
Complexity Classes and NP-Completeness
CS 624 — Analysis of Algorithms

May 2, 2024

Ryan Culpepper 16 Complexity Classes 1

Introduction to Complexity Classes

A problem’s complexity class is determined by the complexity class
of the algorithms that are capable of solving it.

An algorithm’s complexity class is determined by its order of growth
measured as a function of the problem size.

▶ For instance if we are talking about sorting a set, then n will be
the number of elements of the set.

▶ If we are talking about a graph G = (V ,E), then it is reasonable
to let n be something like |V |+ |E| etc.

▶ In general, a problem instance a is encoded in some way, and n
is just another name for |a|, which is the length of the encoding.

Ryan Culpepper 16 Complexity Classes 2

Introduction to Complexity Classes

Definition
The class P (aka PTIME, aka DTIME) is the class of problems for which
there is a number k and an algorithm which solves the problem and
whose running time is O(nk) where n is the size of the instance of
the problem.
These problems are also called polynomial-time problems.

All the problems we have seen in this course so far are in P, almost
always with a very small exponent.

Ryan Culpepper 16 Complexity Classes 3

Class P: A (Semi-)Formal Definition

▶ Class P contains all decision problems that can be solved by a
deterministic Turing machine using a polynomial amount of
computation time.

▶ We can semi-formally think of a Turing machine as an algorithm
that solves a particular problem (it’s not a real machine!).

▶ In a deterministic Turing machine, at every state of the algorithm
(a combination of the input and stage of the computation) we
have at most one way to proceed.

▶ Everything we saw thus far falls into this category. Even
“random” numbers (really, pseudo-randomly generated).

▶ The polynomial time is with respect to the space it takes to
represent the input.

Ryan Culpepper 16 Complexity Classes P: Polynomial Time 4

Decision Problems

Definition (Decision Problem)

A decision problem is a problem for which the answer is simply
“yes” or “no”.
An instance of a decision problem refers to the question asked of a
particular input.

Example

▶ The Hamiltonian Cycle problem: Given an undirected graph, is
there a simple cycle that contains every vertex?
An instance of the Hamiltonian Cycle problem is a specific
undirected graph G.

Ryan Culpepper 16 Complexity Classes P: Polynomial Time 5

Decision Problems

Some problems, such as optimization problems, are not naturally
decision problems but they can be converted into decision problems.

Example

An independent set in an undirected graph G = (V ,E) is a subset V1
of the vertices V such that no two vertices in V1 are joined by an
edge in E.

The “Maximal Independent Set” problem is, given a graph G, to find
the largest independent set in G. This is not a decision problem, but
the following related problem is:

Given a positive integer k, is there an independent set V1 in
the graph of size k?

An instance of the decision problem is a pair (G,k).

Ryan Culpepper 16 Complexity Classes P: Polynomial Time 6

Reductions

▶ Reducing a problem to an instance of another problem is a
common practice. We have seen it in this course.

▶ Example: We proved that the average-case running time of
building a binary search tree was Θ(n logn) by showing a
correspondence between that process and the Quicksort
algorithm.

▶ We reduced the BuildBinarySearchTree algorithm to the
Quicksort algorithm, and also reduced the Quicksort algorithm
to the BuildBinarySearchTree algorithm. That is, there was a
reduction in both directions.

▶ More recently, we reduced the Marriage problem to the Max Flow
problem, but that reduction only went in one direction.

Ryan Culpepper 16 Complexity Classes P: Polynomial Time 7

Polynomial Reductions
In particular, we are concerned with polynomial-time reductions:

Definition (Polynomial-Time Reduction)

Suppose that A and B are decision problems.
A polynomial-time reduction is a function f such that
▶ f : A → B. That is, f maps instances of A to instances of B.
▶ f is implemented by a polynomial-time algorithm.

That is, if a is an instance of problem A, then the time to compute f (a)
is O(|a|k) for some k, where |a| is the size of instance a.

▶ For every a ∈ A, a has the same answer (“yes” or “no”) as f (a).
Then we say that A is polynomial-time reducible to B,
and we write A ≤P B.

Intuition: A ≤P B means “A is easier (or no harder than) than B”,
since a B-solver can solve A problems too.

Ryan Culpepper 16 Complexity Classes P: Polynomial Time 8

Properties of Polynomial Reductions

Suppose that A ≤P B. Then the following are also true:
▶ Not only is f (a) computable from a in polynomial time,

but |f (a)| is a polynomially bounded function of |a|.
In other words: |f (a)| = O(|a|k) for some k.
This is because f only runs for O(|a|k) time and therefore
cannot output an encoding for f (a) longer than that.

▶ If B is a problem in P, then A is also in P. We just define

SolveA(a) = SolveB(f (a))

This depends on f (a) having the same answer as a does.
If the time complexity of f (a) is O(|a|p) and the time of SolveB(b)
is O(|b|q), then the time of SolveA(a) is O((|a|p)q) = O(|a|pq).

Ryan Culpepper 16 Complexity Classes P: Polynomial Time 9

Properties of Polynomial Reductions

Suppose that A ≤P B. Then the following are also true:
▶ In the other direction: A is somehow difficult to solve, then B

must also be difficult. (Contrapositive of previous item.)
For instance, if we knew that there was no polynomial-time
algorithm for A, then we would also know that there could be no
polynomial-time algorithm for B, since such an algorithm for B
would immediately yield one for A as well.

A ≤P B =⇒
{

B is easy =⇒ A is easy
A is hard =⇒ B is hard

Ryan Culpepper 16 Complexity Classes P: Polynomial Time 10

The Class NP

There is a very large class of problems for which no polynomial-time
algorithm has been found.
However, they can be checked in polynomial time.

Example
No polynomial-time algorithm is known for the Hamiltonian Cycle problem
but if we get a Hamiltonian cycle as a list of vertices for a graph G, it would
be easy to check that it was indeed a Hamiltonian cycle (or wasn’t):
▶ Check that the list included all the vertices once and none twice.
▶ Check that between each two consecutive vertices in the list (and

between the first and the last) there was an edge in the graph.

