
Nagios and SEC
a happy (re-)union for advanced system monitoring

John Rouillard
Renesys Corporation

Presented at LISA 2006
December 8, 2006

Nagios

● A service monitoring
program

● Plugins probe a
device and assign
severity to gathered
data

● Implements basic
service correlation
based on severity or
severity changes

Correlations include
● Topology (parent/child)
● Thresholds (count

continuous errors only)
● Service (if other service

in error don't poll/notify)
● Cluster (X of Y services

must be ok)
● Flap detection (cycling

up/down, problematic to
implement)

Simple Event Correlator (SEC)

● Provide many types
of correlations.
Usually used in
security event/log
analysis monitoring.

● Can provide all of
Nagios correlations
except topology.

● When used with
Nagios it adds:

● Counting ok states
before rearming

● Different threshold
triggers or polling
interval on analysis
of error not just non-
ok severity.

● Changing trouble
thresholds per time
period

More SEC use cases

● Automatically disable notifications
● Implement acknowledgments that expire

after some period of time.
● Max check attempts can change depending

on the error.
● Automatic load redistribution to even load on

polled clients
● Automatically schedule downtime

Time Based Correlation

● Nagios does support time periods, but in order
to have different critical/warning levels at
different times requires differently named
service definitions.

● Integration with SEC allows different threshold
levels based on time periods without having to
create new service definitions.

Event Mapping

● SEC acts as an event mapping layer
● Plugin talks to device and gathers data
● SEC further analyzes data, determines

proper severity, performs additional
correlation, modifies plugin output

● SEC notifies Nagios via passive check for
notification, display

Implementation

● Uses Nagios 2.5 event broker
● Adds a callback to the core that allows event

broker module to override the plugin
assigned severity, replacing with current
severity for that service.

● Module can write a Nagios
PROCESS_SERVICE_CHECK_RESULT to a file for
the external correlator (e.g. SEC) to analyze.

● Two new service object parameters
ec_active_action and ec_passive_action
control operating mode for each severity.

Operating modes

● The module operates in one of three modes:

1. Pass polled event to Nagios (no external
correlation, current operation)

2. Pass unmodified polled event to Nagios
and a copy to SEC

3. Pass modified polled event to Nagios
changing severity to current severity and
pass a copy to SEC

Current Testing

● Running with 1460 services. SEC uses 0.4%
of cpu for processing 9 events/second. 11%
of the events are sent back into Nagios. RTT
(Nagios -> SEC -> Nagios) 2-10 seconds.

● SEC configuration has 8 rules that split apart
every event line. Has 2 event mapping rules
to provide more useful output messages and
1 rescheduling rule to distribute polls in time

● SEC also monitors Nagios log file for errors
in addition to handling active event stream.

The Future

● Need Beta Testers - Beta release in early
January 2007

● Stop losing events when writing to a FIFO.
● Command line parser to allow user to set

items such as output mode at module load.
● Finalize annotation format for events
● Have module receive other data from Nagios

(e.g. acknowledgments, host events)
● More stress testing
● Add a 4th operational mode to stop Nagios

processing of active check result.

Questions

● Left as an exercise for the viewer.

● Presented by:
 John Rouillard (Renesys Corp)

– rouilj@renesys.com
– rouilj+ns@cs.umb.edu

Nagios and SEC
a happy (re-)union for advanced system monitoring

John Rouillard
Renesys Corporation

Presented at LISA 2006
December 8, 2006

This work was supported by Renesys
Corporation <http://www.renesys.com>.

John Rouillard is a senior systems
administrator for Renesys Corporation.

This talk discusses using SEC to
correlate/analyze actively gathered
information in nagios. Using SEC to
analyze passivly gathered data and
sending into nagios is currently easily
done.

Nagios

● A service monitoring
program

● Plugins probe a
device and assign
severity to gathered
data

● Implements basic
service correlation
based on severity or
severity changes

Correlations include
● Topology (parent/child)
● Thresholds (count

continuous errors only)
● Service (if other service

in error don't poll/notify)
● Cluster (X of Y services

must be ok)
● Flap detection (cycling

up/down, problematic to
implement)

I have had a lot of issues configuring flap
detection to work as I wanted. What I really
wanted was something similar to HPOV
NNM rearm capability. X number of
successive ok events before determining
that the service is ok.

