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Abstract: Hidden Markov Models (HMMs) became recently important and popular among bioinformatics researchers, 

and many software tools are based on them. In this survey, we first consider in some detail the mathematical foundations 

of HMMs, we describe the most important algorithms, and provide useful comparisons, pointing out advantages and 

drawbacks. We then consider the major bioinformatics applications, such as alignment, labeling, and profiling of 

sequences, protein structure prediction, and pattern recognition. We finally provide a critical appraisal of the use and 

perspectives of HMMs in bioinformatics. 
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INTRODUCTION 

 A Markov process is a particular case of stochastic 
process, where the state at every time belongs to a finite set, 
the evolution occurs in a discrete time and the probability 
distribution of a state at a given time is explicitly dependent 
only on the last states and not on all the others. 

 A Markov chain is a first-order Markov process for 
which the probability distribution of a state at a given time is 
explicitly dependent only on the previous state and not on all 
the others. In other words, the probability of the next 
(“future”) state is directly dependent only on the present 
state and the preceding (“past”) states are irrelevant once the 
present state is given. More specifically there is a finite set of 
possible states, and the transitions among them are governed 
by a set of conditional probabilities of the next state given 
the present one, called transition probabilities. The transition 
probabilities are implicitly (unless declared otherwise) 
independent of the time and then one speaks of homo-
geneous, or stationary, Markov chains. Note that the inde-
pendent variable along the sequence is conventionally called 
“time” also when this is completely inappropriate; for 
example for a DNA sequence, the “time” means the position 
along the sequence. 

 Starting from a given initial state, the consecutive trans-
itions from a state to the next one produce a time-evolution 
of the chain that is therefore completely represented by a 
sequence of states that a priori are to be considered random. 

 A Hidden Markov Model is a generalization of a Markov 
chain, in which each (“internal”) state is not directly observ-
able (hence the term hidden) but produces (“emits”) an obs-
ervable random output (“external”) state, also called “emi-
ssion”, according to a given stationary probability law. In  
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this case, the time evolution of the internal states can be 
induced only through the sequence of the observed output 
states. 

 If the number of internal states is N, the transition 
probability law is described by a matrix with N times N 
values; if the number of emissions is M, the emission 
probability law is described by a matrix with N times M 
values. A model is considered defined once given these two 
matrices and the initial distribution of the internal states. 

 The paper by Rabiner [1] is widely well appreciated for 
clarity in explaining HMMs. 

SOME NOTATIONS 

 For the sake of simplicity, in the following notations we 
consider only one sequence of internal states and one 
sequence of associated emissions, even if in some cases, as 
we shall see later, more than one sequence is to be 
considered. 

 Here are the notations: 

 U  the set of all the N  

possible internal states 

X  the set of all the M  

possible external states 

L  the length of the sequence 

k  a time instant, where 

  
k 1, ,L[ ]  

sk  internal state at time k , 

where sk U  

  
S s1,s2,s3,…,sL( )  a sequence of L  internal 

states 

 
e

k
 emission at time k , where 

ek X  
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E e1,e2,e3,…,eL( )  a sequence of L  external 

states 

au,v = P sk = v | sk 1 = u( )  the probabilities of a trans-

ition to the state v  from 

the state u  

A  the N N  matrix of 

elements au,v  

bu x( ) = P ek = x | sk = u( )  the probabilities of the 

emission x  from the state 

u   

B the N M  matrix of ele-

ments bu x( )  

u P s1 = u( )  the probability of the initial 

state u  

 the N -vector of elements 

u  

= (A,B, )  the definition of the HMM 

model 

A SIMPLE EXAMPLE 

 We propose an oversimplified biological example of an 
HMM (Fig. 1), inspired by the toy example in Eddy [2] with 
only two internal states but with exponential complexity. 
The model is detailed in Fig. 1a. 

 The set of internal states is U 'c ','n'{ } where 'c' and 
'n' stand for the coding and non-coding internal states and 
the set of emissions is the set of the four DNA bases: 

X ' A','T ','C','G'{ }  

 As emitted sequence, we consider a sequence of 65 bases 
(Fig. 1b). 

 It is important to note that in most cases of HMM use in 
bioinformatics a fictitious inversion occurs between causes 
and effects when dealing with emissions. For example, one 
can synthesise a (known) polymer sequence that can have 
different (unknown) features along the sequence. In an 
HMM one must choose as emissions the monomers of the 
sequence, because they are the only known data, and as 
internal states the features to be estimated. In this way, one 
hypothesises that the sequence is the effect and the features 
are the cause, while obviously the reverse is true. An 
excellent case is provided by the polypeptides, for which it is 
just the amino acid sequence that causes the secondary 
structures, while in an HMM the amino acids are assumed as 
emissions and the secondary structures are assumed as 
internal states. 

MAIN TYPES OF PROBLEMS 

 The main types of problems occurring in the use of 
Hidden Markov Models are: 

A) Evaluation problem (Direct problem): compute the 
probability that a given model generates a given 
sequence of observations. 

 
 

 The most used algorithms are: 

1. the forward algorithm: find the probability of emi-
ssion distribution (given a model) starting from the 
beginning of the sequence. 

2. the backward algorithm: find the probability of 
emission distribution (given a model) starting from 
the end of the sequence. 