This can obviously be done in polynomial time. (In fact, linear.)

Ryan Culpepper 16 Complexity Classes NP: Non-Deterministic Polynomial Time 11

The Class NP: An Effective Definition

Definition (NP)

The class NP is the class of decision problems for which some
algorithm can check a yes-certificate in polynomial time.
A yes-certificate (or certificate) is any datum that is polynomial in
the size of the problem instance that can be used to verify an answer
of “yes” for the instance. The interpretation depends on the problem.

Examples

▶ A certificate for Hamiltonian Cycle is a list of vertices (the cycle).
▶ A certificate for Sat is an assignment of variables to truth values.

Note: NP says nothing about verifying a “no” result. That’s co-NP.

Ryan Culpepper 16 Complexity Classes NP: Non-Deterministic Polynomial Time 12

The Class NP: The Official Definition

Definition (NP)

The class NP is the class of decision problems that can be decided by
a non-deterministic Turing machine (NTM) using a polynomial
amount of computation time.

▶ In a non-deterministic Turing machine (NTM), at every state of the
algorithm (a combination of the input and stage of the computation)
we have at least one way to proceed.

▶ Each step of the computation spawns a set of possible steps.
▶ We have a tree of computations rather than just one linear sequence.
▶ If the longest path leading to termination is polynomial in the size of

the input, the problem is decided in polynomial time by the machine.
▶ This is not a very practical model . . .

Ryan Culpepper 16 Complexity Classes NP: Non-Deterministic Polynomial Time 13

Equivalence of the Two Definitions

The two definitions are equivalent. Here’s a proof sketch:
▶ Polynomial verification =⇒ NTM algorithm

The NTM runs the verifier, except that whenever the verifier
reads a bit from the certificate, the NTM branches on both a 0
and a 1 result. So a valid certificate would correspond to one
execution branch for the NTM.

▶ NTM algorithm =⇒ Polynomial verification
Record the choices made by the NTM on the path to the
accepting state. That is a certificate. Since it takes polynomial
time, there must be polynomially-bounded number of choices.
A verifier can easily simulate the NTM’s execution on the
instance for the single path represented by the certificate to
check that it says “yes”.

Ryan Culpepper 16 Complexity Classes NP: Non-Deterministic Polynomial Time 14

Relationship of P and NP

▶ Certainly P ⊆ NP.
▶ It is famously unknown whether P = NP or P ̸= NP.

Popular belief: probably P ̸= NP.
▶ There are many problems in NP that are not necessarily “easy”

to solve and there are some problems that are as hard as any
problems in NP.

Ryan Culpepper 16 Complexity Classes NP: Non-Deterministic Polynomial Time 15

NP-Completeness

Definition
A problem A is NP-hard iff for every problem B in NP, B ≤P A.
“A is at least as hard as every other NP problem.”

Definition
A problem A is NP-complete iff
▶ A is in class NP, and
▶ A is NP-hard.

From this it follows that all problems that are NP-complete are
polynomially equivalent. That is:

A and B are NP-complete =⇒ A ≤P B and B ≤P A

Ryan Culpepper 16 Complexity Classes NP-Completeness 16

NP-Completeness

Showing NP-Completeness

To show that a problem A is NP-complete, it is enough to show that
▶ A is in class NP, and
▶ for some problem B that is NP-complete, B ≤P A

The reason is if C is any problem in NP, we must then have
C ≤P B ≤P A which shows that A is in fact NP-complete.

We are now going to give some examples of problems that are
NP-complete.

Ryan Culpepper 16 Complexity Classes NP-Completeness 17

SAT: The First NP-Complete Problem

▶ The following problem is known to be NP-complete.
▶ In fact, it is historically the first problem that was proved to be

NP-complete.
▶ We will show it is NP-complete later, but for now it suffices to

see that it is clearly in NP, and all the very best algorithms
experts in the world have tried to find a polynomial-time
algorithm for it, and have failed.

▶ So it is reasonable to assume that it is NP-complete. We will
later prove that it is.

Ryan Culpepper 16 Complexity Classes NP-Complete Problems 18

SAT
▶ It is a problem in mathematical logic, which sounds very

abstract but closely related to problems in chip design.
▶ We have a set of Boolean variables. Let us call them

{v1, v2, . . . , vn}, such that each variable can take on either the
value True or False.

▶ We make Boolean expressions using these variables and three
operators:

∨ this means “or”
∧ this means “and”
v̄ this means “not v”

and parentheses, which we use in the usual way.
▶ An expression such as a ∨ b is called a disjunction, and an

expression of the form a ∧ b is called a conjunction.
Ryan Culpepper 16 Complexity Classes NP-Complete Problems 19

Conjunctive Normal Form

Definition
A literal is a either v or v̄ for some variable v.

Definition
A Boolean expression is in conjunctive normal form (CNF) if it has the
following form: c1 ∧ c2 ∧ · · · ∧ cm, where each ck is a clause, which is
of the form ck = (z(k)1 ∨ z(k)2 ∨ . . . z(k)nk), where each z(k)j is a literal.

Example (A CNF Expression)

e = (v1 ∨ v̄2 ∨ v̄3 ∨ v4) ∧ (v1 ∨ v2 ∨ v̄5) ∧ (v3 ∨ v4 ∨ v5) ∧ (v2 ∨ v4 ∨ v̄5)

Ryan Culpepper 16 Complexity Classes NP-Complete Problems 20

Satisfiability

Definition (Satisfiable)

An expression in CNF is satisfiable iff there is an assignment of
T and F values to each of the variables vj which makes the
expression true.

Example (A CNF Expression)

e = (v1 ∨ v̄2 ∨ v̄3 ∨ v4) ∧ (v1 ∨ v2 ∨ v̄5) ∧ (v3 ∨ v4 ∨ v5) ∧ (v2 ∨ v4 ∨ v̄5)

If we set v1 = v4 = T, then e will be true, regardless of the values of
the other variables. So e is satisfiable.

