Predicate Logic CS 220 — Applied Discrete Mathematics

February {5, 10}, 2025

Ryan Culpepper

03 Predicate Logic

Consider the following statement: If x > 10, then x > 5. Can we fit this into our logical

framework?

Consider the following statement: If x > 10, then x > 5. Can we fit this into our logical

framework?

Let A represent "x > 10" and let B represent "x > 5". Then $A \Rightarrow B$.

Consider the following statement: If x > 10, then x > 5.

Can we fit this into our logical framework?

There's a relevant general rule: lf x > y and y > z, then x > z. Can we express that rule in logic? Let A represent "x > 10" and let B represent "x > 5". Then $A \Rightarrow B$.

Consider the following statement: If x > 10, then x > 5.

Can we fit this into our logical framework?

There's a relevant general rule: lf x > y and y > z, then x > z. Can we express that rule in logic? Let A represent "x > 10" and let B represent "x > 5". Then $A \Rightarrow B$.

Let *P* represent "x > y" and let *Q* represent "y > z" and let *R* represent "x > z". Then $(P \land Q) \Rightarrow R$.

Consider the following statement: If x > 10, then x > 5.

Can we fit this into our logical framework?

There's a relevant general rule: If x > y and y > z, then x > z. Can we express that rule in logic? Let A represent "x > 10" and let B represent "x > 5". Then $A \Rightarrow B$.

Let *P* represent "x > y" and let *Q* represent "y > z" and let *R* represent "x > z". Then $(P \land Q) \Rightarrow R$.

Can we use the **rule** $(P \land Q) \Rightarrow R$ to show the **instance** $A \Rightarrow B$?

Consider the following statement: lf x > 10, then x > 5.

Can we fit this into our logical framework?

There's a relevant general rule: If x > y and y > z, then x > z. Can we express that rule in logic? Let A represent "x > 10" and let B represent "x > 5". Then $A \Rightarrow B$.

Let *P* represent "x > y" and let *Q* represent "y > z" and let *R* represent "x > z". Then $(P \land Q) \Rightarrow R$.

Can we use the **rule** $(P \land Q) \Rightarrow R$ to show the **instance** $A \Rightarrow B$?

No. Propositional logic is insufficient.

We need a logic that can talk about things and relationships between things.

Definition (Open statement)

An **open statement** is a sentence that contains **object variables** whose values are not known. If the variables were replaced with specific objects, the sentence would be a statement.

Examples

- ▶ The arrays *A* and *B* have the same length.
- The priority of every job in ready_queue is less than p_{max}.

We sometimes view an open statement as a statement-valued function.

Example

- E(k) = "The integer k is even."
- E(7) = "The integer 7 is even."

(open statement) (statement, false)

Predicate Logic

Definition (Predicate Logic)

Predicate logic (aka **first-order logic**) is an extension of propositional logic that can also talk about objects and predicates about objects.

A proposition in predicate logic is one of the following:

- a propositional variable
- a compound proposition formed by a logical connective
- ► a predicate name *P* applied to one or more object expressions
- a quantified proposition
- An **object expression** is one of the following:
 - ▶ a literal object, like 12, Boston, or {1, 3, 5}
 - an object variable that is in scope
 - applications of functions, operators, etc to other object expressions

Predicates

Examples (Object Expressions)		
▶ 12	► {1,4,9}	
▶ 3 + 4	► x	x must be in scope
Boston	► $1 + \sin(\pi k)$	

Examples (Propositions using Predicates)

- Likes(Jenny, Back to the Future)
- In(city, MA)
- ► *x* = 5
- ▶ $n \in \mathbb{N}$
- ▶ $5 \in A$

Likes is a predicate name In is a predicate name

Jenny, Back to the Future, and MA are not object variables; they are literal objects (aka **constants**), like 5, \mathbb{N} . Predicates named by symbols, like "=", " \in ", and " \subseteq ", are usually written between their arguments.

Quantified Propositions

Quantifier	Proposition	Read as
Universal	$\forall x \in S, P$	"for all <i>x</i> in <i>S</i> , <i>P</i> "
Existential	$\exists x \in S, P$	"there exists x in S such that P "

The **quantifier body** *P* can be any proposition; *x* is **in scope** inside of *P*.