 B) Decoding problem: given a model and a sequence of 
observations, induce the most likely hidden states. 

 More specifically: 

1. find the sequence of internal states that has, as a 
whole, the highest probability. The most used 
algorithm is the Viterbi algorithm. 

2. find for each position the internal state that has the 
highest probability. The most used algorithm is the 
posterior decoding algorithm. 

 C) Learning problem: given a sequence of observations, 
find an optimal model. 

 The most used algorithms start from an initial guessed 
model and iteratively adjust the model parameters. More 
specifically: 

1. find the optimal model based on the most probable 
sequences (as in problem B1). The most used 
algorithm is the Viterbi training (that uses recursively 
the Viterbi algorithm in B1). 

2. find the optimal model based on the sequences of 
most probable internal states (as in problem B2). The 
most used algorithm is the Baum-Welch algorithm 
(that uses recursively the posterior decoding 
algorithm in B2). 

A) THE EVALUATION PROBLEM 

 The probability of observing a sequence E  of emissions 
given an HMM  (likelihood function of ), is given by 

P(E | ) = P(E | S; ) P(S | )
S

 

 We note that the logarithm of the likelihood function 
(log-likelihood) is more often used. 

 The above sum must be computed over all the 
N L

possible sequences S  (of length L ) of internal states 
and therefore the direct computation is too expensive; 
fortunately there exist some algorithms which have a 
considerably lower complexity, for example the forward and 
the backward algorithms (of complexity O(N 2L) , see 
below). 

A1) The Forward Algorithm 

 This method introduces auxiliary variables k  (called 
forward variables), where 

  k u( ) = P e1,…,ek;sk = u |( )  is the probability of 

observing a partial sequence of emissions 
  
e1…ek  and a 

state sk = u  at time k . 
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Fig. (1). An example of HMM. 

(a) The square boxes represent the internal states 'c' (coding) and 'n' (non coding), inside the boxes there are the probabilities of each 

emission ( ' A' , 'T ' , 'C'  and 'G') for each state; outside the boxes four arrows are labelled with the corresponding transition probability. 

(b) The first row is a sample sequence of 65 observed emissions and the second row is one of the likely sequences of internal states. The 

boxed part is dealt with in (c) and (d). 

(c) The right-hand side column represents the boxed tract of bases in (b). The other columns represent, for each circled base, the two possible 

alternatives for the internal state ( 'c' or 'n') that emitted the base. Each row refers to the same position along the sequence. The arrows 

represent all possible transitions and the emissions. 

(d) The figure shows a possible likely sequence of choices between the alternative internal states producing the sequence of internal states in 
(b). Such a sequence of choices of internal state transitions amounts to choosing a path in (c). 
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 Detailed equations of the algorithm follow: 

Initialisation: 
1 u( ) = ubu e1( )  

Recursion: 

(for1 k < L) 
k +1 u( ) = bu ek +1( ) k v( )

v

av,u  

Termination: P(E | ) = L u( )
u

 

 Note that the calculation requires O N 2L( )  operations. 

A2) The Backward Algorithm 

 Also this method introduces auxiliary variables k  
(called backward variables), where 

  k u( ) = P ek +1…eL | sk = u;( )  is the probability of 

observing a partial sequence of emissions 
  
ek +1…eL  given a 

state sk = u  at time k . 

 Detailed equations of the algorithm follow: 

Initialisation: 
L u( ) = 1 

Recursion: 

(for L > k 1) 
k u( ) = k +1 v( )

v

av,u bv ek +1( )  

Termination: P(E | ) = 1 u( )
u

u bu e1( )  

 Note that the calculation requires O N 2L( )  operations. 

B) THE DECODING PROBLEM 

 In general terms, a problem of this type is to induce the 
most likely hidden states given a model and a sequence of 
observations. The two most common problems of this type, 
each one requiring an appropriate algorithm, are detailed in 
the next two paragraphs. 

B1) Viterbi Algorithm 

 The Viterbi algorithm solves the following decoding 
problem. 

 Given a model  and a sequence E  of observed states, 

find the sequence S*
 of internal states that maximises the 

probability P E,S |( ) , i.e. the sequence S*
 such that 

p* P E,S* |( ) max
S

P E,S |( )( )  or, more briefly, 

S* argmax
S

P E,S |( )( )  

 The Viterbi algorithm has been designed in order to 
avoid the overwhelming complexity of a direct approach in 
the search of the maximum; it is an interesting example of 
Dynamic Programming (DP), a technique devised by 
Bellman to optimise multistage decision processes. 

 As shown in Fig. 1, a sequence of internal states can be 
represented as a path; and the DP method applied to path 
optimisation includes two successive phases: a first phase 
optimises a number of subproblems, by storing suitable 

pointers that indicate promising (suboptimal) state 
transitions, and a second (reverse) phase obtains the optimal 
path by following the pointers. Detailed equations follow. 

Initialisation: 
1 u( ) = bu e1( ) u  

 
1 u( ) = 0  

Recursion: 

(for 1 < k L) 

k u( ) = bu ek( ) max
v

k 1 v( ) av,u( )  

 
k u( ) = argmax

v
k 1 v( ) av,u( )  

Termination: p = max
v

L v( )( )  

 sL = argmax
v

L v( )( )  

Backtracking: 

(for L > k 1) 

sk = k +1 sk +1( )  

 Fig. 2 illustrates the action, on the same tract of the 
sequence in Fig. 1b, of the Viterbi algorithm used to decode 
the whole sequence by means of the model described in Fig. 
1a. 

