Propositional Logic and Boolean Algebra

CS 220 — Applied Discrete Mathematics

September 10, 2024

Statements

Definition (Statement)

A **statement** is an unambiguous, declarative sentence that is either objectively true or false.

Examples (Statements)

- It is raining, and I have no umbrella.
- Either that is a cat, or I forgot to turn off the oven.
- Sodium hydroxide is an ingredient in solid soaps.
- ► The floor is lava.
- There is another planet with intelligent life within 200 light-years of Earth.

Examples (Not statements)

- The smallest two-digit prime number.
- Who knows what evil lurks in the hearts of men?
- Look at that plumage!
- ▶ 2 is the best number.
- "Embiggen" is a perfectly cromulent word.

Statement Ingredients

Observation

A statement seems to consist of

- domain knowledge (math, science, programming, etc)
- ► logical structure

Examples (Domain knowledge)

- "It is raining."
- ► "7 is odd."
- "Sodium hydroxide is an ingredient in solid soaps."
- "Array A has 5 elements."

Examples (Logical structure)

- "______ and _____."
- "_____ or ____."
- ▶ "If _____, then ____."
- "It's not true that _____."

Idea: let's split them and tackle them separately.

Exercise: Decompose Statements

Logical structures:

Examples

Decompose each statement into basic statements and logical structure.

- 1. "It is raining, and I have an umbrella."
- 2. "If it is snowing, then the trees have flowers."
- 3. "If f(x) > a, then f(x + 1) > 2a."
- 4. "36 is a multiple of either 8 or 9."
- 5. "2 is less than 3, which is less than 5."
- 6. "I like apples and oranges, but not pears."

Exercise: Decompose Statements

Logical structures:

Examples

Decompose each statement into basic statements and logical structure.

- 1. "It is raining, and I have an umbrella."
- 2. "If it is snowing, then the trees have flowers."
- 3. "If f(x) > a, then f(x+1) > 2a."
- 4. "36 is a multiple of either 8 or 9."
 - = "36 is a multiple of 8, or 36 is a multiple of 9."
- 5. "2 is less than 3, which is less than 5."
- = "2 is less than 3, and 3 is less than 5."
- 6. "I like apples and oranges, but not pears." = "I like apples, and I like oranges, and it is not true that I like pears."

Propositional Logic

Definition (Propositional Logic)

In **propositional logic** there are two kinds of **propositions**:

- propositional variables (aka, atomic propositions) which stand for individual statements of domain knowledge, and
- compound propositions formed by combining smaller propositions with logical connectives (aka, logical operators)

A proposition is a formal representation of a statement.

Example

Let R represent "it is raining" and let U represent "I have an umbrella".

We write $\neg U$ for "I do *not* have an umbrella".

We write $R \wedge \neg U$ for "It is raining, and I do not have an umbrella".

Compound Propositions

Here are the logical connectives most used in mathematics:

Connective	Read as	Preferred notation	Other notations
Negation	"not"	$\neg P$	$\sim\!\!P$! P
Conjunction	"and"	$P \wedge Q$	P&Q
Disjunction	"or"	$P\vee Q$	
Implication	"implies", "if-then"	$P\Rightarrow Q$	$P o Q$ $P\supset Q$
Biconditional	"equivalent to"	$P \Leftrightarrow Q$	$P \leftrightarrow Q P \equiv Q$

Other logical operators are used in other contexts; for example, NAND and NOR and XOR are common in digital circuit design.

Evaluating the Truth of Propositions

Definition (Truth Value)

There are two **truth values**: true (T) and false (F).

The truth value of a compound proposition depends only on

- ► the logical connective, and
- the truth values of the component propositions

It does not depend on the statements themselves.

For example, we evaluate these propositions in exactly the same way:

- ▶ "8 is even" \Rightarrow "9 is odd"
- ▶ "8 is even" \Rightarrow "Mars is a planet"

That is, the logical connectives simply act like operators on truth values. Their behavior can be summarized by **truth tables**.

Negation (\neg , "not", "it is not true that")

P	$\neg P$
Т	F
F	Т

- "I don't like pears" = \neg ("I like pears") = \neg F = T
- "today is not Tuesday" = \neg ("today is Tuesday") = \neg T = F

Conjunction (∧, "and")

P	\overline{Q}	$P \wedge Q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

- $lackbox{"}2 < 3 \text{ and } 3 < 5" = (2 < 3) \land (3 < 5) = \mathsf{T} \land \mathsf{T} = \mathsf{T}$
- "it is sunny, and I have an umbrella" = ("it is sunny") \wedge ("I have an umbrella") = T \wedge F = F

Disjunction (∨, "or")

P	Q	$P \lor Q$
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

Notice that it is an inclusive "or", not always what we mean in a spoken language. (Not like: "You can have soup *or* salad.")