Ryan Culpepper 16 Complexity Classes NP-Complete Problems 21

SAT

The SAT Problem
The problem SAT is, given an expression in conjunctive normal form,
to determine if it is satisfiable.

This is a remarkably difficult problem. There is no known way to
definitively solve it other than by exhaustive search.
What is the running time of exhaustive search?

O(2n).

On the other hand, it is clearly in NP: If someone tells you a solution
(a truth assignment), you can check that solution in linear time.

Claim
SAT is NP-complete.

Ryan Culpepper 16 Complexity Classes NP-Complete Problems 22

SAT

The SAT Problem
The problem SAT is, given an expression in conjunctive normal form,
to determine if it is satisfiable.

This is a remarkably difficult problem. There is no known way to
definitively solve it other than by exhaustive search.
What is the running time of exhaustive search? O(2n).

On the other hand, it is clearly in NP: If someone tells you a solution
(a truth assignment), you can check that solution in linear time.

Claim
SAT is NP-complete.

Ryan Culpepper 16 Complexity Classes NP-Complete Problems 22

3-SAT

3-SAT is a restricted form of SAT in which all clauses have exactly 3
literals in them. (This doesn’t weaken the problem. We’ll show that
3-SAT is just as hard as SAT, and is therefore NP-complete.)

Theorem
3-SAT is NP-complete.

Proof.
3-SAT is in NP. This is straightforward: We can check an assignment to
the variables of a 3-SAT expression by substituting them in each
clause and verifying that each clause evaluates to true. This is
certainly an O(n) operation (where n is the number of literals in the
whole expression).

Ryan Culpepper 16 Complexity Classes NP-Complete Problems 23

3-SAT

Proof (Cont.)

3-SAT is NP-hard. We prove this by showing that SAT ≤P 3-SAT.
▶ That is, we must show a reduction of SAT to 3-SAT.
▶ We start with a SAT (CNF) formula: c1 ∧ c2 ∧ · · · ∧ cm where each ck

is a clause of the form ck = (z(k)1 ∨ z(k)2 ∨ . . . z(k)nk) where each z(k)j
is a literal – that is, it is either x or x̄, where x is some variable.

▶ We have to show how to turn this into a 3-SAT expression – an
equivalent expression in which all the clauses have exactly 3
literals, and such that the the algorithm that does this runs in
polynomial time (in the size of the original expression).

▶ The size of the final expression will be polynomially bounded in
terms of the size of the original expression.

Ryan Culpepper 16 Complexity Classes NP-Complete Problems 24

3-SAT

Proof (Cont.)

▶ We consider each clause separately. We replace each clause cj
by a set of clauses Cj such that
▶ Each of the new clauses will have exactly 3 literals in it.
▶ The variables in the clauses in Cj will be the variables in cj

together with possibly some new variables. But the new variables
will occur only in the clauses in Cj, and not in any other clauses in
any other Ck.

▶ ck will be True iff each clause in Ck is true
▶ with the same values given to the variables of ck
▶ and with some values given to the new variables.

Ryan Culpepper 16 Complexity Classes NP-Complete Problems 25

3-SAT

Proof (Cont.)
There are four cases to consider:

|ck| = 1. That is, ck = z1. We introduce two new variables y1 and y2, and we set

Ck =
{
(z1 ∨ y1 ∨ y2)∧
(z1 ∨ y1 ∨ ȳ2)∧
(z1 ∨ ȳ1 ∨ y2)∧
(z1 ∨ ȳ1 ∨ ȳ2)

}
|ck| = 2. ck = (z1 ∨ z2). We introduce one new variable y1 and set:

Ck =
{
(z1 ∨ z2 ∨ y1)∧
(z1 ∨ z2 ∨ ȳ1)

}
|ck| = 3. ck = (z1 ∨ z2 ∨ z3). In this case, there is nothing to do: we just set

Ck = {ck}.

Ryan Culpepper 16 Complexity Classes NP-Complete Problems 26

3-SAT

Cont.

|ck| ≥ 4. We have
ck = z1 ∨ z2 ∨ . . . znk

where nk ≥ 4. We introduce new variables y1, . . . , ynk−3 and set

Ck =
{
(z1 ∨ z2 ∨ y1)∧ =

{
(z1 ∨ z2 ∨ y1)∧

(ȳ1 ∨ z3 ∨ y2)∧ y1 ⇒ (z3 ∨ y2)∧
(ȳ2 ∨ z4 ∨ y3)∧ y2 ⇒ (z4 ∨ y3)∧
.

(ȳnk−3 ∨ znk−1 ∨ znk)
}

ynk−3 ⇒ (znk−1 ∨ znk)
}

Ryan Culpepper 16 Complexity Classes NP-Complete Problems 27

Vertex Cover (VC)
▶ A vertex cover of an undirected graph G = (V ,E) is a subset of

vertices V1 ⊆ V such that every edge e ∈ E is incident on (at
least) one element of V1.

▶ In the figure the black vertices constitute a vertex cover.
▶ Given an undirected graph, the corresponding decision problem

is thus “Is there a vertex cover of size k?”
▶ An instance of VC is a pair (G,k) where G is a graph, and the

question is “Is there a vertex cover of G of size k?”

Ryan Culpepper 16 Complexity Classes NP-Complete Problems 28

Vertex Cover (VC)

Theorem
The vertex cover problem is NP-complete.

Proof.

1. VC is in NP. Clearly, given a set V1 ⊆ V , we can check that the size
of V1 is k and that each edge e ∈ E is incident on a vertex in V1
in O(E + V).

2. VC is NP-hard. We prove this by showing that 3-SAT ≤P VC.
Let us start with a 3-SAT instance with N variables and C clauses.
We will construct a graph with 2N + 3C vertices such that
▶ The construction can be done in “polynomial time”.
▶ The original 3-SAT instance is satisfiable iff the graph we construct

has a vertex cover with N + 2C vertices.