Examples

- ► "Every real number is less than, equal to, or greater than zero." $\forall x \in \mathbb{R}, (x < 0 \lor x = 0 \lor x > 0)$
- ► **"For every** real number, **there is** a smaller real number." $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, y < x$
- ► "There is a smallest natural number." $\exists z \in \mathbb{N}, \forall n \in \mathbb{N}, z \leq n$
- ▶ **"There is** a color other than blue." $\exists c \in Color, c \neq blue$

Quantified Propositions

-	Proposition	Read as
Universal	$\forall x \in S, P$	"for all <i>x</i> in <i>S</i> , <i>P</i> "
Existential	$\exists x \in S, P$	"there exists x in S such that P "

The **quantifier body** *P* can be any proposition; *x* is **in scope** inside of *P*.

Examples

"Every real number is less than, equal to, or greater than zero."

$$\forall x \in \mathbb{R}, \ | \ (x < 0 \ \lor \ x = 0 \ \lor \ x > 0)$$

"For every real number, there is a smaller real number."

 $\forall x \in \mathbb{R}, \ \exists y \in \mathbb{R}, \ y < x$

"There is a smallest natural number."

 $\exists z \in \mathbb{N}, \ \forall n \in \mathbb{N}, \ z \leq n$

▶ **"There is** a color other than blue." $\exists c \in Color, c \neq blue$

Univeral Quantifier as Conjunction

The universal quantifier acts like a (possibly infinite) conjunction:

$$\forall n \in \mathbb{N}, P(n) = \bigwedge_{n \in \mathbb{N}} P(n) = P(0) \land P(1) \land P(2) \land \dots$$

The proposition is true when P holds for every element of the given set.

$$\forall x \in S, P(x) = \bigwedge_{x \in S} P(x) = \begin{cases} \text{for } x \in S \text{ do} \\ \text{if } P(x) \text{ then} \\ \text{continue} \\ \text{else} \\ \text{return F} \\ \text{end if} \\ \text{end for} \\ \text{return T} \end{cases}$$

A value of x that makes P(x) false is called a **counterexample**.

Ryan Culpepper	03 Predicate Logic	Quantifiers	

Existential Quantifier as Disjunction

The existential quantifier acts like a (possibly infinite) disjunction:

$$\exists n \in \mathbb{N}, P(n) = \bigvee_{n \in \mathbb{N}} P(n) = P(0) \lor P(1) \lor P(2) \lor \dots$$

The proposition is true when P holds **for some** (at least one, maybe more) element of the given set.

$$\exists x \in S, P(x) = \bigvee_{x \in S} P(x) = \begin{cases} \text{for } x \in S \text{ do} \\ \text{if } P(x) \text{ then} \\ \text{return T} \\ \text{else} \\ \text{continue} \\ \text{end if} \\ \text{end for} \\ \text{return F} \end{cases}$$

A value of x that makes P(x) true is called a witness.

Ryan Culpepper	03 Predicate Log
----------------	------------------

Let $H = \{1, 2, 3, 4, 5\}$. Judge the truth of the following propositions. Provide a witness or counterexample if appropriate.

- ▶ $\exists n \in H, \text{Odd}(n)$
- ▶ $\forall n \in H$, Even(*n*)

$$\blacktriangleright \forall n \in H, \ \exists m \in H, \ m+n=6$$

▶
$$\exists n \in H, \forall m \in H, \text{Odd}(m) \Rightarrow m < n$$

▶
$$\exists n \in H, \forall m \in H, \text{Even}(m) \Rightarrow m < n$$

Let $H = \{1, 2, 3, 4, 5\}$. Judge the truth of the following propositions. Provide a witness or counterexample if appropriate.

▶ $\exists n \in H, \text{Odd}(n)$

T with witness n = 1 (or 3 or 5)

▶ $\forall n \in H$, Even(*n*)

$$\blacktriangleright \forall n \in H, \ \exists m \in H, \ m+n=6$$

▶
$$\exists n \in H, \forall m \in H, \text{Odd}(m) \Rightarrow m < n$$

▶
$$\exists n \in H, \forall m \in H, \text{Even}(m) \Rightarrow m < n$$

Let $H = \{1, 2, 3, 4, 5\}$. Judge the truth of the following propositions. Provide a witness or counterexample if appropriate.