B2) Posterior Decoding 

 The problem is the following: given a model  and a 
sequence E  of observed states, find for each k  among all 
the possible internal states u , the most probable internal 
state sk

*
. 

 The algorithm computes the probability of each possible 
internal state using the forward  and backward  
variables derived from A1 and A2 and select the state with 
highest probability, for each position of the sequence. 
Detailed equations follow. 

P sk = u | E( ) =
k u( ) k u( )

P E |( )
1 < k L  

sk = argmax
u

k u( ) k u( )( ) 1 < k L  

 Note that in the last equation the (irrelevant) denominator 
has been omitted. 

C) THE LEARNING PROBLEM 

 We know the set of possible internal states, the set of 
possible external states, and a number of sequences of 
emissions. We hypothesise that the emissions originate from 
the same underlying HMM, and more specifically that each 
sequence of external states has been emitted from an 
associated sequence of internal states following the laws of 
the model. 

 The problem is to estimate the model, i.e. the transition 
and emission probabilities (for the sake of simplicity we 
often omit to consider the probabilities of initial states). 

 Let 
  
E j ek

j ,k = 1,…,Lj( )  1 j R be the given 

sequences of emissions, and 
  
S j sk

j ,k = 1,…,Lj( )  
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1 j R the associated (unknown) sequences of internal 

states. 

 Usually one starts from an initial guess of the transition 
and emission probabilities and iteratively one improves them 
until a suitable stopping criterion is met. More in detail, one 
recursively gets (from the emissions and from the current 
model parameters) a suitable estimate of the internal states 
and, using it, one re-estimates the probabilities (from counts 

of transition and emission, i.e. one uses as probabilities the 
relative frequencies). Note that it is useful [3] to somehow 
regularize the counts often by adding to each count a suitable 
offset, called pseudocount. The most naïve but usually 
satisfactory choice is to use the Laplace’s rule that sets all 
the pseudocounts to one. The use of the pseudocounts can 
seem bizarre but improves the algorithm performances, for 
example by avoiding considering unusual events as 
absolutely impossible. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). The action is illustrated, on the same tract of the sequence, of the Viterbi algorithm used to decode the whole sequence by means of 

the model described in Fig. 1a. More specifically (a) and (b) illustrate the transition from Fig. 1c and 1d (with the same meanings of the 

graphics). 

(a) In each square box, there is the value of the  pointer, computed, as illustrated in (c), in the first phase. More specifically “ = c ” 

means that we discard the hypothesis of the transition from the previous state 'n' (as indicated also by dashing the corresponding incoming 

arrow). 

(b) In each square box, there is the value of the logarithm of the probability  calculated and used in the first phase. Dashed lines represent 

the transitions discarded in the second phase. We note that for practical reasons we use the logarithms of the probabilities in order to avoid 

troubles due to too small numbers. 

(c) A zoom of the marked zone in (b), where the computation of a recursion step of the Viterbi algorithm is detailed. 
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 The two most common algorithms used to attack prob-
lems of this type are detailed in the next two paragraphs. 

C1) Viterbi Training Algorithm 

 An approach to model parameter estimation is the Viterbi 
training algorithm. In this approach, the most probable 
internal state sequence (path) associated to each observed 
sequence is derived using the Viterbi decoding algorithm. 
Then this path is used for estimating counts for the number 
of transitions and emissions, and such counts are used for 
recalculating the model parameters. 

 In more detail: 

Initialisation: choose somehow model 

parameters (initial guess) 
A , B,  

 and the pseudocounts (the 

values to be added to the 

frequency counts) 

˜ A , ˜ B  

Recursion: 

(for each iteration) 

calculate the most probable internal 

state sequences S j
 (omitting the star) 

using for each one the Viterbi 

decoding algorithm 

 calculate the matri-

ces of the observed 

frequency counts of 

transitions and of 

emissions, ˆ A  and 

ˆ B  

  

â
u,v

= u,s
k

j( ) v,s
k+1

j( )
kj

 

ˆ b u x( ) = u,sk
j( ) x,ek

j( )
kj

 

where  is the usual 

Kronecker delta 

 calculate the regularized 

frequency counts: 
A = ˆ A + ˜ A  

B = ˆ B + ˜ B  

 update the matrices 

A  and B au,v =
a u,v

a u,w
w

 

bu x( ) =
b u x( )

b u y( )
y

 

 apply, if necessary, a similar updating to  

Termination: stop, if the model parameters do not change 

for adjacent iterations 

C2) Baum-Welch Algorithm 

 A different approach to model parameter estimation is 
the Baum-Welch algorithm. In this approach, the probability 
distribution of the internal states for each observed sequence 
is derived using the posterior decoding algorithm. Then these 
distributions are used for estimating counts for the number of 
transitions and emissions, and such counts are used for 
recalculating the model parameters. 

