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Statements

Definition (Statement)

A statement is an unambiguous, declarative sentence that is either
objectively true or false.

Examples (Statements) Examples (Not statements)

» It is raining, and | have no »> The smallest two-digit prime
umbrella. number.

> Either that is a cat, or | forgot to » Who knows what evil lurks in the
turn off the oven. hearts of men?

» Sodium hydroxide is an > Look at that plumage!

> The floor is lava. > “Embiggen” is a perfectly

» There is another planet with cromulent word. *

intelligent life within 200
light-years of Earth.
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Statement Ingredients

A statement seems to consist of

» domain knowledge (math, science, programming, etc)

» logical structure

Examples (Domain knowledge)

> “It is raining.”
> “7is odd”

> “Sodium hydroxide is an
ingredient in solid soaps.”

> “Array A has 5 elements.”

Examples (Logical structure)

>

>
>
>

u ”

and
[ O|" ”n
“If , then !

“It's not truethat "

Idea: let’s split them and tackle them separately.
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Exercise: Decompose Statements

Logical structures:

u ” “ ”

and or
“If , then " “Itsnottruethat "

Decompose each statement into basic statements and logical structure.
1. “Itis raining, and | have an umbrella.”

2. “If it is snowing, then the trees have flowers.”
3. “If f(x) > a,then f(x + 1) > 2a”

4. “36 is a multiple of either 8 or 9.

5. “2is less than 3, which is less than 5.”

6. “I like apples and oranges, but not pears.”
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Exercise: Decompose Statements

Logical structures:

u ” “ ”

and or
“If , then " “It's not true that

Decompose each statement into basic statements and logical structure.
1. “It is raining, and | have an umbrella.”

2. “If it is snowing, then the trees have flowers.”
3. “fFf(x) >a,thenf(x+ 1) > 2a.”
4. “36 is a multiple of either 8 or 9.
= “36 is a multiple of 8, or 36 is a multiple of 9."
5. “2is less than 3, which is less than 5.”

= “2 is less than 3, and 3 is less than 5."

6. “I like apples and oranges, but not pears.”
= “| like apples, and I like oranges, and it is not true that / like pears.”
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Propositional Logic

In propositional logic there are two kinds of propositions:

» propositional variables (aka, atomic propositions) which stand for
individual statements of domain knowledge, and

» compound propositions formed by combining smaller propositions
with logical connectives (aka, logical operators)

A proposition is a formal representation of a statement.

Example

Let R represent “it is raining” and let U represent “I have an umbrella”.
We write —U for “I do not have an umbrella”.

We write R A —=U for “It is raining, and | do not have an umbrella”.
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Compound Propositions

Here are the logical connectives most used in mathematics:

Connective Read as Preferred notation Other notations
Negation “not” -P ~P P
Conjunction  “and” PA@ P&
Disjunction “or” Pv@

Implication “implies”, “if-then” P=qQ P—-Q Po@
Biconditional “equivalent to” P&@ PsQ P=@

Other logical operators are used in other contexts; for example, NAND and
NOR and XOR are common in digital circuit design.
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Evaluating the Truth of Propositions

Definition (Truth Value)

There are two truth values: true (T) and false (F).

The truth value of a compound proposition depends only on
» the logical connective, and
» the truth values of the component propositions

It does not depend on the statements themselves.

For example, we evaluate these propositions in exactly the same way:
> “8iseven” = “9is odd”
> “8is even” = “Mars is a planet”

That is, the logical connectives simply act like operators on truth values.
Their behavior can be summarized by truth tables.
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Negation (-, “not”, “it is not true that”)

P[P
T F
FI T

> “l don't like pears” = —(“I like pears”) = —F = T
> “today is not Tuesday” = —(“today is Tuesday”) = —T = F
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Conjunction (A, “and”)

| N
| —| 1| H| D
| | | | >

> “2<3and3<5" = 2<3)AB<bB) =TAT =T
> “it is sunny, and | have an umbrella”
= (“itis sunny”) A (“I have an umbrella”) = TAF = F
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Disjunction (v, “or”)

Q

P

= N
| —| 1| H| D
=== <

Notice that it is an inclusive “or”, not always what we mean in a spoken
language. (Not like: “You can have soup or salad.”)

