
GenomeCompress: A Novel Algorithm for DNA

Compression

Umesh Ghoshdastider
1
, Banani Saha

2

1
Department of Physiology, Rammohan College, Kolkata,

Email:coolunmesh@gmail.com
2
Department of Computer Science and Engineering,

University of Calcutta, 92, APC Road Calcutta-700009,

email:bsaha_29@yahoo.com

Abstract

The genome of an organism contains all hereditary

information encoded in DNA. So it is extremely

important to sequence the genome which determines

how the organisms survive, develop and multiply. Since

three decades, due to massive efforts on DNA

sequencing, complete genome sequence of a large

number of organisms including humans are now known

and the genomic databases are growing exponentially

with time. Also for the huge size of the genomes, an

efficient algorithm is required to compress them.

General text compression algorithms don’t utilize the

specific characteristics of a DNA sequence. DNA

specific compression algorithms exploit the

repetitiveness of bases in DNA sequences. A repetitive

DNA sequence can be best compressed using dictionary

based compression algorithm. Non-repetitive parts of

the DNA are generally compressed using dynamic

programming, by dividing the sequences in square

matrices which contain common repeat of a single base

and then substituting the matrix with the base and

putting the order of the matrix in a string. In this paper,

a novel algorithm for DNA compression is proposed in

order to compress both repetitive and non repetitive

DNA sequence. The algorithm is also compared with

existing ones and is found to achieve better

compression ratio than the others.

Index terms—BioCompress, GenCompress, LZ, LZW,

Huffman Coding, Arithmetic Coding, transposon, junk

DNA, LINE, SINE.

I. INTRODUCTION

Life represents organization. It is not chaotic or random.

Thus, it is expected that the DNA sequences that encode

ISSN 0973-6824

life is to be nonrandom. The central dogma of life is

hidden in the DNA. DNA transcribes mRNA which is

translated to proteins.[1] Proteins play a mojor role in

regulating all the biological functions.

 It is well-known that DNA sequences, especially in

higher eukaryotes, contain many tandem repeats; and

also segments that produce noncoding RNA molecules

like tRNA, rRNA. Genome may contain several copies

of the same gene. Although human genome contains

about 3 billion base pairs, only 3 % of it encodes

protein. There are only about 25000 genes in human

genome which encode about 100000 proteins by

alternative splicing. Other 97% which doesn’t encode

proteins is called “junk DNA” and if often associated to

the promoter region and regulates gene expression.

Repeated sequences are of two basic types: unique

sequences that are repeated in one area; and repeated

sequences that are interspersed throughout the genome.

[2]There are interspersed sequences are tandem repeats,

with sequences that are found interspersed across the

genome. They can be classified based on the length of

the repeat as: SINE: Short interspersed sequences. The

repeats are normally a few hundred base pairs in length.

These sequences constitute about 13% of the human

genome with the specific Alu sequence accounting for

5%. LINE: Long interspersed sequences. The repeats

are normally several thousand base pairs in length.

These sequences constitute about 21% of the human

genome. [3]

Hence DNA sequences should be reasonably

compressible. However, such regularities are often

blurred by random mutations like point mutation,

inversion, translocation, cross-over, and reversal events,

as well as sequencing errors. It is well recognized that

the compression of DNA sequences is a very difficult

task.[4, 5, 6, 7]. Subsequent sections describe about the

DNA related work on DNA compression. Section V

deals with the proposed algorithm and the structure to

define the algorithm. The algorithm has been analysed

at section VI Lastly the paper ends with an example and

comparison with existing methods and paving ways to

future work.

II. DNA SEQUENCE

A DNA sequence only contain succession of A, C, G,

and T, representing the four nucleotide subunits -

adenine, cytosine, guanine, thymine bases covalently

linked to phosphate backbone. DNA sequencing is the

process of determining the nucleotide order of a given

DNA fragment, called the DNA sequence. DNA

sequencing has been achieved using the chain

termination method, developed by Frederick Sanger in

1975.[8] Recently Pyrosequencing and 454 Sequencing

are used for this purpose. [9] The size of the genome

varies greatly in different organisms which are shown in

the following table: [10]