 

 More in detail: 

Initialisation: choose somehow model 

parameters (initial guess) 

A , B,  

 and the pseudocounts (the 

values to be added to the 

frequency counts) 

˜ A , ˜ B  

Recursion: 

(for each iteration) 

calculate backward and forward 

coefficients from algorithm A1 and 

A2 for each sequence 

 calculate the obser-

ved (weighted) freq-

uency counts of tran-

sitions and of emis-

sions, ˆ A  and ˆ B  

ˆ a u,v =
1

P E j |( )
k
j u( ) au,v bv ek +1

j( ) k +1
j v( )

k=1j

ˆ b u x( ) =
1

P E j |( )
k
j u( ) k

j u( ) x,ek
j( )

k=1j

where  is the usual 

Kronecker delta 

 calculate the 

regularized 

frequency 

counts 

A = ˆ A + ˜ A  

B = ˆ B + ˜ B  

 update the 

matrices A  

and B 

au,v =
a u,v

a u,w
w

 

bu x( ) =
b u x( )

b u y( )
y

 

 apply, if necessary, a similar updating to 

 

Termination: stop, if the convergence is too slow, or if 

the given maximum number of iterations is 

reached. 

COMPARISONS 

A) Evaluation Problem (Direct Problem) 

 The backward and forward algorithms use different sets 
of auxiliary variables, but, being exact methods, they 
obviously find identical final results on the same problem. 
We introduced both algorithms since the different sets of 
auxiliary variables are both needed in the posterior decoding 
algorithm. 

B) Decoding Problem 

 We recall that the two approaches to the decoding 
problem are quite different: the approach B1 (Viterbi 
algorithm) looks for the sequence of internal states that is the 
most probable, while the approach B2 (Posterior decoding 
algorithm) looks for the internal state that is the most 
probable in each position. 

 It is therefore only natural that the two approaches, 
attacked with different algorithms, give results that may be 
quite different, and it is therefore important to stress that, 
rather than blindly compare the results, one should carefully 
select a priori the approach that is more appropriate to what 
one is looking for. 

 



Hidden Markov Models in Bioinformatics Current Bioinformatics, 2007, Vol. 2, No. 1      55 

 Otherwise, one can easily risk accepting results that may 
be quite unreliable. On one hand, taking as the most probable 
internal state in a given position the corresponding internal 
state in the optimal sequence given by B1, one may take 
instead an internal state that is rather unlikely. On the other 
hand, taking as the optimal sequence the sequence having in 
each position the optimal internal state given by B2, one may 
take instead a sequence that is unlikely or even impossible. 

 For the sake of clarity, we consider in some detail 
another oversimplified biological example, especially 
designed to illustrate the last circumstance. 

 We consider an HMM with three possible internal states: 
'c' (coding), ' t'  (terminator), 'n' (non coding), where the 
possible transitions are shown in Fig. 3; we note that in order 
to go from coding to non coding at least a terminator is 
needed. 

 We assume that there are only three admissible 
sequences with given probabilities, as indicated in Fig. 4, 
which shows also that, unlike the best sequence "ccctn" 
provided by the Viterbi algorithm, the sequence of most 
probable states "cccnn" provided by the Posterior 
Decoding algorithm is meaningless, since it is not consistent 
with the assumption that a coding subsequence must be 
followed by a terminator. 

C) Learning Problem 

 Similar considerations apply to the comparison between 
the Viterbi Training and Baum-Welch algorithms, since they 
are respectively based on the Viterbi algorithm and on the 
Posterior Decoding algorithm. Both algorithms have the 
drawback that they can possibly remain trapped in a local 
attractor. As for the number of iteration steps (in the absence 
of stopping criteria) the first algorithm converges rapidly (in 
a few steps) to a point after which there is no further 
improvement, while the second algorithm goes on 
converging with progressively smaller improvements. 

MAJOR BIOINFORMATICS APPLICATIONS 

 The HMMs are in general well suited for natural 
language processing [4, 5], and have been initially employed 
in speech-recognition [1] and later in optical character 
recognition [6] and melody classification [7]. 

 In bioinformatics, many algorithms based on HMMs 
have been applied to biological sequence analysis, as gene 

finding and protein family characterization. As pioneer 
applications, we recall the papers of Lander and Green [8] 
and of Churchill [9]. An excellent critical survey, up to 2001, 
on HMMs in bioinformatics is provided by Colin Cherry 
(http://www.cs.ualberta.ca/~colinc/projects/606project.ps). A 
technical description of HMMs and their application to 
bioinformatics can be found in the Eddy’s paper [10], in the 
book of Durbin et al. [3] and more recently in the survey of 
Choo et al. [11] containing also many software references. 

 Several HMM-based databases are available: we cite, for 
example, Pfam [12], SAM [13] and SUPERFAMILY [14]. 
A method for constructing HMM databases has been 
proposed by Truong and Ikura [15]. 

 In what follows, we briefly schematise the main works 
about applications of HMMs in bioinformatics, grouped by 
kind of purpose. 

 A detailed description of all applications would be, in our 
opinion, outside the scope and the size of a normal survey 
paper. Nevertheless, in order to give a feeling of how the 
models described in the first part are implemented in real-life 
bioinformatics problems, we shall describe in more detail, in 
what follows, a single application, i.e. the use, for multiple 
sequence alignment, of the profile HMM, which is a 
powerful, simple, and very popular algorithm, especially 
suited to this purpose. 

Multiple Sequence Alignment 

 A frequent bioinformatic problem is to assess if a “new” 
sequence belongs to a family of homologous sequences, 
using a given multiple alignment of the sequences of the 
family. 