» “it is raining or the sprinklers are on”
= (“itisraining”) v (“the sprinklersareon”) = FvVT =T
> “72is a multiple of 6 or a multiple of 8"
= (“72is a multiple of 6") v (“72 is a multiple of 8”) = TVT =T
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Exclusive Or (¢, XOR)

| | | )N
1| | T [

||| | D

> It is true if exactly one of the predicates is true.
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Implication (=, “if-then”, “implies”)

| T | [N
il | | =D

=A==

» P is called the hypothesis; @ is called the conclusion.
> If P is false, then P = @ is true regardless of Q.
» P = @ isequivalentto (-P)V Q.

> “if today is Tuesday, then you have class”
> “if my light is green then the other light is red”
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Implication (=, “if-then”, “implies”)

Definition (Contrapositive)

The contrapositive of P = @ is -Q = —P.
The contrapositive is equivalent to the original proposition.

» Original: “If today is Tuesday, then you have class.”
Contrapositive: “If you don’t have class, then today is not Tuesday.”

» Original: “If my light is green, then the other light is red.”
Contrapositive: “If the other light is not red, then my light is not green.”
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Biconditional (“if and only if”, sometimes written “iff”)

il ]
| = | =D

—| || = $

» True if both P and @ have the same truth value.
> Equivalentto (P = Q) A (Q = P).
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Summary: Logical Connectives

P | -P

T| F

Fl T
P|Q|PNQ|PVR |P=Q | PsQ
T| T T T T T
T|F F T F F
FIT F T T F
F|F F F T T
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Evaluating Propositions

Truth tables can be used to evaluate complex propositions.

1. Create a column for each propositional variable, and create 23" rows.
Fillin every combination of truth values for the propositional variables.

2. Create a column for each sub-expression, smallest first.

3. Fill in each column by applying the truth table of its main connective to
the truth values of its arguments from that row.

Evaluate the proposition: =P VvV —-@

PIQ]-P] Q] Pv-Q
T(T|F | F F
T{F|F | T T
FIT| T | F T
FIF| T | T T
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Evaluating Multiple Propositions

You can evaluate multiple statements in a truth table.

Evaluate =(P A @) and =P V —Q.
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Evaluating Multiple Propositions

You can evaluate multiple statements in a truth table.

Evaluate =(P A @) and =P V —Q.

P Q| PANQ|-(PAQ) | PV-Q
T[T T F F
T|F 7 T T
FIT F T T
F|F F T T
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Evaluating Multiple Propositions

You can evaluate multiple statements in a truth table.

Example
Evaluate =(P A @) and =P V —Q.

P Q| PANQ|-(PAQ) | PV-Q
T[T T F F
T|F 7 T T
FIT F T T
F|F F T T

Notice that -(P A @) and —P vV =@ have the same truth table.
That is, they are logically equivalent.
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Logically Equivalent Statements

If two propositions X and Y are logically equivalent,
then X < Y is always T, and vice versa.

P[@[-PrQ [PV R| Pr@ < (PVA_
TI| T F F T
F| T T T T
T| F T T T
F| F T T T
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Logical Equivalences

Name Disjunction Conjunction
Identity AVF & A ANT & A
Dominance AVT & T AANF & F
Idempotent AVA & A ANA & A
Inverse AV-A & T AN-A & F
Commutative AVB & BVA AANB & BAA
Associative (AvB)vC < Av (BVC) (AAB)ANC < AAN(BAC)

Distributive AVBAC)& (AVB)AAVC) AANBVC)& (AANB)VAANC)
ANAVB) < A
~(AAB) & -AV-B

Absorption AV(ANB) « A
DeMorgan -(AVB) & -AN-B
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Logical Equivalences

Name Equivalence

Double Negation -(-A) & A
Conditional A=B < -AVB
Contrapositive A=B & -B=-A
Biconditional (AeB) & (A=B)A(B=A4))
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Tautologies and Contradictions

A tautology is a proposition that is always true.
A contradiction is a proposition that is always false.

A contingent proposition is neither always true nor always false.
Its truth value depends on the truth values of its propositional variables.