Name of the organism Size of

genome

Bacterium, Escherichia coli 4×10^6

Amoeba, Amoeba dubia 6.7×10^11

Plant, Arabidopsis thaliana 1.2×10^8

Plant, Fritillaria assyrica 1.3×10^11

Plant, Populus trichocarpa 4.8×10^8

Fungus,Saccharomyces

cerevisiae
2×10^7

Nematode, Caenorhabditis

elegans
8×10^7

Insect, Drosophila melanogaster

aka Fruit Fly
1.3×10^8

Insect, Bombyx mori aka Silk

Moth
5.30×10^8

Insect, Apis mellifera aka

Honey Bee
1.77×10^9

Mammal, Homo sapiens 3×10^9

Duplications shapes the genome. Duplications may

range from extension of short tandem repeats, to

duplication of a cluster of genes, and all the way to

duplications of entire chromosomes or even entire

genomes. Such duplications are fundamental to the

creation of genetic speciality. Transposons are

sequences of DNA that can move around to different

positions within the genome of a single cell, a process

called transposition. In the process, they can cause

mutations and change the amount of DNA in the

genome. About 45% of the human genome is composed

of transposons and their defunct remnants. [11]

The DNA sequences only consist of 4 nucleotide bases

A, C, G, T. 2 bits are enough to store each base.

However, if one applies standard compression software

such as the Unix compress and MS-DOS archive

programs like pkzip and arj, they all expand the DNA

with more than 2 bits per base.[12]

Today, increasing genome sequence data of organisms

lead DNA database size two or three times bigger

annually. Thus, it becomes very hard to download and

maintain such data in a personal local system. So it

requires effective compression techniques. Different

algorithms have been proposed in this domain.

Algorithms like DNACompress [13] ,

GenCompress[12], Biocompress[14] etc are developed

using the characteristics of DNA sequences like point

mutation or reverse complement. It gains a compression

of about 1.76 bits per base (~22% compression

ratio).[15] Although many algorithms are proposed to

compress DNA, they only use the presence of only four

bases A, T, G, C and the repetitive nature of DNA

sequence. There exist general compression algorithms

based on Context Tree Weighting (CTW) and

Arithmetic Coding. Also algorithms like LZ77, LZ78

are used for this purpose. But they are inefficient as far

as DNA compression is concerned. Order 2 coding

which is a modification of Huffman coding to compress

data is also used.

III. GENERAL COMPRESSION ALGORITHMS

Most lossless compression programs use two different

kinds of algorithms: one which generates a statistical

model for the input data, and another which maps the

input data to bit strings using this model in such a way

that "probable" (e.g. frequently encountered) data will

produce shorter output than "improbable" data. Often,

only the former algorithm is named, while the latter is

implied (through common use, standardization etc.) or

unspecified.

Statistical modeling algorithms for text (or text-like

binary data such as executables) include:

 * Burrows-Wheeler transform (block sorting

preprocessing that makes compression more efficient)

 * LZ77

 * LZW

Encoding algorithms to produce bit sequences are:

 * Huffman coding

 * Arithmetic coding

The Burrows-Wheeler transform (BWT, also called

block-sorting compression), is an algorithm used in data

compression techniques such as bzip2. It was invented

by Michael Burrows and David Wheeler.

When a character string is transformed by the BWT,

none of its characters change value. The transformation

rearranges the order of the characters. If the original

string had several substrings that occurred often, then

the transformed string will have several places where a

single character is repeated multiple times in a row. This

is useful for compression, since it tends to be easy to

compress a string that has runs of repeated characters by

techniques such as move-to-front transform and run-

length encoding.

Arithmetic coding is a method for lossless data

compression. It is a form of entropy encoding, but

where other entropy encoding techniques separate the

input message into its component symbols and replace

each symbol with a code word, arithmetic coding

encodes the entire message into a single number, a

fraction n where (0.0 ≤ n < 1.0). A dictionary coder,

also sometimes known as a substitution coder, is any of

a number of lossless data compression algorithms which

operate by searching for matches between the text to be

compressed and a set of strings contained in a data

structure (called the 'dictionary') maintained by the

encoder. When the encoder finds such a match, it

substitutes a reference to the string's position in the data

structure. Both the LZ77 and LZ78 algorithms work on

this principle.

IV. RELATED EXISTING ALGORITHMS

Grumbach and Thai introduced DNA specific

compression algorithm. Two common algorithms,

BioCompress and BioCompress 2 are based on LZ77

and LZ78.