- "it is raining or the sprinklers are on"
 = ("it is raining") ∨ ("the sprinklers are on") = F∨T = T
- ▶ "72 is a multiple of 6 or a multiple of 8" $= ("72 \text{ is a multiple of 6"}) \lor ("72 \text{ is a multiple of 8"}) = T \lor T = T$

Exclusive Or (⊕, XOR)

P	Q	$P\oplus Q$
Т	Т	F
Т	F	Т
F	Т	Т
F	F	F

▶ It is true if *exactly* one of the predicates is true.

Implication (\Rightarrow , "if-then", "implies")

P	Q	$P\Rightarrow Q$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

- ightharpoonup P is called the **hypothesis**; Q is called the **conclusion**.
- ▶ If P is false, then $P \Rightarrow Q$ is true regardless of Q.
- ▶ $P \Rightarrow Q$ is equivalent to $(\neg P) \lor Q$.

- "if today is Tuesday, then you have class"
- "if my light is green then the other light is red"

Implication (\Rightarrow , "if-then", "implies")

Definition (Contrapositive)

The **contrapositive** of $P \Rightarrow Q$ is $\neg Q \Rightarrow \neg P$.

The contrapositive is equivalent to the original proposition.

- Original: "If today is Tuesday, then you have class."

 Contrapositive: "If you don't have class, then today is not Tuesday."
- Original: "If my light is green, then the other light is red."
 Contrapositive: "If the other light is not red, then my light is not green."

Biconditional ("if and only if", sometimes written "iff")

P	Q	$P \Leftrightarrow Q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

- ▶ True if both *P* and *Q* have the same truth value.
- ▶ Equivalent to $(P \Rightarrow Q) \land (Q \Rightarrow P)$.

Summary: Logical Connectives

P	Q	$P \wedge Q$	$P \lor Q$	$P\Rightarrow Q$	$P \Leftrightarrow Q$
Т	Т	Т	Т	Т	Т
Т	F	F	Т	F	F
F	Т	F	Т	Т	F
F	F	F	F	T	Т

Evaluating Propositions

Truth tables can be used to evaluate complex propositions.

- 1. Create a column for each propositional variable, and create $2^{\text{#vars}}$ rows. Fill in every combination of truth values for the propositional variables.
- 2. Create a column for each sub-expression, smallest first.
- 3. Fill in each column by applying the truth table of its main connective to the truth values of its arguments from that row.

Example

Evaluate the proposition: $\neg P \lor \neg Q$

P	Q	$\neg P$	$\neg Q$	$ eg P \lor eg Q$
Т	Т	F	F	F
Т	F	F	Т	Т
F	Т	Т	F	Т
F	F	Т	T	T

Evaluating Multiple Propositions

You can evaluate multiple statements in a truth table.

Example

Evaluate $\neg(P \land Q)$ and $\neg P \lor \neg Q$.

Evaluating Multiple Propositions

You can evaluate multiple statements in a truth table.

Example

Evaluate $\neg (P \land Q)$ and $\neg P \lor \neg Q$.

$oxedsymbol{P}$	Q	$P \wedge Q$	$\neg (P \land Q)$	$ eg P \lor eg Q$
Т	Т	Т	F	F
Т	F	F	Т	Т
F	Т	F	Т	Т
F	F	F	T	T

Evaluating Multiple Propositions

You can evaluate multiple statements in a truth table.

Example

Evaluate $\neg (P \land Q)$ and $\neg P \lor \neg Q$.

P	Q	$P \wedge Q$	$\neg (P \wedge Q)$	$ eg P \lor eg Q$
Т	Т	Т	F	F
Т	F	F	Т	Т
F	Т	F	Т	Т
F	F	F	Т	Т

Notice that $\neg(P \land Q)$ and $\neg P \lor \neg Q$ have the same truth table. That is, they are **logically equivalent**.

Logically Equivalent Statements

If two propositions X and Y are logically equivalent, then $X \Leftrightarrow Y$ is always T, and vice versa.