 In this framework, a frequently used concept is the 
consensus sequence, i.e. the sequence having in each 
position the residue that, among those of the multiple 
alignment, occurs most frequently in that position. 

 A related concept is that of a profile: instead of assigning 
to each position the most frequent residue, assigning a 
profile to a sequence amounts to assign to each position of 
the sequence a set of “scores”, each one to a residue that can 
occur in that position. More formally, the profile is a matrix, 
whose dimensions are the number of positions and the 
number of possible residues, and that for each position along 
the multiple alignment, assigns a score to each possible 
element in such position. 

 

 

 

 

 

 

 

 

 

Fig. (3). An example of HMM with three internal states. The square boxes represent the internal states 'c' (coding), ' t'  (terminator) and 

'n' (non coding). The arrows indicate the possible transitions. 
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 To solve the above mentioned problem, a first technique 
to judge the total score obtained by aligning (using a suitable 
choice of the score matrix and of the gap penalties) the new 
sequence to the consensus sequence obtained from the 
multiple alignment. 

 A better technique is to judge the total score obtained by 
aligning (using the score matrix inside the profile and a 
suitable choice of the gap penalties) the new sequence to the 
profile obtained from the multiple alignment. 

 An even better technique is to use a “profile HMM”, an 
implementation of the HMM which combines the idea of the 
profile [16] with the idea of the HMM, and has been 
specially designed for dealing with multiple sequence 
alignment. 

 The major advantages of the profile HMM with respect 
to profile analysis are that in profile analysis the scores are 
given heuristically, while HMMs strive to use statistically 
consistent formulas, and that producing a good profile 
HMMs requires less skill and manual intervention than 
producing good standard profiles. 

 A brief description of a profile HMM follows, while the 
use of a profile HMM is described later on. 

 We neglect for the moment, for sake of simplicity, 
insertions and deletions. A no-gap profile HMM is a linear 
chain of internal states (called match states), each one with 
unit transition probability to the next match state. Each 
internal state emits an external state, i.e. an emission, chosen 
among all possible residues, according to the profile, where 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). A simple toy example especially designed to stress the differences between the results of the Viterbi algorithm and of the posterior 

decoding algorithm in the decoding problem. We consider an HMM with three possible internal states: 'c' (coding), ' t'  (terminator) and 

'n' (non coding), where the possible transitions are shown in Fig. 3; we note that in order to go from coding to noncoding at least a termina-

tor is needed. We assume that the admissible sequences of internal states (i.e. sequences with non-negligible probabilities) are those indicated 

as i , ii , iii  (with their probabilities) in the top. The columns i , ii , iii  of the Viterbi table are the three admissible sequences while the 

column S  is the sequence that we would have found by the Viterbi algorithm, as the best sequence among all the possible sequences (as it is 

clear by inspection in this simple case). In the Posterior Decoding (PD) table, the first three columns are relative to the internal states 'c', 
' t' , 'n', and each one of the positions   s1,s2,…,s5  of a column contains the probability of finding the corresponding internal state in that 

position. The probabilities are those that we would have found by the PD algorithm (but that have computed here for the sake of simplicity 

from the probabilities of the admissible sequences, as indicated in each position). A bold frame shows the most probable state in each posi-

tion: the column S  contains the sequence of the most probable states that the PD algorithm would have selected. 
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the score is in this case the corresponding emission 
probability. 

 However a multiple alignment without gaps is of limited 
and infrequent utility, and in this case, the profile HMM 
hardly exhibits its power. Difficulties arise when modelling 
gaps becomes mandatory; in this case HMM become more 
complicated but start exhibiting a power greater than in usual 
profile analysis. For modelling gaps, new features are added 
to the simple no-gap model. 

 To account for insertions (exhibited in the new sequence 
with respect to the consensus sequence) an internal state of a 
new kind, called insertion state, is added for each match 
state. Each insertion state emits a residue, in a way 
analogous to a match state. 

 Transitions are possible from each match state to the 
corresponding insertion state, from each insertion state to 
itself, and from each insertion to the next match state in the 
chain. 

 To account for deletions (exhibited in the new sequence 
with respect to the consensus sequence) an internal state of a 
new kind, called deletion state, is added for each insertion 
state. A deletion state does not emit, and therefore is called 
silent. Transitions from each delete state are possible to the 
corresponding insertion state, and to the next (in the chain) 
deletion state and match state; while transitions to each 
delete state are possible from the preceding deletion, 
insertion and match states. 

 The Fig. 5 shows the internal states of a section of the 
profile HMM, spanning over three positions k 1,k,k + 1( )  
along the multiple alignment (where squares M , diamonds 
I , and circles D represent match, insertion and deletion 
states). 

 It can be seen that for example if a transition occurs from 
Mk  to Ik , and then to Ik , and then again to Ik and finally to 
Mk +1we have an insertion of three residues between the 

residue emitted by Mk  and the residue emitted by Mk +1; if 
instead transitions occur from Mk 1 to Dk and then to 
Mk +1we have the deletion of the residue that should have 

been emitted by Mk . 