“Formatdb” compresses the sequence with a Huffman-

like coding method but deals minor symbols very

efficiently and can uncompress fast

(http://sapiens.wustl.edu/blast/blast/ncbi20ntfmt.html)F

or dictionary-based methods, LZ77 scheme is known to

be the best method for compressing DNA data so far.

Several DNA-oriented algorisms have been tried to

make the best of the haracteristics of DNA such as

reverse complement and point mutation in order to

apply LZ77 scheme more efficiently. In GSCompress,

we employed LZ77 scheme with reverse complement as

a dictionary-based scheme.

E. Rivals et al. [7] give another compression algorithm

Cfact, which searches the longest exact matching repeat

using sux tree data structure in an entire sequence. The

idea of Cfact is basically the same as Biocompress-2

except that Cfact is a two-pass algorithm. It builds the

sux tree in the 1st pass. In the encoding phase, the

repetitions are coded with guaranteed gain; otherwise,

two-bit per base encoding will be used. This is similar

to the codeword encoding condition in Biocompress-2

except that the order-2 arithmetic coding is not used in

Cfact. E. Rivals et al. [16] also designed a compression

algorithm as a tool to detect the approximate tandem

repeats in DNA sequences.

Sadeh [18] has proposed lossy data compression

schemes based on approximate string matching and

proved some asymptotic properties with respect to

ergodic stationary sources. However, we are not

interested in lossy compression.

GenCompress is a one-pass algorithm. It proceeds as

follows: For input w, assume that a part of it, say v, has

already been compressed, and the remaining part is u,

i.e. w = vu. GenCompress finds an optimal prefix of u

such that it approximately matches some substring in v

so that this prefix of u can be encoded economically.

After outputting the code of this prefix, remove the

prefix from u, and append it to the suffix of v. Continue

the process till u = €. [12]

If we know the string u and an edit operation sequence

_(u; v) from u to v, then the string v can be constructed

correctly using lamda. There are many ways to encode

one string given another. Using the above example, we

describe four ways to encode “gaccgtca" using string

“gaccttca".

1. Two bits encoding method. In this case, we can

simply use two bits to encode each character,i.e. 00 for

a, 01 for c, 10 for g, 11 for t. Thus “10 00 01 01 10 11

01 00" encodes "gaccgtca". It needs 16 bits in total.

2. Exact matching method. We can use (repeat position,

repeat length) to represent an exact repeat. This way, for

example, if we use three bits to encode an integer, two

bits to encode a character, and use one bit to indicate if

the next part is a pair (indicating an exact repeat) or a

plain character, then the string “gaccgtca" can be

encoded as f(0; 4); g; (5; 3)g, relative to “gaccttca".

Thus, a 17 bits binary string “0 000 100 1 10 0 101 011"

is required to encode the f(0; 4); g; (5; 3); g.

3. Approximate matching method. In this case, the

string “gaccgtca" can be encoded as

f(0; 8); (R; 4; g)g, or “0 000 111 1 00 100 10" in binary,

with R encoded by 00, I encoded by 01, and D encoded

by 11, and 0/1 indicating whether the next item is a

doubleton or triple. A total of 15 bits is needed.

4. For approximate matching method, if we use the edit

operation sequence (I,4,g),(D,6). Then the string

“gaccgtca" can be encoded as f(0; 8); (I; 4; g); (D; 6)g,

or “0 000 111 1 01 100 10 1 10110", in total 21 bits.[12]

V. PROPOSED ALGORITHM

In the previous section, various DNA compression

techniques have been mentioned. But they achieve a

compression of only 1.76 bits per base(~22%

compression). To improve the parameter, a new

technique named GenomeCompress has been devised

which is much effective from storage and time point of

view. Here an encoding scheme containing 5 possible

bits has been introduced. Thus in this coding scheme 2
5

= 32 characters can be represented. Hence every DNA

segment containing four bases is replaced by a 5 bit

binary number.

GenomeCompress is an one pass algorithm. It takes an

input of a DNA sequence of length n, and divides into

(n-r)/4 segments where n = r mod 4. It also employs

four unique five bit binary numbers for each of

AAAAAAAA, CCCCCCCC, GGGGGGGG and

TTTTTTTT. Whenever the eight repeated sequence of

A, C, G, and/or T are found in the sequence, they are

replaced by an unique five bit binary number. This is

continued until length of the segment = r. Four 5 bit

binary numbers are given to represent bases A, C, G and

T which fall in the segment r.