Ryan Culpepper 16 Complexity Classes NP-Complete Problems 29

Vertex Cover: Reduction from 3-SAT

▶ We show a specific example but the construction will be
described in perfectly general terms, so it applies to any 3-SAT
instance.

▶ The graph we will construct consists of three parts.
▶ The first part consists of pairs of vertices, one pair for each

variable in the instance. Each pair is labeled with the variable
and its negation, and the pair is connected by an edge, as in the
previous figure. This part of the graph consists of the
truth-setting components.

v1 v̄1 v2 v̄2 v3 v̄3 v4 v̄4

Stage 1 of the construction of the graph corresponding to the 3-SAT
instance (v1 ∨ v̄3 ∨ v̄4) ∧ (v̄1 ∨ v2 ∨ v̄4)

Ryan Culpepper 16 Complexity Classes NP-Complete Problems 30

Vertex Cover: Reduction from 3-SAT
▶ The second part consists of a triangle of nodes for each clause

in the 3-SAT instance.
▶ The nodes of the triangle are labeled by the literals in the clause.
▶ This second part of the graph consists of the satisfaction-testing

components.

v1 v̄1 v2 v̄2 v3 v̄3 v4 v̄4

v1

v̄3

v̄4 v̄1

v2

v̄4

Ryan Culpepper 16 Complexity Classes NP-Complete Problems 31

Vertex Cover: Reduction from 3-SAT

▶ Finally, we add edges between the truth-setting components on
top and the satisfaction-testing components on the bottom.

▶ These edges encode the literal values in the graph.
▶ We attach every node on the bottom to its node of the same

name on the top.
▶ We can refer to these edges as cross edges.
▶ Notice that this part is the only one that is specific to the

assignment itself.

Ryan Culpepper 16 Complexity Classes NP-Complete Problems 32

Vertex Cover (VC)

v1 v̄1 v2 v̄2 v3 v̄3 v4 v̄4

v1

v̄3

v̄4 v̄1

v2

v̄4

Ryan Culpepper 16 Complexity Classes NP-Complete Problems 33

What Does a VC in that Graph Look Like?

▶ Every one of the truth-setting edges (on the top) must be
covered, so a vertex cover must include at least one of every pair
of truth-setting vertices on the top. (at least N vertices of this
type).

▶ It must include at least 2 out of the three vertices of each
satisfaction-testing triangle on the bottom, because the edges
of those triangles can’t be covered in any other way (at least 2C
vertices of that type).

▶ Any vertex cover of the graph must include at least N + 2C
vertices.

▶ The only remaining issue is whether the cross edges are covered.
▶ Proving this will prove the reduction is valid.

Ryan Culpepper 16 Complexity Classes NP-Complete Problems 34

Validity of the Reduction – Direction 1

Lemma
If the original 3-SAT instance is satisfiable, then the derived graph has a
vertex cover of size N + 2C

Proof.
We construct our vertex cover as follows:
▶ For each pair of truth-setting vertices, take the True one
▶ Since each “triangle” must have at least one vertex corresponding to a

True literal, the cross edge coming to that vertex will already be
covered by it.

▶ Pick the other two vertices for the vertex cover. This way all the cross
edges to that triangle are also covered.

Thus, a satisfying assignment for the N variables in the original 3-SAT
instance corresponds to a vertex cover of size N + 2C of the derived
graph.

Ryan Culpepper 16 Complexity Classes NP-Complete Problems 35

Validity of the Reduction – Direction 2

Lemma
If the derived graph has a vertex cover of size N + 2C, then the
original 3-SAT instance is satisfiable.

Proof.

▶ Suppose we have a vertex cover of the size N + 2C of the
derived graph.

▶ We know that N of the “top” vertices are part of the cover and
2C of the “bottom” ones are also – two in every triangle.

▶ Let the N vertices on the top specify the truth values of each of
the N variables.

Ryan Culpepper 16 Complexity Classes NP-Complete Problems 36

Validity of the Reduction – Direction 2

Cont.

▶ The vertex in each triangle that is not part of the cover must be
true because it is one endpoint of a cross edge, and since we
have a vertex cover, the other endpoint of that cross edge must
be part of the cover, and so that literal is True.

▶ Thus, at least one literal in each clause is True, and so the
original 3-SAT instance is satisfiable.

▶ Notice that it is clearly a polynomial time construction, and this
completes the proof.

Ryan Culpepper 16 Complexity Classes NP-Complete Problems 37

Example

v1 v̄1 v2 v̄2 v3 v̄3 v4 v̄4

v1

v̄3

v̄4 v̄1

v2

v̄4

Ryan Culpepper 16 Complexity Classes NP-Complete Problems 38

Clique

Definition (Clique)

A clique in an undirected graph is a subset of vertices such that each
pair of the vertices is joined by an edge in the graph. (Equivalently, a
clique is a complete subgraph.)

The Clique Decision Problem
Given an undirected graph G and a number k, does G contain a
clique of size k?

An instance of Clique is a pair (G,k).

Ryan Culpepper 16 Complexity Classes NP-Complete Problems 39

Independent Set

Definition (Independent Set)

An independent set in an undirected graph is a set of vertices such
that no two vertices in the set are joined by an edge.

The Independent Set Decision Problem
Given an undirected graph G and a number k, does G contain an
independent set of size k?

An instance of Independent Set is a pair (G,k).

Ryan Culpepper 16 Complexity Classes NP-Complete Problems 40

Clique and Independent Set

Clique and Independent Set are equivalent to Vertex Cover and each
other. (Homework!) Therefore:

Claim
Clique and Independent Set are both NP-complete.

Hint:

Definition (Complement Graph)

Given a graph G, its complement graph Gc is a graph with the same
set of vertices such that for any pair of vertices (u,v) there is an edge
in G iff there is not an edge in Gc.