 In order to build a complete model, the numerical values 
of all the emission and transition probabilities of the HMM 
must be computed from the numbers of occurrences, usually 
improved by means of pseudocounts. We illustrate, with a 
simple numerical example, the procedure for computing, by 
means of Laplace rule (all pseudocounts equal to 1), the 
emission probabilities in a given position of a multiple 
alignment. If, in an alignment of 6 DNA sequences, we have 
the following numbers of occurrences in a given position: 3 
occurrences of 'T ' , 2 of ' A' , 1 of 'C'  and 0 of 'G', we 
obtain the emission probabilities: 

b 'T '( ) = 40% =
3 + 1

6 + 4
 

b ' A'( ) = 30% =
2 + 1

6 + 4
 

b 'C'( ) = 20% =
1+ 1

6 + 4
 

b 'G'( ) = 10% =
0 + 1

6 + 4
 

 The numerators of all fractions are the number of 
occurrences augmented by the pseudocount (equal to 1), 
while the denominator (the same for all fractions) in the total 
number of occurrences, plus the 4 pseudocounts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (5). A tract of a profile HMM. 

The internal states are shown of a tract of the profile HMM, span-

ning over three positions k 1,k,k + 1( )  the multiple alignment 

(where squares M , diamonds I , and circles D represent match, 

insertion and deletion states). 

All possible state transitions are represented by arrows, while the 

emissions of match and insertion states (and all probability values) 
are not shown to simplify the graphics. 

 All other emission and transition probabilities are 
computed in an analogous way. 

 We now describe briefly the use of a profile HMM to 
judge a new sequence with respect to a multiple alignment. 

 One first builds the profile HMM relative to the given 
multiple alignment. 

 Then one computes the probability that the new sequence 
be generated from the profile HMM using one of the 
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algorithms designed for the so-called evaluation problem, 
and described above. 

 Finally, one suitably judges the probability to decide if 
the new sequence can be considered as belonging to the 
family of sequences represented by the multiple alignment. 

 For a good introduction to profile HMM see Eddy [10] 
and Durbin et al. [3]. 

 Apart from some preliminary approaches, the profile 
HMMs was first introduced by Krogh et al. [17]. 

 Soding [18] performed a generalization of the profile 
HMM in order to pairwise align two profile HMMs for 
detecting distant homologous relationships. 

 Eddy [19] described a number of models and related 
packages that implement profile HMMs, and in particular 
HMMER, which is commonly used to produce profile 

HMMs for protein domain prediction. 

Genetic Mapping 

 One of the earliest applications of HMMs in bioinfor-
matics (or even the first, as far as we know) has been the use 
of a nonstationary HMM for genetic mapping [8], i.e. the 
estimation of some kind of distance between loci of known 
(or at least presumed) order along the chromosome. 

 Lander and Green [8] initially obtained linkage maps 
(distances in centiMorgans) providing experimental linkage 
data based on pedigrees; afterwards, in order to obtain 
radiation maps (distances in centiRays), Slonim et al. [20] 
used a nonstationary HMM starting from experimental 

radiation data based on gamma irradiation breaks. 

Gene Finding 

 Strictly speaking the term “gene finding” indicates the 
action of finding genes within a DNA sequence, but is often 
used with a more general meaning of labeling DNA tracts, 
for example labeling them as coding, intergenic, introns, etc. 

 In this last sense gene finding can be considered a special 
case (the most important in bioinformatics) of the more 
general action known as sequence labeling (also for non-
DNA sequences). 

 We note that our two toy examples (see above) are in fact 
two cases of DNA labeling. 

 In the early 1990s, Krogh et al. [21] introduced the use of 
HMMs for discriminating coding and intergenic regions in 
E. coli genome. 

 Many extensions to the original “pure” HMM have been 
developed for gene finding. For example, Henderson et al. 
[22] designed separate HMM modules, each one appropriate 
for a specific region of DNA. Kulp et al. [23] and Burge et 
al. [24] used a generalized HMM (GHMM or “hidden semi-
Markov Model”) that allows more than one emission for 
each internal state. 

 Durbin et al. [3] introduced a model called “pair HMM”, 
which is like a standard HMM except that the emission 
consists in a pair of aligned sequences. This method provides 
per se only alignments between two sequences but, with 
suitable enhancements, it is sometimes applied to gene 
finding. For example, Meyer and Durbin [25] presented a 
new method that predicts the gene structure starting from 

two homologous DNA sequences, identifying the conserved 
subsequences. Pachter et al. [26], following a similar idea, 
proposed a generalized pair HMM (GPHMM) that combines 
the GHMM and the pair HMM approaches, in order to 
improve the gene finding comparing orthologous sequences. 
A recent useful open-source implementation is described in 
Majoros et al. [27]. 

 Lukashin and Borodovsky [28] proposed a new algorithm 
(GeneMark.hmm) that improves the gene finding 
performance of the old GeneMark algorithm by means of a 
suitable coupling with an HMM model. 

 Pedersen and Hein [29] introduced an evolutionary 
Hidden Markov Model (EHMM), based on a suitable 
coupling of an HMM and a set of evolutionary models based 
on a phylogenetic tree. 

Secondary Structure Protein Prediction 

 HMMs are also employed to predict the secondary struct-
ure of a protein (i.e. the type of the local three-dimensional 
structure, usually alpha-helix, beta-sheet, or coil), an imp-
ortant step for predicting the global three-dimensional 
structure. 

