n

**60** 



#### Sequences

Sequences represent ordered lists of elements.

• A sequence is defined as a function from a subset of **N** to a set S. We use the notation  $a_n$  to denote the image of the integer n. We call  $a_n$  a term of the sequence.

• Example:

**S**:

► subset of **N**:

1 2 3 4 5 ... 1 1 2 3 4 5 ... 2 4 6 8 10 ...



#### Sequences

• We use the notation  $\{a_n\}$  to describe a sequence.

Important: Do not confuse this with the {} used in set notation.

It is convenient to describe a sequence with an equation.

► For example, the sequence on the previous slide can be specified as  $\{a_n\}$ , where  $a_n = 2n$ .



#### **The Equation Game**

What are the equations that describe the following sequences  $a_1, a_2, a_3, \dots$ ?

▶ 1, 3, 5, 7, 9, ...  $a_n = 2n - 1$ -1, 1, -1, 1, -1, ...  $a_n = (-1)^n$ 2, 5, 10, 17, 26, ...  $a_n = n^2 + 1$ 0.25, 0.5, 0.75, 1, 1.25 ...  $a_n = 0.25n$ 3, 9, 27, 81, 243, ...  $a_n = 3^n$ 

63



Finite sequences are also called strings, denoted by  $a_1a_2a_3...a_n$ .

The length of a string S is the number of terms that it consists of.

The empty string contains no terms at all. It has length zero.



#### **Summations**

#### • What does $\sum_{j=m}^{n} a_j$ stand for?

It represents the sum  $a_m + a_{m+1} + a_{m+2} + \dots + a_n$ .

The variable j is called the index of summation, running from its lower limit m to its upper limit n. We could as well have used any other letter to denote this index.



#### **Geometric and Arithmetic progressions**

The sequence  $a, ar, ar^2, ..., ar^n$ , ... is a geometric progression where the initial term a and the common ratio r are real numbers.

The sequence a, a + d, a + 2d, ..., a + nd, ... is an arithmetic progression where the initial term a and the common difference d are real numbers.



#### **Some useful Summation Formulae**

| Sum                                      | Closed Form                        |
|------------------------------------------|------------------------------------|
| $\sum_{k=0}^{n} ar^k \ (r \neq 0)$       | $\frac{ar^{n+1}-a}{r-1}, r \neq 1$ |
| $\sum_{k=1}^{n} k$                       | $\frac{n(n+1)}{2}$                 |
| $\sum_{k=1}^{n} k^2$                     | $\frac{n(n+1)(2n+1)}{6}$           |
| $\sum_{k=1}^{n} k^3$                     | $\frac{n^2(n+1)^2}{4}$             |
| $\sum_{k=0}^{\infty} x^k,  x  < 1$       | $\frac{1}{1-x}$                    |
| $\sum_{k=1}^{\infty} k x^{k-1},  x  < 1$ | $\frac{1}{(1-x)^2}$                |

UMASS

67

#### **Summations**

How can we express the sum of the first 1000 terms of the sequence  $\{a_n\}$  with  $a_n = n^2$  for n = 1, 2, 3, ... ?

We write it as  $\sum_{j=1}^{1000} j^2$ What is the value of  $\sum_{j=1}^{6} j$ ? It is 1 + 2 + 3 + 4 + 5 + 6 = 21. What is the value of  $\sum_{j=1}^{100} j$ ?

It is so much work to calculate this...



#### **Summations**

It is said that Carl Friedrich Gauss came up with the following formula:

 $\sum_{j=1}^n j = \frac{n(n+1)}{2}$ 

When you have such a formula, the result of any summation can be calculated much more easily, for example:

$$\sum_{i=1}^{100} j = \frac{100(100+1)}{2} = \frac{10100}{2} = 5050$$

#### **Double Summations**

Corresponding to nested loops in C or Java, there is also double (or triple etc.) summation. To evaluate the double sum, first expand the inner summation and then continue by computing the outer summation:

Example:

$$\sum_{i=1}^{4} \sum_{j=1}^{3} ij = \sum_{i=1}^{4} (i+2i)$$