Ryan Culpepper 16 Complexity Classes NP-Complete Problems 41

Ryan Culpepper 16 Complexity Classes NP-Complete Problems 42

INTEGER LINEAR PROGRAMMING (ILP)

▶ An instance of the ILP problem consists of a set {v1, v2, . . . , vn}
of integer variables, a set of linear inequalities (with integer
coefficients) over these variables, a function f (v1, v2, . . . , vn) to
maximize, and an integer B.

▶ The decision problem is, “Does there exist an assignment of
integers to the variables such that all the inequalities are true
and f (v1, v2, . . . , vn) ≥ B?”

Ryan Culpepper 16 Complexity Classes NP-Complete Problems 43

ILP – Example

variables: v1, v2
inequalities:

v1 ≥ 1
v2 ≥ 0

v1 + v2 ≤ 3

function: f (v1, v2) = 2v2
bound: B = 3

A solution to this instance is

v1 = 1
v2 = 2

Ryan Culpepper 16 Complexity Classes NP-Complete Problems 44

ILP – Example

variables: v1, v2
inequalities:

v1 ≥ 1
v2 ≥ 0

v1 + v2 ≤ 3

function: f (v1, v2) = 2v2
bound: B = 5

This instance has no solution.

Ryan Culpepper 16 Complexity Classes NP-Complete Problems 45

ILP is NP-Complete

Theorem
Integer linear programming is NP-hard.

Proof.

▶ We will show that SAT reduces to it.
▶ Start with some instance of SAT that contains variables

{v1, v2, . . . , vn} and clauses.
▶ We will create an ILP instance as follows:

▶ There will be two variables for each variable vi, named variables
Vi and V̄i. They will correspond to the literals vi and v̄i.

▶ Notice that in the integer programming instance they are separate
variables, not one variable and its “negation” and they are
integers, not Booleans.

Ryan Culpepper 16 Complexity Classes NP-Complete Problems 46

ILP is NP-Complete

Cont.
There are three classes of inequalities:

I 0 ≤ Vi ≤ 1
0 ≤ V̄i ≤ 1 This models the Boolean-ness of the variables and
amounts to four inequalities – each Vi and V̄i is either 0 (False)
or 1 (True).

II 1 ≤ Vi + V̄i ≤ 1 This is just Vi + V̄i = 1, but we needed to
express it in terms of inequalities to make this an ILP instance.
This equation says exactly one of Vi and V̄i is true.

Ryan Culpepper 16 Complexity Classes NP-Complete Problems 47

ILP is NP-Complete

Cont.

III Inequalities that encode the clauses in the SAT problem. For
each clause z(k)1 ∨ z(k)2 ∨ · · · ∨ z(k)nk we create an inequality
W1 + W2 + · · ·+ Wnk ≥ 1 where

Wj =

{
Vp if z(k)j = vp

V̄p if z(k)j = v̄p

▶ For instance, for the clause v1 ∨ v̄19 ∨ v̄7 ∨ · · · ∨ v6 we introduce the
inequality V1 + V̄19 + V̄7 + · · ·+ V6 ≥ 1.

▶ Clearly this inequality is satisfied iff at least one of the variables
in it is 1, which corresponds to at least one of the literals in the
clause being True.

Ryan Culpepper 16 Complexity Classes NP-Complete Problems 48

ILP is NP-Complete

Cont.

▶ We don’t need the function f and the bound B
▶ We can simply set f (V1, V̄1, . . . , V̄n) = 0 and B = 0.
▶ We see immediately that

▶ The integer linear programming instance that we have
constructed from the SAT instance has a solution iff the SAT
instance is satisfiable.

▶ The construction of the integer programming instance from the
SAT instance is a polynomial-time algorithm.

And that concludes the proof.

Ryan Culpepper 16 Complexity Classes NP-Complete Problems 49

ILP is NP-Complete – Some Remarks

▶ We have not really shown that ILP is NP-complete. We have
shown that it is NP-hard, but it is not quite obvious that it is in
NP, because the integers in the solution to the instance (not in
the instance itself!) might be too large to even be written out in
polynomial time.

▶ We showed that SAT could be reduced to a more restricted
problem: 0-1 ILP, in which each variable can take either 0 or 1,
and each coefficient is also 0 or 1.

▶ This problem is certainly in NP, and so it is NP-complete (so the
difficulty does not necessarily lie in big numbers).

Ryan Culpepper 16 Complexity Classes NP-Complete Problems 50

SUBSET-SUM

▶ Also called INTEGER PARTITION.
▶ An instance of the problem is a set S of integers and a “target”

integer t.
▶ The question is, “Is there a subset of S whose sum is t?”
▶ For instance, if

S = {1,4,16,64,256,1040,1041,1093,1284,1344}

and t = 3754, then the answer is “yes”, because

1 + 16 + 64 + 256 + 1040 + 1093 + 1284 = t

Ryan Culpepper 16 Complexity Classes NP-Complete Problems 51

SUBSET-SUM

Theorem
SUBSET SUM is NP-complete.

Proof.

1. SUBSET SUM is in NP. This is obvious: checking that a particular
subset adds up to t can certainly be done in linear time.

2. SUBSET SUM is NP-hard. We will prove this by reducing VERTEX
COVER to SUBSET SUM:VC ≤P SUBSET SUM
▶ We need to start with a graph in which we are trying to find a

vertex cover of size N , and turn this VC instance into an instance
of SUBSET SUM.