For non-polled host flap detection it just
doesn't work as there never seem to be
enough OK states to get it to reset.

Simple Event Correlator (SEC)

● Provide many types
of correlations.
Usually used in
security event/log
analysis monitoring.

● Can provide all of
Nagios correlations
except topology.

● When used with
Nagios it adds:

● Counting ok states
before rearming

● Different threshold
triggers or polling
interval on analysis
of error not just non-
ok severity.

● Changing trouble
thresholds per time
period

Counting consecutive ok states is
equivalent to HPOV's NNM threshold
rearm parameter. Can also count ok states
within a window (as nagios does it).

More SEC use cases

● Automatically disable notifications
● Implement acknowledgments that expire

after some period of time.
● Max check attempts can change depending

on the error.
● Automatic load redistribution to even load on

polled clients
● Automatically schedule downtime

Not used in presentation.

Time Based Correlation

● Nagios does support time periods, but in order
to have different critical/warning levels at
different times requires differently named
service definitions.

● Integration with SEC allows different threshold
levels based on time periods without having to
create new service definitions.

Not used in presentation. Currently people
are told to schedule downtime for a service
if there is an interval in which it is known
to exceed the normal monitoring
thresholds. The problem is that I may have
2 cron processes while backups are
running, but if I have 10 during that
interval I will never be notified because the
service is in downtime.

Event Mapping

● SEC acts as an event mapping layer
● Plugin talks to device and gathers data
● SEC further analyzes data, determines

proper severity, performs additional
correlation, modifies plugin output

● SEC notifies Nagios via passive check for
notification, display

This heads towards my personal multi-step
setup for monitoring:

 1 data gathering via plugin
 2 analysis of data
 3 correlation between devices
 4 display/notification

currently plugins provide both 1 and 2
while nagios supplies 3/4. SEC works at
the 2/3 level. IMO these are seperate levels
tnad should be able to be handled
independently.

Implementation

● Uses Nagios 2.5 event broker
● Adds a callback to the core that allows event

broker module to override the plugin
assigned severity, replacing with current
severity for that service.

● Module can write a Nagios
PROCESS_SERVICE_CHECK_RESULT to a file for
the external correlator (e.g. SEC) to analyze.

● Two new service object parameters
ec_active_action and ec_passive_action
control operating mode for each severity.

Note that the
PROCESS_SERVICE_CHECK_RESULT
may be annotated with additional
information such as:

 prior severity info
 process mode for the service

Operating modes

● The module operates in one of three modes:

1. Pass polled event to Nagios (no external
correlation, current operation)

2. Pass unmodified polled event to Nagios
and a copy to SEC

3. Pass modified polled event to Nagios
changing severity to current severity and
pass a copy to SEC

I want to add a fourth mode where Nagios
forgets about the current active polled data
and updates only when SEC sends in a
passive check result.

Current Testing

● Running with 1460 services. SEC uses 0.4%
of cpu for processing 9 events/second. 11%
of the events are sent back into Nagios. RTT
(Nagios -> SEC -> Nagios) 2-10 seconds.

● SEC configuration has 8 rules that split apart
every event line. Has 2 event mapping rules
to provide more useful output messages and
1 rescheduling rule to distribute polls in time

● SEC also monitors Nagios log file for errors
in addition to handling active event stream.

The Future

● Need Beta Testers - Beta release in early
January 2007

● Stop losing events when writing to a FIFO.
● Command line parser to allow user to set

items such as output mode at module load.
● Finalize annotation format for events
● Have module receive other data from Nagios

(e.g. acknowledgments, host events)
● More stress testing
● Add a 4th operational mode to stop Nagios

processing of active check result.

Questions

● Left as an exercise for the viewer.

● Presented by:
 John Rouillard (Renesys Corp)

– rouilj@renesys.com
– rouilj+ns@cs.umb.edu