Examples (Tautologies) Examples (Contradictions)

» RV -R » RA-R
> 2(PAQ) = (-PV Q) > (PAQ) & (-PV Q)

The negation of any tautology is a contradiction.
The negation of any contradiction is a tautology.
The negation of any contingent proposition is contingent.
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Satisfiability

A truth assignment maps propositional variables to truth values.
Each row of a truth table corresponds to a truth assignment.

There's no standard notation, but we could write {A =T,B = F}.

Definition (Satisfiable)

A proposition is satisfiable if there is a truth assignment that makes it true.
A proposition is valid if every truth assignment makes it true.

A proposition is unsatisfiable if every truth assignment makes it false.
(That is, valid = tautology, unsatisfiable = contradiction.)

Is there an algorithm for determining if a proposition is satisfiable?
Is there an algorithm for determining if a proposition is valid?
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From Truth Table to Proposition

Given a truth table, can we find a proposition with that table?

MmN
B B B B B B B | 0
i B B B T R R =
e e B B o B e o B & e o1 (KX}
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From Truth Table to Proposition

Given a truth table, can we find a proposition with that table?

{: ? }TE ; We can get a true result by:
11Tl ElF picking row 4 OR
TlelTlF picking row 7 OR
TlElElT picking row 8

F| T | T]|F .
FlTlElF Under what circumstances
clelTlT dqes row 4 apply?
clelelT (Likewise, 7 and 8.)
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From Truth Table to Proposition

Given a truth table, can we find a proposition with that table?

We can get a true result by:
pickRing row 4 OR
picking row 7 OR

PA-QA-R picking row 8

Y

Under what circumstances

does row 4 apply?
_|P _ R . .
P /\Aﬁg/\/\ﬁR (Likewise, 7 and 8.)

B B B B B B B | 0
i B B B T R R =
o B B B B B B B (KR

mm T~ - -
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From Truth Table to Proposition

Given a truth table, can we find a proposition with that table?

We can get a true result by:
pickRing row 4 OR
picking row 7 OR

PA-QA-R picking row 8

Y

Under what circumstances

does row 4 apply?
_|P _ R . .
P /\Aﬁg/\/\ﬁR (Likewise, 7 and 8.)

B B B B B B B | 0
i B B B T R R =
o B B B B B B B (KR

mm T~ - -

Solution:
[PAN-QA—-R] V ["PA-QAR] V [-PAN—-Q A —R)]

This proposition is in disjunctive normal form.
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Rewriting with Logical Equivalences

That technique gives us some proposition. Is it the best? The shortest?
We can rewrite the proposition using logical equivalences:

[PAN-QA-R] V ["PA-QAR] V [-PA—-QAN—R]

= -Q A [PA=R) V (-PAR) V (=P A—R)] Distrib.
= -Q A [[PAN-R) V (-PA-R) V (-P AR)] Commut.
= -Q A [PA-R)V (-PA-R) V (-PA-R) V (=P AR)] Idem.
= -Q A [(PV-P)A-R) V (-PA(=RVR))] Distrib.
=-=Q A [(TA-R) V (-PAT)] Inv.
= -Q A [FR VvV —P] Ident.
= Q@ N ~(RAP) DeMorgan
= 2(QV (RAP)) DeMorgan

This should remind you of algebra. It's almost the same.
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Boolean Algebra

Pretend we had “ordinary” variables x,%,y,5, z, Z instead of propositional variables
and their negations. This part is familiar:

x-y-2 + X-y-2] + K52
=y [x2)+ (x-2) + (x-2)] Distrib.
=y [x2) + (x2)+ (x2)] Commut.
=y [x2)+ &2+ &2+ (x2)] Idem.
=y [(x+%)-2) + (x-(zZ+2))] Distrib.
Now we have to introduce some special rules to deal with those bars:
=y 12+ (x-1)] Inv.
=y - [+ % Ident.
=y (%) DeMorgan
= (+(=x) DeMorgan
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Boolean Algebra

Parts of propositional logic obey rules very similar to traditional algebra:

P,Q,R
TandF
PAQ
Pv@Q
P
TAF=F

But there are some important exceptions.

> TVT=T so 1+1=1(1)

are like
are like

is like
is like
is like
is like

x,y,2
land 0
x-y
x+y
1—x
1-0=0

> “addition” distributes over “multiplication”

> ..

The algebraic formulation of propositional logic is called Boolean algebra.

(We'll come back to this.)
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