▶ We take our graph, and we construct its incidence matrix:

Ryan Culpepper 16 Complexity Classes NP-Complete Problems 52

SUBSET-SUM – Example

e0 e1 e2 e3 e4 e5
v0 1 1 1 1 0 0
v1 0 0 0 1 0 1
v2 0 0 1 0 1 1
v3 0 1 0 0 1 0
v4 1 0 0 0 0 0

v4

v3

v0

v2

v1

e0

e1 e2

e3

e4

e5

Ryan Culpepper 16 Complexity Classes NP-Complete Problems 53

SUBSET-SUM

▶ There are exactly two 1’s in each column. That will be a key point.
▶ We will call this matrix b, and in the example above b[2,1] = 0.
▶ Each row can be thought of as a base-4 representation of an

integer, only with the low-order digits on the left so that the row
for v2 corresponds to 42 + 44 + 45

▶ For example – the row corresponding to the vertex vi

corresponds to the number
|E|−1∑
j=0

b[i, j] · 4j

Ryan Culpepper 16 Complexity Classes NP-Complete Problems 54

SUBSET-SUM
We extend the matrix by adding a new row for each edge, and we will
put a 1 in the column that corresponds to that edge:

e0 e1 e2 e3 e4 e5
v0 1 1 1 1 0 0
v1 0 0 0 1 0 1
v2 0 0 1 0 1 1
v3 0 1 0 0 1 0
v4 1 0 0 0 0 0
e0 1 0 0 0 0 0
e1 0 1 0 0 0 0
e2 0 0 1 0 0 0
e3 0 0 0 1 0 0
e4 0 0 0 0 1 0
e5 0 0 0 0 0 1

Ryan Culpepper 16 Complexity Classes NP-Complete Problems 55

SUBSET-SUM

▶ Each column has three 1’s in it: two from vertex rows and one
from an edge row. The top rows of this matrix are just the
original matrix b.

▶ For each vertex row we construct the number (which is just the
number above, but with a high-order term added).

Vi = 4|E| +
|E|−1∑
j=0

b[i, j]4j. We will call these the “vertex numbers”.

▶ For each edge row we construct the number (this time without
the high-order term added) Ek = 4k. We will call these the “edge
numbers”.

▶ The subset sum instance is this: the numbers in our set S are
just the numbers Vi and Ek we just constructed.

▶ This is obviously a polynomial construction.

Ryan Culpepper 16 Complexity Classes NP-Complete Problems 56

SUBSET-SUM

▶ The target number is t = N · 4|E| + 2 ·
|E|−1∑
j=0

4j

▶ We will show that the graph we started with has a vertex cover of
size N iff the subset sum problem we have just constructed is
solvable.

▶ Notice the following facts:
▶ If we add up any subset of numbers in S (even if we add up all the

numbers in S), there will be no “carries” from one column to the
next in the base-4 addition. The reason is that each column can
contain at most three 1’s, and it would take four 1’s to produce a
carry.

▶ It follows from this that for a sum of numbers in S to equal t it
must contain exactly N vertex numbers, since that is how many
vertex numbers we will need to get the high term N · 4|E| in t.

Ryan Culpepper 16 Complexity Classes NP-Complete Problems 57

SUBSET-SUM is NP-Complete – Direction 1

Lemma
If the VC instance is solvable, then the derived SUBSET SUM instance
is solvable.

Proof.

▶ If we have a vertex cover of the graph with N vertices, and if we
take the sum of the corresponding vertex numbers, we have a
high-order term of N · 4|E|.

▶ As for the other terms, since each edge in the graph is “covered”,
we will have at least a contribution of 1 · 4j for each edge ej.

▶ If we only have 1 · 4j and not 2 · 4j, then we can add the edge
number Ej.

▶ This way we have a solution to the SUBSET SUM problem.

Ryan Culpepper 16 Complexity Classes NP-Complete Problems 58

SUBSET-SUM is NP-Complete – Direction 2

Lemma
If the derived SUBSET SUM instance is solvable, then the VC instance
is solvable.

Proof.

▶ Take the vertex numbers in the solution of the SUBSET SUM
instance, there are exactly N of them.

▶ The rest of the numbers in the solution (edge numbers) can only
contribute at most a 1 in each remaining column.

▶ The vertex numbers have to contribute either 1 or 2 in each
column, so each edge is covered by either 1 or 2 vertices in the
subset of vertices that corresponds to the vertex numbers in the
solution to the derived SUBSET SUM instance.

▶ Those vertices constitute a vertex cover of size N .
Ryan Culpepper 16 Complexity Classes NP-Complete Problems 59

HAMILTONIAN-CYCLE

▶ A Hamiltonian cycle in a graph G is a simple cycle that visits
each vertex.

▶ There are two variants of this problem, depending on whether
the graph is directed or undirected.

▶ Both problems are NP-complete.
▶ In what follows we deviate a bit from the proof in the text and

prove each one separately.

Ryan Culpepper 16 Complexity Classes NP-Complete Problems 60

HAMILTONIAN-CYCLE

Theorem
DIRECTED HAMILTONIAN CYCLE is NP-complete.

Proof.

1. DIRECTED HAMILTONIAN CYCLE is in NP. Clearly it’s polynomial-time
checkable.

2. DIRECTED HAMILTONIAN CYCLE is NP-hard.
3. We will prove this by reducing 3-SAT to it: 3-SAT ≤P DIRECTED

HAMILTONIAN CYCLE Start with a 3-SAT instance that has n variables
{v1, v2, . . . , vn} and k clauses {c1, c2, . . . , ck}, where each clause is of
the form z1 ∨ z2 ∨ z3, each zj being a literal.

4. We will show produce from it a graph G = (V ,E) such that
▶ The construction is polynomial in n + k.
▶ G has a Hamiltonian cycle iff the 3-SAT instance is satisfiable.

Ryan Culpepper 16 Complexity Classes NP-Complete Problems 61

HAMILTONIAN-CYCLE

Cont.

▶ We assume that each clause in our 3-SAT instance involves 3
distinct variables.

▶ If a clause is of the form v1 ∨ v̄1 ∨ v2 then it is automatically true,
and we can just eliminate it from the instance.

▶ A clause such as v1 ∨ v1 ∨ v2 is really just v1 ∨ v2, and we have
already seen how to turn this in to a pair of clauses (with a new
variable), each clause containing 3 literals.

▶ So let us assume our 3-SAT instance contains literals
corresponding to 3 different variables.