There are only four bases i.e. A,T, G, C found in DNA

sequence. So there are 4!= 24 DNA segments each

containing four bases. So 24 five bit binary numbers are

required to encode them. Out of eight five bit binary

numbers, four are utilized to encode repetitive DNA

sequence and the remaining is used to encode each

bases of segment r. Thus 32 five bit binary numbers are

utilized to encode DNA. The algorithm has been shown

below:

Encoding Algorithm:

Input: Input String(INSTRING) Containing A, T, G and C

Output: Encoded String (OUTSTRING)

PROCEDURE ENCODE

Begin

 Divide INSTRING into segments of length 4

 if two consecutive segments only contain eight A,

T, G or C

 encode consecutive sequence with 5 bit binary

numbers

 transfer the five bit binary number to the output

string(OUTSTRING)

 else

 for each segment

 Begin

 find out the corresponding 5-bit binary number.

 replace the segment by five bit binary number

 transfer the five bit binary number to the output

string(OUTSTRING)

 End

 for the remaining sequence of r where n = r mod 4 ,

 encode each A, T, G and C with unique 5 bit

binary number

 transfer the five bit binary number to the output

string(OUTSTRING)

 End

Decoding is carried out in the reverse manner of

encoding. During decoding each five bit binary number

is replaced by the complementary DNA segment, either

containing four or eight bases or just one base. The

DNA segments are stored in an array of length 32 where

the address of the each element is denoted by a five bit

binary number. During decoding process whenever the

program finds a five bit binary number, it replaces it

with the DNA sequence stored in its address. The

decoding procedure is as under:

Decoding Algorithm

Input: Input String

Output: Decoded String(DECSTRING)

PROCEDURE DECODE

Begin

 Divide the input binary string into segments of length 5

 For each binary segment of length 5

 Begin

 Convert each segment into corresponding A, T, G,

C sequence.

 Transfer the sequence to the DECSTRING

 End

End

VI. ANALYSIS

Assume that n is the length of the sequence and n=r

(mod 4) .Suppose a,b,c,d denotes the number of 8

repetitive A, T, G, C sequences (e.g., in

AAAAAAAACCCCCCCC GGGGGGGGTTTTTTTT,

a=b=c=d=1). If each of these eight repetitive sequence

requires five bits(binary) then the total number of bits

(B) required to encode the sequence of n byte can be

obtained as follows:

B=5/4*(n-r) + 5*r- (a+b+c+d)*5/8= 1.25n+ 3.75r –

0.625*(a+b+c+d)

Here 5 bits are required to encode 4 bytes. So 5/4 or

1.25 bits are required to encode 1 byte or one base.

Hence 5/4*(n-r) bits are required to encode a sequence

of length (n-r). Because each of the bases of the

segment “r” of DNA is represented by a 5 bit binary

number, 5*r bits are needed to encode it. As 0=<r<=3,

0=<5*r<=15, so the value of 5*r is negligible when the

value of the n increases. In other words the length of the

DNA sequence is huge. As 8 repetitive A, T, G, C are

represented by four unique five bit binary numbers

(a+b+c+d)*5/8 bits can be saved to encode the

sequence. This encoding scheme exploits the repetitive

nature of the DNA sequence often pronounced in short

tandem repeats or inverted repeats. However the other

encoding strategy utilizes the non repetitiveness of a

DNA sequence. Therefore for a non repetitive huge

sequence i.e. a = b = c = d = 0, approximately 1.25 bits

is required to encode each base.

VII. EXAMPLE AND COMPARISON

Let us consider the sequence GAAT TTGC AAAA

AAAA GCTA ATGC CTAG GGTT TTTG CCCC

CCCC AAAA TCAG TTGC ATAG GACG . This

sequence is of length 64 and 64 bytes are required to

store it in a text file. If it is compressed using zip

program included in Windows XP, the size becomes

163 bytes which is not intended at all. This proves that it

is very difficult of compress a DNA sequence and

general compression programs just increase its size

while compressing. By GenomeCompress every

segment of length four is replaced by a 5 bit number and

eight repetitive A,T, G and C are replaced by four

unique 5 bit numbers. Two AAAAAAAA and CCCC

CCCC are found in this sequence. So 5*12+5*2 bits or

70 bits or just 9 bytes are required for compressed

sequence by GenomeCompress. GenCompress,

Biocompress, DNACompress and other softwares take

about 14 bytes for compressed sequence because they

give about 22% compression in general. Therefore

GenomeCompress performs significantly better than

other existing algorithms for DNA compression.