P	Q	$\neg (P \land Q)$	$ eg P \lor eg Q$	$\neg (P \land Q) \Leftrightarrow (\neg P \lor \neg Q)$
Т	Т	F	F	Т
F	Т	Т	Т	Т
Т	F	Т	Т	Т
F	F	Т	Т	T

Logical Equivalences

Name	Disjunction	Conjunction
Identity	$A \vee F \; \Leftrightarrow \; A$	$A \wedge T \Leftrightarrow A$
Dominance	$A \vee T \; \Leftrightarrow \; T$	$A \wedge F \iff F$
Idempotent	$A \vee A \iff A$	$A \wedge A \; \Leftrightarrow \; A$
Inverse	$A \vee \neg A \; \Leftrightarrow \; T$	$A \land \neg A \iff F$
Commutative	$A \vee B \iff B \vee A$	$A \wedge B \; \Leftrightarrow \; B \wedge A$
Associative	$(A \vee B) \vee C \iff A \vee (B \vee C)$	$(A \wedge B) \wedge C \iff A \wedge (B \wedge C)$
Distributive	$A \lor (B \land C) \Leftrightarrow (A \lor B) \land (A \lor C)$	$A \wedge (B \vee C) \Leftrightarrow (A \wedge B) \vee (A \wedge C)$
Absorption	$A \vee (A \wedge B) \Leftrightarrow A$	$A \wedge (A \vee B) \Leftrightarrow A$
DeMorgan	$\neg (A \lor B) \Leftrightarrow \neg A \land \neg B$	$\neg (A \wedge B) \Leftrightarrow \neg A \vee \neg B$

Logical Equivalences

Name	Equivalence		
Double Negation	$ eg(eg A) \Leftrightarrow A$		
Conditional	$A\Rightarrow B \;\Leftrightarrow\; \neg A\vee B$		
Contrapositive	$A\Rightarrow B \Leftrightarrow \lnot B\Rightarrow \lnot A$		
Biconditional	$(A \Leftrightarrow B) \Leftrightarrow ((A \Rightarrow B) \land (B \Rightarrow A))$		

Tautologies and Contradictions

Definitions (Tautology, Contradiction)

A **tautology** is a proposition that is always true.

A **contradiction** is a proposition that is always false.

A **contingent proposition** is neither always true nor always false. Its truth value depends on the truth values of its propositional variables.

Examples (Tautologies)

- $ightharpoonup R \lor \neg R$
- $\blacktriangleright \ \neg (P \land Q) \Leftrightarrow (\neg P \lor \neg Q)$

Examples (Contradictions)

- $ightharpoonup R \wedge \neg R$
- $\blacktriangleright \ (P \land Q) \Leftrightarrow (\neg P \lor \neg Q)$

The negation of any tautology is a contradiction.

The negation of any contradiction is a tautology.

The negation of any contingent proposition is contingent.

Satisfiability

Definition (Truth Assignment)

A **truth assignment** maps propositional variables to truth values. Each row of a truth table corresponds to a truth assignment.

Example

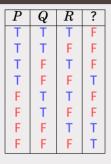
There's no standard notation, but we could write $\{A = T, B = F\}$.

Definition (Satisfiable)

A proposition is **satisfiable** if there is a truth assignment that makes it true. A proposition is **valid** if every truth assignment makes it true. A proposition is **unsatisfiable** if every truth assignment makes it false. (That is, valid = tautology, unsatisfiable = contradiction.)

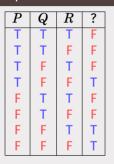
Is there an algorithm for determining if a proposition is satisfiable? Is there an algorithm for determining if a proposition is valid?

Given a truth table, can we find a proposition with that table?



Given a truth table, can we find a proposition with that table?

Example

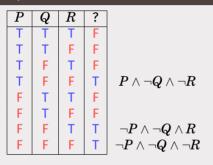


We can get a true result by: picking row 4 OR picking row 7 OR picking row 8

Under what circumstances does row 4 apply? (Likewise, 7 and 8.)

Given a truth table, can we find a proposition with that table?

Example



We can get a true result by: picking row 4 OR picking row 7 OR picking row 8

Under what circumstances does row 4 apply? (Likewise, 7 and 8.)

Given a truth table, can we find a proposition with that table?

Example

P	Q	R	?	
Т	Т	Т	F	
Т	Т	F	F	
Т	F	Т	F	
Т	F	F	Т	$P \wedge eg Q \wedge eg R$
F	Т	Т	F	
F	Т	F	F	
F	F	Т	Т	$ eg P \wedge eg Q \wedge R$
F	F	F	Т	$ig eg P \wedge eg Q \wedge eg R$

We can get a true result by: picking row 4 OR picking row 7 OR picking row 8

Under what circumstances does row 4 apply? (Likewise, 7 and 8.)