▶ For each variable vi we create a set of vertices in G and hook
them together in a “doubly linked list”.

Ryan Culpepper 16 Complexity Classes NP-Complete Problems 62

HAMILTONIAN-CYCLE – Example

.

▶ We have 3(k + 1) nodes here.
▶ We take the list corresponding to each node and connect it to

some auxiliary nodes to form a oval-like structure, and we then
hook up these oval structures vertically.

▶ We also add k other nodes, each one corresponding to one of
the clauses in the 3-SAT expression.

Ryan Culpepper 16 Complexity Classes NP-Complete Problems 63

HAMILTONIAN-CYCLE – Example

v1:

v2:

v3:

...

vn:

c1

c2

c3

...

ck

Ryan Culpepper 16 Complexity Classes NP-Complete Problems 64

HAMILTONIAN-CYCLE

▶ To form a Hamiltonian cycle, each row will either be traversed
left-to-right or right-to-left, the choice for each row being
independent of the choice for every other row.

▶ A traversal of row i left-to-right encodes the value True for the
variable vi, a traversal of row i right-to-left encodes the value
False for vi.

▶ There are 2n possible Hamiltonian cycles of the graph and these
different cycles correspond exactly to the 2n different ways of
assigning either True or False to the n different variables
{v1, v2, . . . , vn}.

▶ Next we hook up the nodes {c1, c2, . . . , ck} to the rest of the
graph in such a way that the clause information is encoded.

Ryan Culpepper 16 Complexity Classes NP-Complete Problems 65

HAMILTONIAN-CYCLE

▶ We divide each row (corresponding to each variable vi as follows:
▶ An initial node (i.e., the left-most one).
▶ A “separator node”.
▶ k sets of 3 nodes each. The jth set corresponds to the clause cj.

Actually, the first two nodes in the set correspond to cj and the
third node in each set is another “separator node”. We will call
the first two nodes in each set the “cj group in row i”.

▶ A final node (i.e., the right-most one).

Ryan Culpepper 16 Complexity Classes NP-Complete Problems 66

HAMILTONIAN-CYCLE
▶ Each clause cj contains three literals (cj = z(j)1 ∨ z(j)2 ∨ z(j)3).
▶ For each of those literals, we add two edges involving cj.
▶ A literal z corresponds to vi or v̄i.
▶ The two edges we insert will connect cj with the two nodes in the cj

group in row i, as follows:
▶ If z = vi, we insert an edge from the left node in the cj group → cj and

an edge from cj → the right node in the cj group
▶ If vi is True, then (since row i is traversed left-to-right), we can use

these two edges to make a side trip to cj, including cj in the cycle.

.vi :

cj

separator node

Ryan Culpepper 16 Complexity Classes NP-Complete Problems 67

HAMILTONIAN-CYCLE
▶ If z = v̄i, we do things "the other way": we insert an edge from

the right node in the cj group → cj and an edge from cj → the
left node in the cj group

▶ The reason for doing this is that if vi has the value False (so v̄i is
True), then (since row i will be traversed right-to-left) we can use
these two edges to make a side trip to cj, thus including cj in the
cycle.

.vi :

cj

separator node

Ryan Culpepper 16 Complexity Classes NP-Complete Problems 68

HAMILTONIAN-CYCLE
▶ Each clause cj has three pairs of edges that are inserted for it.
▶ These edges will never “step on each other”: the edges from

clause cj will only attach to “column j” of the main part of the
graph, so the edges from two different clauses will never
coincide.

▶ We assumed that no clause contains the same variable twice, so
each of the three pairs of edges introduced for each clause goes
to a different row, so they can’t coincide either.

▶ If the original expression is satisfiable, then G has a Hamiltonian
cycle: traverse each edge in the appropriate way (i.e.,
left-to-right if vi is True and right-to-left if vi is False).

▶ For each clause cj at least one of the literals in cj will be True.
▶ For the row corresponding to variable vi in that literal, a trip can

be made to cj since the two edges to and from cj were set up
that way. Thus each cj can be included in the cycle, and so we
have a Hamiltonian cycle for G.

Ryan Culpepper 16 Complexity Classes NP-Complete Problems 69

HAMILTONIAN-CYCLE – Opposite Direction

▶ Suppose G has a Hamiltonian cycle, we must show that the
original 3-SAT instance is satisfiable.

▶ This is immediately true if we know that each cj is reached by a
path to and from the same row.

▶ Then the variable in that row corresponds to a True literal in cj,
and so each cj is satisfied.

▶ All we have to prove is that if G has a Hamiltonian cycle, then
each cj is reached by a path to and from the same row.

▶ Suppose it were not and we had something like the situation in
the following figure.

Ryan Culpepper 16 Complexity Classes NP-Complete Problems 70

HAMILTONIAN-CYCLE – This Can’t Happen!

vp: a1 a2 a3

...

vq:

cj

Ryan Culpepper 16 Complexity Classes NP-Complete Problems 71

HAMILTONIAN-CYCLE – This Can’t Happen!

▶ Suppose that a1 is a node in some row that is reached from the
left, and that the edge from a1 to cj is not followed by an edge
(in the path) from cj to a2.

▶ We know that either a2 or a3 must be a separator nodes.
Consider these two possibilities separately:

Case I: a2 is a separator node. It must be attached to the nodes on either
side of it, but a2 cannot be attached to a1 by an edge in the
Hamiltonian cycle, since a1 already has two Hamiltonian cycle
edges attached to it, so it’s impossible

Case II: a3 is a separator node. a1 and a2 must both correspond to the
same clause (cj). a2 must be attached either to cj or to a1 by an
edge in the Hamiltonian cycle, but neither one is possible, since
both those nodes already have two Hamiltonian cycle edges
attached to them.

Ryan Culpepper 16 Complexity Classes NP-Complete Problems 72

HAMILTONIAN-CYCLE – This Can’t Happen!

▶ If a1 is approached from the left the above is impossible. If it
were approached from the right, then a similar argument
(directions switched) would show the same.