▶ $\exists n \in H, \text{Odd}(n)$

T with witness n = 1 (or 3 or 5)

▶ $\forall n \in H$, Even(*n*)

F with counterexample n = 1 (or 3 or 5)

$$\blacktriangleright \ \forall n \in H, \ \exists m \in H, \ m+n=6$$

▶
$$\exists n \in H, \forall m \in H, \text{Odd}(m) \Rightarrow m < n$$

▶
$$\exists n \in H, \forall m \in H, \text{Even}(m) \Rightarrow m < n$$

Let $H = \{1, 2, 3, 4, 5\}$. Judge the truth of the following propositions. Provide a witness or counterexample if appropriate.

▶ $\exists n \in H, \text{Odd}(n)$

T with witness n = 1 (or 3 or 5)

▶ $\forall n \in H$, Even(*n*)

F with counterexample n = 1 (or 3 or 5)

$$\blacktriangleright \forall n \in H, \exists m \in H, m + n = 6$$

T, each *n* has an *m*-witness: $\begin{array}{c|cccc} n & 1 & 2 & 3 & 4 & 5 \\ \hline m & 5 & 4 & 3 & 2 & 1 \end{array}$

▶
$$\exists n \in H, \forall m \in H, \text{Odd}(m) \Rightarrow m < n$$

▶
$$\exists n \in H, \forall m \in H, \text{Even}(m) \Rightarrow m < n$$

Let $H = \{1, 2, 3, 4, 5\}$. Judge the truth of the following propositions. Provide a witness or counterexample if appropriate.

▶ $\exists n \in H, \operatorname{Odd}(n)$

T with witness n = 1 (or 3 or 5)

▶ $\forall n \in H$, Even(*n*)

F with counterexample n = 1 (or 3 or 5)

$$\blacktriangleright \forall n \in H, \ \exists m \in H, \ m+n=6$$

T, each *n* has an *m*-witness: $\frac{n}{m} \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ \hline m & 5 & 4 & 3 & 2 & 1 \end{bmatrix}$

▶
$$\exists n \in H, \forall m \in H, \text{Odd}(m) \Rightarrow m < n$$

F, each n has an m-counterexample: $\frac{n}{m}$ $\begin{vmatrix} 1 & 2 & 3 & 4 & 5 \\ \hline m & 5 & 5 & 5 & 5 \\ \hline m & 5 & 5 & 5 & 5 \\ \hline m & 5 & 5 & 5 & 5 \\ \hline m & 5 & 5 & 5 \\ \hline m & 5 & 5 & 5 \\ \hline m & 5 & 5 & 5 \\ \hline m & 5 & 5 & 5 \\ \hline m & 5 & 5 & 5 \\ \hline m & 5 & 5 & 5 \\ \hline m & 5 & 5 & 5 \\ \hline m & 5 & 5 & 5 \\ \hline m & 5 & 5 & 5 \\ \hline m & 5 & 5 & 5 \\ \hline m & 5 & 5 & 5 \\ \hline m & 5 & 5 & 5 \\ \hline m & 5 & 5 & 5 \\ \hline m & 5 & 5 & 5 \\ \hline m & 5 & 5 & 5 \\ \hline m & 5 & 5 & 5 \\ \hline m & 5 & 5 \\ \hline m & 5 & 5 & 5 \\ \hline m & 5 & 5 \\ \hline$

▶
$$\exists n \in H, \forall m \in H, \text{Even}(m) \Rightarrow m < n$$

Let $H = \{1, 2, 3, 4, 5\}$. Judge the truth of the following propositions. Provide a witness or counterexample if appropriate.

▶ $\exists n \in H, \operatorname{Odd}(n)$

T with witness n = 1 (or 3 or 5)

▶ $\forall n \in H$, Even(*n*)

F with counterexample n = 1 (or 3 or 5)

$$\blacktriangleright \forall n \in H, \ \exists m \in H, \ m+n=6$$

T, each *n* has an *m*-witness: $\frac{n}{m} \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ \hline m & 5 & 4 & 3 & 2 & 1 \end{bmatrix}$