Other specialized DNA compression programs are

either optimized of non repetitive nature of DNA

sequence or repetitive nature of DNA sequence.

Compared to other algorithms which give compression

nearly 1.76 bits per base on benchmark sequences

GenomeCompress compresses up to 1.25 bits per

base(15.625 % compression ratio). Because this

algorithm is relatively simple compared to other

algorithms like BioCompress, GenCompress etc it takes

lesser time to execute.

Thus our proposed algorithm GenomeCompress has the

following advantages:

i) Compression ratio of 1.25 bits per base compared to

1.76 bits per base for the other algorithms.

ii) Because the method doesn’t use dynamic

programming technique which was used by other

methods e.g., BioCompress, GenCompress etc, it is

simple and takes less execution time.

iii) It uses less memory compared to the other

algorithms.

VIII. Concluding Remarks

A new algorithm which is completely new in its design

is proposed to compress DNA sequences which are

repetitive as well as non repetitive in nature. All other

existing algorithms are based on either statistics based

or dictionary based.

DNA sequence analysis i.e. single and multiple

alignments are areas of active research in

bioinformatics. If the sequence is compressed using

GenomeCompress it will be easier to make sequence

analysis between compressed sequences. It’ll also be

easier to make multiple sequence alignment. High

compression ratio in this algorithm also suggests a

highly repetitive sequence. The compression method

can be improved by incorporating dynamic

programming technique.

REFERENCES

[1] Crick, F., 1970, Central Dogma of Molecular

Biology. Nature 227, 561-563

[2] Voet & Voet, Biochemistry, 3
rd

 Edition, 2004

[3] Pierce, B. A. (2005). Genetics: A conceptual

approach. Freeman. Page 311

[4] Curnow, R. and Kirkwood, T., Statistical analysis of

deoxyribonucleic acid sequence data { a review, J.

Royal Statistical Society, 152:199{220, 1989.

[5] Grumbach, S. and Tahi, F., A new challenge for

compression algorithms: genetic sequences, J.

Information

Processing and Management, 30(6):875-866, 1994.

[6] Lanctot, K., Li, M., and Yang, E.H., Estimating

DNA sequence entropy, to appear in SODA '2000.

[7] Rivals, _E., Delahaye, J.-P., Dauchet, M., and

Delgrange, O., A Guaranteed Compression Scheme for

Repetitive DNA Sequences, LIFL Lille I University,

technical report IT-285, 1995.

[8] F. Sanger, S. Nicklen, and A. R. Coulson, DNA

sequencing with chain-terminating inhibitors, Proc Natl

Acad Sci U S A. 1977 December; 74(12): 5463–5467

[9] Ronaghi M, Pyrosequencing sheds light on DNA

sequencing, Genome Res. 2001 Jan;11(1):3-11.

[10] Gregory, TR (ed) (2005). The Evolution of the

Genome. Elsevier.

[11] Lewin B, Genes VIII, Oxford University Press

[12] Xin Chen et al, A Compression Algorithm for

DNA Sequences

and Its Applications in Genome Comparison

[13] Xin Chen et al, DNACompress: fast and effective

DNA sequence Compression, Bioinformatics

Applications Note Vol. 18 no. 12 2002

Pages 1696–1698

[14] S Grumbach, F Tahi, LC INRIA,Compression of

DNA sequences, Data Compression Conference, 1993.

DCC'93., 1993

[15] T Matsumoto, K Sadakane, H Imai , Biological

sequence compression algorithms , Genome Inform.

Ser. Wokrshop Genome Inform, 2000

[16] Rivals, _E., Delgrange, O., Delahaye, J.-P.,

Dauchet, M., Delorme, M.-O., H_enaut, A., and

Ollivier, E., Detection of signi_cant patterns by

compression algorithms: the case of approximate

tandem repeats in DNA sequences, CABIOS,

13(2):131{136, 1997.