 Asai et al. [30] first used a simple HMM for the second-
ary structure prediction, while Goldman et al. [31] in the 
HMM approach exploited some evolutionary information 
contained in protein sequence alignments. 

Signal Peptide Prediction 

 Signal peptide prediction, i.e., the determination of the 
protein destination address contained in the peptide first tract 
is often of paramount importance both for diseases analysis 
and for drug design. 

 Juncker et al. [32] proposed a successful method, using a 
standard HMM, to predict lipoprotein signal peptides in 
Gram-negative eubacteria. The method was tested against a 
neural network model. 

 Schneider and Fechner [33] provided a thorough review 
on the use of HMMs and of three other methods for the 
signal peptide prediction. A very useful feature is a 
comprehensive list of prediction tools available on the web. 

 Zhang and Wood [34] created a profile HMM for signal 
peptide prediction, by means of a novel approach to the use 
of the HMMER package, together with a suitable tuning of 

some critical parameters. 

Transmembrane Protein Prediction 

 It is well known that a direct measurement of the 
complete 3D structure of a transmembrane protein is now 
feasible only in very few cases. On the other hand, for many 
practical purposes (such as drug design), it is already very 
useful to simply know at least the transmembrane protein 
topology (i.e., whether a tract is cytoplasmatic, extracellular, 
or transmembrane); and to this end a number of models are 
available to predict such topology. The secondary structure 
of the transmembrane tracts of most proteins (the helical 
transmembrane proteins) is of alpha helix type; important 
exceptions are the so-called beta-barrels (bundles of 
transmembrane beta-sheet structures), restricted to the outer 
membrane of Gram-negative bacteria and of mitochondria. 
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 Some authors [35, 36, 37, 38] specialised the HMM 
architecture to predict the topology of helical transmembrane 
proteins. Kahsay et al. [38] used unconventional pseudo-
counts that they obtained from a modified Dirichlet formula. 

 Other authors [39, 40, 41] specialised the HMM archi-
tecture to predict the topology of beta-barrel transmembrane 
proteins. Martelli et al. [39] trained the model with the evol-
utionary information computed from multiple sequence 
alignment, while Bagos et al. [41] adopted the conditional 
Maximum Likelihood proposed by Krogh [42]. 

Epitope Prediction 

 A preliminary step in inducing an immune response is the 
binding of a peptide to a Major Histocompatibility Complex 
(MHC) molecule, either of class I (as in viral infections or 
cancer) or of class II (as in bacterial infections). Since, 
however, most peptides cannot bind to an MHC molecule, it 
is important to predict which are the epitopes, i.e., the 
peptides that can bind to an MHC molecule. 

 Mamitsuka [43] advocated the use of supervised learning 
(for both class I and II) to improve the performance of 
HMMs. 

 A different approach [44, 45], to improve the perfor-
mance of HMMs in predicting class I epitopes, combines 
HMM with a new algorithm, the “successive state splitting” 
(SSS) algorithm. 

 Yu et al. [46] provided a thorough comparative study of 
several methods, as binding motifs, binding matrices, hidden 
Markov models (HMM), or artificial neural networks 
(ANN). 

 Udaka et al. [47], in order to improve the prediction of 
the binding ability of a peptide to an MHC Class I molecule, 
used an iterative strategy for the “Query Learning Algo-
rithm” [48], which trains a set of HMMs by means of the so-
called “Qbag” algorithm. More specifically the algorithm, 
within any iteration, indicates the peptides for which the 
prevision is more uncertain, so that their binding ability is 
measured, and then fed back, for learning, to the model. 

Phylogenetic Analysis 

 Phylogenetic analysis aims to find probabilistic models 
of phylogeny and to obtain evolutionary trees of different 
organisms from a set of molecular sequences. 

 Felsenstein and Churchill [49] in order to account for the 
fact that evolution speed varies among positions along the 
sequences, allowed in their model for three possible speed 
values as hidden states of the HMM. The optimisation is 
performed by minimising a suitable objective function by 
means of Newton-Raphson method. 

 Thorne et al. [50] proposed an evolutionary phylogeny 
model that uses an HMM to combine the primary structure 
with a known or estimated secondary structure. 

 Siepel and Haussler [51] provided a thorough tutorial 
paper, and considered also HMMs of higher order. 

 Husmeier [52] used a generalisation of standard HMMs 
(the so-called factorial HMM), where emissions are due to 
the combined effect of two internal states belonging to two 

different hidden Markov chains, the first state representing 
the tree topology, and the second state the selective pressure. 

 Mitchinson [53] treated simultaneously alignment and 
phylogeny by means of the so-called tree-HMM that 
combines a profile-HMM with a probabilistic model of phy-
logeny, enhancing it with a number of heuristic approximate 
algorithms. An iterative version with further enhancements, 
particularly successful in identifying distant homologs, is 
described by Qian and Goldstein [54]. 

RNA Secondary Structure Prediction 

 The non-coding RNA builds stable and physiologically 
relevant secondary structures (typically absent in coding 
RNA) [55]. Such structures are usually stabilised by palin-
dromic tracts, so that predicting the secondary RNA struct-
ures essentially amounts to identifying palindromic sequen-
ces. 