▶
$$\exists n \in H, \forall m \in H, \text{Odd}(m) \Rightarrow m < n$$

F, each n has an m-counterexample: $\frac{n}{m}$ $\begin{vmatrix} 1 & 2 & 3 & 4 & 5 \\ \hline m & 5 & 5 & 5 & 5 \\ \hline m & 5 & 5 & 5 & 5 \\ \hline m & 5 & 5 & 5 & 5 \\ \hline m & 5 & 5 & 5 \\ \hline m & 5 & 5 & 5 \\ \hline m & 5 & 5 & 5 \\ \hline m & 5 & 5 & 5 \\ \hline m & 5 & 5 & 5 \\ \hline m & 5 & 5 & 5 \\ \hline m & 5 & 5 & 5 \\ \hline m & 5 & 5 & 5 \\ \hline m & 5 & 5 & 5 \\ \hline m & 5 & 5 & 5 \\ \hline m & 5 & 5 & 5 \\ \hline m & 5 & 5 & 5 \\ \hline m & 5 & 5 & 5 \\ \hline m & 5 & 5 & 5 \\ \hline m & 5 & 5 & 5 \\ \hline m & 5 & 5 & 5 \\ \hline m & 5 & 5 \\ \hline m & 5 & 5 & 5 \\ \hline m & 5 & 5 \\ \hline$

►
$$\exists n \in H, \forall m \in H, \text{Even}(m) \Rightarrow m < n$$

T with witness $n = 5$

$$\neg (A \land B) = \neg A \lor \neg B \qquad \neg (\forall x \in S, P(x)) = \exists x \in S, \neg P(x)$$

$$\neg (A \lor B) = \neg A \land \neg B \qquad \neg (\exists x \in S, P(x)) = \forall x \in S, \neg P(x)$$

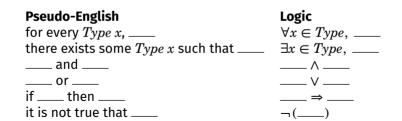
Examples

- "It is not true that every natural number is even."
 "There exists some natural number that is not even."
- "It is not true that there exists some person who is immortal."
 "Every person is not immortal." = "Every person is mortal."
- "It is not true that there is someone who is both garrulous and taciturn."
 "For every person, they are not both garrulous and taciturn."
 - = "For every person, either they are not garrulous or they are not taciturn."

Translating Statements into Predicate Logic

Translating English statements into predicate logic propositions:

- Rephrase the conversational English into the pseudo-English constructs below, working from the "outside" inward. Watch out for
 - implicitly universal statements
 - verbs with compound objects (eg, "I like apples and oranges.")
 - verbs with quantified objects (eg, "10 is greater than some odd number.")
- Replace pseudo-English with logical quantifiers and connectives.
 Replace simple statements with uses of predicates.



Sets:

P = a set of peopleA = a set of actorsM = a set of moviesG = a set of genres

Predicates:

Likes (p, x)where $p \in P, x \in (M \cup G \cup A)$ HasGenre(m, g)where $m \in M, g \in G$ ActedIn(a, m)where $a \in A, m \in M$

1. "Everyone has some movie that they like."

2. "There is some movie that everyone likes."

3. "Every movie has some fan (a person who likes it)."

- 1. "Everyone has some movie that they like."
 - = "for every person p, p has some movie that they like"
 - = $\forall p \in P$, "p has some movie that they like"
 - = $\forall p \in P$, "there exists some movie *m* such that *p* likes *m*"
 - = $\forall p \in P, \exists m \in M, "p \text{ likes } m"$
 - $= \forall p \in P, \exists m \in M, \operatorname{Likes}(p,m)$
- 2. "There is some movie that everyone likes."

3. "Every movie has some fan (a person who likes it)."

- 1. "Everyone has some movie that they like."
 - = "for every person p, p has some movie that they like"
 - = $\forall p \in P$, "p has some movie that they like"
 - = $\forall p \in P$, "there exists some movie *m* such that *p* likes *m*"
 - $= \forall p \in P, \ \exists m \in M, \ "p \text{ likes } m"$
 - = $\forall p \in P, \exists m \in M, \text{Likes}(p,m)$
- 2. "There is some movie that everyone likes."
 - = "there exists a movie *m* such that everyone likes *m*"
 - = $\exists m \in M$, "everyone likes m"
 - = $\exists m \in M$, "for every person p, p likes m"

=
$$\exists m \in M, \forall p \in P, "p \text{ likes } m"$$

- $\exists m \in M, \ \forall p \in P, \ \text{Likes}(p,m)$
- 3. "Every movie has some fan (a person who likes it)."