▶ Therefore we showed that a Hamiltonian cycle of G corresponds
to an assignment of truth values to the variables {v1, v2, . . . , vn}
that satisfies the original 3-SAT instance.

▶ Finally, we note that the construction of G was polynomial, and
that concludes the proof.

Ryan Culpepper 16 Complexity Classes NP-Complete Problems 73

UNDIRECTED HAMILTONIAN-CYCLE

Theorem
UNDIRECTED HAMILTONIAN CYCLE is NP-complete.

Proof.

1. UNDIRECTED HAMILTONIAN CYCLE is in NP. Clearly it’s
polynomial-time checkable.

2. UNDIRECTED HAMILTONIAN CYCLE is NP-hard. We will prove this
showing: DIRECTED HAMILTONIAN CYCLE ≤P UNDIRECTED
HAMILTONIAN CYCLE.

3. We start with an instance of DIRECTED HAMILTONIAN CYCLE – a
directed graph G – and we will construct an undirected graph H
which has a Hamiltonian cycle iff G does.

Ryan Culpepper 16 Complexity Classes NP-Complete Problems 74

UNDIRECTED HAMILTONIAN-CYCLE

Cont.

▶ Each vertex v in G corresponds to three vertices vin, vmid, and
vout in H.

▶ They are connected by two (undirected) edges: one between vin

and vmid, and the other between vmid and vout.
▶ The rest of the edges in H mirror the edges in G: If (u, v) is a

(directed) edge in G, we create an edge in H from uout to vin.
▶ Clearly, this is a polynomial time construction.

Ryan Culpepper 16 Complexity Classes NP-Complete Problems 75

UNDIRECTED HAMILTONIAN-CYCLE

Lemma
If G has a Hamiltonian cycle, then H does.

Proof.
If u1 → u2 → · · · → un → u1 is a (directed) Hamiltonian cycle in G,
then

uin
1 ↔ umid

1 ↔ uout
1 ↔

uin
2 ↔ umid

2 ↔ uout
2 · · · ↔

uin
n ↔ umid

n ↔ uout
n ↔ uin

1

is an undirected Hamiltonian cycle in H.

Ryan Culpepper 16 Complexity Classes NP-Complete Problems 76

UNDIRECTED HAMILTONIAN-CYCLE

Lemma
If H has a Hamiltonian cycle, then G does.

Proof.
▶ Since each “mid” node is connected by one edge to an “in” node and

one edge to an “out” node, the only way that each “mid” node can be
in a cycle is for all three (“in”, “mid”, “out”) nodes to be in that cycle.

▶ Therefore, a Hamiltonian cycle of H must be of the form

uin
1 ↔ umid

1 ↔ uout
1 ↔ uin

2 ↔ umid
2 ↔ uout

2

· · · ↔ uin
n ↔ umid

n ↔ uout
n ↔ uin

1

▶ But this corresponds exactly to the Hamiltonian cycle
u1 → u2 → · · · → un → u1 in G.

Ryan Culpepper 16 Complexity Classes NP-Complete Problems 77

The Traveling Salesperson Problem (TSP)

▶ We have a set of cities, represented as vertices in a graph.
▶ A salesperson needs to visit each city as cheaply as possible.
▶ Assume that the cost is the total distance of the trip.
▶ Between each two vertices there is an edge with an associated

weight and we want to find the shortest path that visits each
node.

▶ To make things simple, we may also assume that the path should
be a cycle.

▶ The associated decision problem is “Does this graph have a
Hamiltonian cycle of weight ≤ W?”

Ryan Culpepper 16 Complexity Classes NP-Complete Problems 78

The Traveling Salesperson Problem (TSP)

▶ We can reduce UNDIRECTED HAMILTONIAN CYCLE to this problem
as follows:

▶ Let G be any undirected graph. This is the of UNDIRECTED
HAMILTONIAN CYCLE.

▶ We will construct a graph H with edge weights that will be an
instance of TSP as follows:
▶ The vertices of H are just the vertices of G.
▶ Every two vertices of H are connected by an edge. (H is a

complete graph.)
▶ The weight of an edge in H is 0 if that edge is also an edge in G,

and is 1 otherwise.
▶ Then the question “Does H have a Hamiltonian cycle of weight

≤ 0?” has a positive answer iff G has a Hamiltonian cycle. Thus
theTSP problem is NP-complete.

Ryan Culpepper 16 Complexity Classes NP-Complete Problems 79

Subgraph isomorphism

An isomorphism is a bijection between the vertices of two graphs
f : V(G1) → V(G2) such that any two vertices u and v of G1 are
adjacent in G1 iff f (u) and f (v) are adjacent in G2.

From Wikipedia

Ryan Culpepper 16 Complexity Classes NP-Complete Problems 80

Subgraph isomorphism

▶ Given two graphs G and H, is H isomorphic to some subgraph of
G?

▶ Again, the problem is clearly in NP.
▶ It’s NP-hard because we can reduce CLIQUE to it.
▶ To ask the question “Does G have a clique of size k?” is to ask

the question “Does G have a subgraph that is isomorphic to the
complete graph on k vertices?” So
CLIQUE ≤P SUBGRAPH ISOMORPHISM, and so SUBGRAPH
ISOMORPHISM is NP-complete.

Ryan Culpepper 16 Complexity Classes NP-Complete Problems 81

Comments

▶ Sometimes a small change in the problem definition changes the
complexity significantly.

▶ Graph isomorphism – in NP but not known whether the problem
is NP-complete.

▶ Polynomial time solutions exist for:
▶ Eulerian path/cycle – A cycle that goes through every edge once

(vertices can be repeated).
▶ DNF-SAT.
▶ Linear programming (variables are not restricted to integers).
▶ etc...

Ryan Culpepper 16 Complexity Classes NP-Complete Problems 82

	P: Polynomial Time
	NP: Non-Deterministic Polynomial Time
	NP-Completeness
	NP-Complete Problems