 From the standpoint of Chomsky classification of gener-
ational grammars, a standard HMM is a stochastic “regular 
grammar”, i.e., belongs to the lowest complexity type (Type 
3), and as such is not suitable to identify and study palin-
dromic tracts. This is due to theoretical reasons that obvi-
ously cannot be detailed here, but can be roughly understood 
if one remembers that in a Markov chain the relevant corre-
lation are between neighbour elements, while searching for 
palindromic tracts requires considering correlations between 
distant elements. 

 Therefore, to identify palindromic sequences suitable 
extensions to pure HMMs must be used, so that they belong 
to a more complex Chomsky type. 

 Eddy and Durbin [56] introduced the Covariance Method, 
which agrees with the stochastic “context-free grammar”, 
one step more general in the Chomsky hierarchy, i.e. Type 2. 
For a good recent implementation, see Eddy [57]. 

 Knudsen and Hein [58] proposed a method based on a 
stochastic context-free grammar [59], incorporating 
evolutionary history information. 

 Yoon and Vaidyanathan [55] presented a method that can 
be described as a stochastic “context-sensitive grammar”, 
(one further more general step in the Chomsky hierarchy, i.e. 
Type 1) which appears to be computationally advantageous 
with respect to the above approaches. 

CONCLUSIONS 

 As we have seen, the HMMs can be considered a sto-
chastic version of the model that in the Chomsky classi-
fication of generative grammars is of the simplest type 
(Type-3) and is called a regular grammar, the other types 
being, in order of growing complexity, Context-free (Type-
2), Context-sensitive (Type-1), and Recursively enumerable 
(Type-0). 

 We have already seen some examples of upgrading 
HMMs to higher Chomsky levels (see above, RNA second-
ary structure prediction); we now quote a few examples of 
models where the HMM concept either undergoes greater 
variations or plays a less substantial rôle. 

 McCallum et al. [60] introduce a general (non-bioinfo-
rmatic) model that they call Maximum Entropy Markov 
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Model (MEMM), and that is basically a Markov model 
where the internal state does not output an observable 
“emitted” state, but is determined both from the preceding 
internal state and from an input observable state. Such a 
similarity allows exploiting algorithms very similar to those 
used in a classical HMM. A special kind of enhancement of 
MEMMs, are the so-called Conditional Random Fields 
(CRFs) [61], introduced by Lafferty et al. [62]. 

 From another, more cybernetic, point of view the use of 
HMMs can also be considered as special instances of the so-
called, and widely used, Machine Learning Techniques, that 
are often alternatively used for similar applications. 

 A somehow arbitrary list of such numerous techniques 
could include, besides HMMs, also: 

• Decision Trees (as c4.5) 

• Support Vector Machines (SVM) 

• Artificial Neural Networks (ANN) 

• Clustering 

• Genetic Algorithms 

• Association Rules 

• Fuzzy Sets 

 Obviously each one of these techniques has pros and 
cons, often depending on the problem at hand: putting it in 
somewhat rough terms we can say that the merits of HMMs 
in bioinformatics are demonstrated by their wide use. Other 
techniques popular in bioinformatics are ANNs, SVMs and 
c4.5 [63]. Certainly a detailed comparison of the main 
techniques, either at conceptual or at benchmark level is 
beyond the scope of this paper; and on the other hand most 
available comparisons are too sharply focussed on very 
narrow subjects. As an example, we recall the comparison 
between HMMs and ANN’S for epitope prediction, in the 
already quoted paper by Yu et al. [46]. 

 In general terms we can say that the main advantages of 
HMMs are often the ease of use, the fact that they typically 
require much smaller training sets, and that the observation 
of the inner structure of the model provides often a deeper 
understanding of the phenomenon. Among the main 
drawbacks of HMMs is often their greater computational 
cost. 

 We note that frequently hybrid models are designed 
combining some of the above techniques, typically with 
results better than with stand-alone techniques. 

 For example, HMMs are also used for bioinformatic 
predictions together with the so-called Support Vector 
Machine (SVM) [64], a technique based on the Vapnik-
Chervonenkis theory [65] that produces decision surfaces in 
multidimensional spaces, in order to perform various kinds 
of predictions. 

 Other examples are provided by several kind of 
combinations of HMMs with artificial neural networks 
(ANN): for example Riis and Krogh [66], and Krogh and 
Riis [67] introduce a model called Hidden Neural Network 
(HNN), while, in a bioinformatic context, Baldi and Chauvin 
[68] used them for protein multiple alignments, Boufounos 
et al. [69] for DNA sequencing (without calling them 

HNNs), and Lin et al. [70] use a somehow different model 
(still called HNN) for protein secondary structure prediction. 

 If we look at the present state of the HMM concept inside 
bioinformatics, both from the standpoint of the time of its 
introduction and of the wealth of available applications, we 
can say that the concept has been a very fruitful one and that 
it has reached a somehow mature state. It is also clear that, 
almost since the very beginning of the field, novel 
applications have been fostered by many kinds of different 
extensions, modifications, and contaminations with different 
techniques, thus producing models that can still be 
considered, and in fact are still called, more or less 
appropriately, Hidden Markov Models, and that have been 
discussed in the preceding sections. We think that the future 
of HMMs would go on this trend (i.e. continuing along the 
lines described above), e.g. using more complex and 
powerful levels in the Chomsky hierarchy, implementing 
mixed models or further modifying in other ways the true 
nature of the HMMs, or possibly introducing simultaneously 
more than one of these variations. 
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