- 1. "Everyone has some movie that they like."
 - = "for every person p, p has some movie that they like"
 - = $\forall p \in P$, "p has some movie that they like"
 - = $\forall p \in P$, "there exists some movie *m* such that *p* likes *m*"
 - = $\forall p \in P, \exists m \in M, "p \text{ likes } m"$
 - = $\forall p \in P, \exists m \in M, \text{Likes}(p,m)$
- 2. "There is some movie that everyone likes."
 - = "there exists a movie *m* such that everyone likes *m*"
 - = $\exists m \in M$, "everyone likes m"
 - = $\exists m \in M$, "for every person p, p likes m"

$$\exists m \in M, \forall p \in P, "p \text{ likes } m"$$

- $\exists m \in M, \forall p \in P, \text{Likes}(p,m)$
- 3. "Every movie has some fan (a person who likes it)."
 - = "for every movie m, m has some fan (a person who likes it)"
 - = $\forall m \in M$, "m has some fan (a person who likes it)"
 - = $\forall m \in M$, "there is some person p such that p likes m"
 - = $\forall m \in M, \exists p \in P, "p \text{ likes } m"$
 - $= \forall m \in M, \exists p \in P, \text{Likes}(p,m)$

Summary:

- 1. "Everyone has some movie that they like." = $\forall p \in P, \exists m \in M, \text{Likes}(p,m)$
- 2. "There is some movie that everyone likes."
 - $\exists m \in M, \forall p \in P, \text{Likes}(p,m)$
- 3. "Every movie has some fan (a person who likes it)." = $\forall m \in M, \exists p \in P$, Likes(p,m)

Note:

- Quantifier order matters! Compare #1 ($\forall p, \exists m$) and #2 ($\exists m, \forall p$).
- Quantifier choice matters! Compare #2 $(\exists m, \forall p)$ and #3 $(\forall m, \exists p)$.

 $\forall x \in Type, P = "for every Type x, P"$ $\exists x \in Type, P = "there exists some Type x such that P"$

- 1. Everyone likes Pulp Fiction or Bridesmaids.
- 2. No one likes Borderlands.
- 3. If a person likes The Matrix, they also like John Wick.
- 4. If someone likes Batman & Robin, they like every movie.
- 5. Everyone likes someone who likes Sharknado.

...

 $\forall x \in Type, P = "for every Type x, P"$ $\exists x \in Type, P = "there exists some Type x such that P"$

- 1. Everyone likes Pulp Fiction or Bridesmaids. $\forall p \in P$, Likes $(p, Pulp Fiction) \lor Likes<math>(p, Bridesmaids)$
- 2. No one likes Borderlands.
- 3. If a person likes The Matrix, they also like John Wick.
- 4. If someone likes Batman & Robin, they like every movie.
- 5. Everyone likes someone who likes Sharknado.

 $\forall x \in Type, P = "for every Type x, P"$ $\exists x \in Type, P = "there exists some Type x such that P"$

("no one" = "there is not someone")

- 1. Everyone likes Pulp Fiction or Bridesmaids. $\forall p \in P$, Likes $(p, Pulp Fiction) \lor Likes<math>(p, Bridesmaids)$
- 2. No one likes Borderlands. $\neg \exists p \in P$, Likes(p, Borderlands)
- 3. If a person likes The Matrix, they also like John Wick.
- 4. If someone likes Batman & Robin, they like every movie.
- 5. Everyone likes someone who likes Sharknado.

```
Ryan Culpepper
```

 $\forall x \in Type, P = "for every Type x, P"$ $\exists x \in Type, P = "there exists some Type x such that P"$

- 1. Everyone likes Pulp Fiction or Bridesmaids. $\forall p \in P$, Likes $(p, Pulp Fiction) \lor Likes<math>(p, Bridesmaids)$
- 2. No one likes Borderlands. $\neg \exists p \in P$, Likes(p, Borderlands)
- 3. If a person likes The Matrix, they also like John Wick. $\forall p \in P$, Likes $(p, \text{The Matrix}) \Rightarrow \text{Likes}(p, \text{John Wick})$
- 4. If someone likes Batman & Robin, they like every movie.
- 5. Everyone likes someone who likes Sharknado.

```
("no one" = "there is not someone")
```