Solution:

$$[P \wedge \neg Q \wedge \neg R] \ \lor \ [\neg P \wedge \neg Q \wedge R] \ \lor \ [\neg P \wedge \neg Q \wedge \neg R]$$

This proposition is in disjunctive normal form.

Rewriting with Logical Equivalences

That technique gives us *some* proposition. Is it the best? The shortest? We can rewrite the proposition using logical equivalences:

$$\begin{array}{lll} [P \wedge \neg Q \wedge \neg R] & \vee & [\neg P \wedge \neg Q \wedge R] & \vee & [\neg P \wedge \neg Q \wedge \neg R] \\ = & \neg Q \wedge & [(P \wedge \neg R) \vee (\neg P \wedge R) \vee (\neg P \wedge \neg R)] & \text{Distrib.} \\ = & \neg Q \wedge & [(P \wedge \neg R) \vee (\neg P \wedge \neg R) \vee (\neg P \wedge R)] & \text{Commut.} \\ = & \neg Q \wedge & [(P \wedge \neg R) \vee (\neg P \wedge \neg R) \vee (\neg P \wedge \neg R) \vee (\neg P \wedge R)] & \text{Idem.} \\ = & \neg Q \wedge & [((P \vee \neg P) \wedge \neg R) \vee (\neg P \wedge (\neg R \vee R))] & \text{Distrib.} \\ = & \neg Q \wedge & [(T \wedge \neg R) \vee (\neg P \wedge T)] & \text{Inv.} \\ = & \neg Q \wedge & [\neg R \vee \neg P] & \text{Ident.} \\ = & \neg Q \wedge \neg (R \wedge P) & \text{DeMorgan} \\ = & \neg (Q \vee (R \wedge P)) & \text{DeMorgan} \end{array}$$

This should remind you of algebra. It's almost the same.

Boolean Algebra

Pretend we had "ordinary" variables $x, \bar{x}, y, \bar{y}, z, \bar{z}$ instead of propositional variables and their negations. This part is familiar:

$$\begin{array}{lll} [x\cdot\overline{y}\cdot\overline{z}] \ + \ [\overline{x}\cdot\overline{y}\cdot z] \ + \ [\overline{x}\cdot\overline{y}\cdot\overline{z}] \\ = \ \overline{y} \ \cdot \ [(x\cdot\overline{z}) \ + \ (\overline{x}\cdot z) \ + \ (\overline{x}\cdot\overline{z})] & \text{Distrib.} \\ = \ \overline{y} \ \cdot \ [(x\cdot\overline{z}) \ + \ (\overline{x}\cdot\overline{z}) \ + \ (\overline{x}\cdot z)] & \text{Commut.} \\ = \ \overline{y} \ \cdot \ [(x\cdot\overline{z}) \ + \ (\overline{x}\cdot\overline{z}) \ + \ (\overline{x}\cdot\overline{z}) \ + \ (\overline{x}\cdot\overline{z})] & \text{Idem.} \\ = \ \overline{y} \ \cdot \ [((x+\overline{x})\cdot\overline{z}) \ + \ (\overline{x}\cdot(\overline{z}+z))] & \text{Distrib.} \end{array}$$

Now we have to introduce some special rules to deal with those bars:

$$\begin{array}{ll} = \ \overline{y} \ \cdot \ [(1 \cdot \overline{z}) \ + \ (\overline{x} \cdot 1)] & \text{Inv.} \\ = \ \overline{y} \ \cdot \ [\overline{z} \ + \ \overline{x}] & \text{Ident.} \\ = \ \overline{y} \ \cdot \ (\overline{z} \cdot x) & \text{DeMorgan} \\ = \ \overline{(y + (z \cdot x))} & \text{DeMorgan} \end{array}$$

Boolean Algebra

Parts of propositional logic obey rules very similar to traditional algebra:

```
\begin{array}{cccccc} P,Q,R & \text{are like} & x,y,z \\ \mathsf{T} \text{ and } \mathsf{F} & \text{are like} & 1 \text{ and } \mathbf{0} \\ P \wedge Q & \text{is like} & x \cdot y \\ P \vee Q & \text{is like} & x+y \\ \hline \overline{P} & \text{is like} & 1-x \\ \mathsf{T} \wedge \mathsf{F} = \mathsf{F} & \text{is like} & 1 \cdot \mathbf{0} = \mathbf{0} \end{array}
```

But there are some important exceptions.

- ► $T \lor T = T$ so 1 + 1 = 1 (!!)
- "addition" distributes over "multiplication"
- ▶ ..

The algebraic formulation of propositional logic is called **Boolean algebra**. (We'll come back to this.)