(implicit "every")

 $\forall x \in Type, P = "for every Type x, P"$ $\exists x \in Type, P = "there exists some Type x such that P"$

(implicit "every")

- 1. Everyone likes Pulp Fiction or Bridesmaids. $\forall p \in P$, Likes $(p, Pulp Fiction) \lor Likes<math>(p, Bridesmaids)$
- 2. No one likes Borderlands. ("no one" = "there is not someone") $\neg \exists p \in P$, Likes(p, Borderlands)
- 3. If a person likes The Matrix, they also like John Wick. $\forall p \in P$, Likes $(p, \text{The Matrix}) \Rightarrow \text{Likes}(p, \text{John Wick})$
- 4. If someone likes Batman & Robin, they like every movie. (implicit "every") $\forall p \in P$, Likes $(p, \text{Batman \& Robin}) \Rightarrow (\forall m \in M, \text{Likes}(p, m))$
- 5. Everyone likes someone who likes Sharknado.

 $\forall x \in Type, P = "for every Type x, P"$ $\exists x \in Type, P = "there exists some Type x such that P"$

- 1. Everyone likes Pulp Fiction or Bridesmaids. $\forall p \in P$, Likes $(p, Pulp Fiction) \lor Likes<math>(p, Bridesmaids)$
- 2. No one likes Borderlands. ("no one" = "there is not someone") $\neg \exists p \in P$, Likes(p, Borderlands)
- 3. If a person likes The Matrix, they also like John Wick. (implicit "every") $\forall p \in P$, Likes $(p, \text{The Matrix}) \Rightarrow \text{Likes}(p, \text{John Wick})$
- 4. If someone likes Batman & Robin, they like every movie. (implicit "every") $\forall p \in P$, Likes $(p, \text{Batman \& Robin}) \Rightarrow (\forall m \in M, \text{Likes}(p, m))$
- 5. Everyone likes someone who likes Sharknado. (ambiguous) $\forall p \in P, \exists q \in P, \text{Likes}(p,q) \land \text{Likes}(q, \text{Sharknado}) \text{ or }$ $\forall p \in P, \forall q \in P, \text{Likes}(q, \text{Sharknado}) \Rightarrow \text{Likes}(p,q)$

 $\forall x \in Type, P = "for every Type x, P"$ $\exists x \in Type, P = "there exists some Type x such that P"$

- 1. Everyone likes Pulp Fiction or Bridesmaids. $\forall p \in P$, Likes $(p, Pulp Fiction) \lor Likes<math>(p, Bridesmaids)$
- 2. No one likes Borderlands. ("no one" = "there is not someone") $\neg \exists p \in P$, Likes(p, Borderlands)
- 3. If a person likes The Matrix, they also like John Wick. (implicit "every") $\forall p \in P$, Likes $(p, \text{The Matrix}) \Rightarrow \text{Likes}(p, \text{John Wick})$
- 4. If someone likes Batman & Robin, they like every movie. (implicit "every") $\forall p \in P$, Likes $(p, \text{Batman \& Robin}) \Rightarrow (\forall m \in M, \text{Likes}(p, m))$
- 5. Everyone likes someone who likes Sharknado. (ambiguous) $\forall p \in P, \exists q \in P, \text{Likes}(p,q) \land \text{Likes}(q, \text{Sharknado}) \text{ or }$ $\forall p \in P, \forall q \in P, \text{Likes}(q, \text{Sharknado}) \Rightarrow \text{Likes}(p,q)$

Everyone needs someone with a minivan. Everyone avoids someone with a nasty cough.

Recall the definition of subset:

Definition (Subset)

Suppose A and B are sets. A is a **subset** of B, written $A \subseteq B$, if every element of A is also an element of B.

Can we express this definition in predicate logic?

Recall the definition of subset:

Definition (Subset)

Suppose A and B are sets. A is a **subset** of B, written $A \subseteq B$, if every element of A is also an element of B.

Can we express this definition in predicate logic? Suppose A and B are sets. Then $A \subseteq B \iff \forall x \in A, x \in B$.

Recall the definition of subset:

Definition (Subset)

Suppose A and B are sets. A is a **subset** of B, written $A \subseteq B$, if every element of A is also an element of B.

Can we express this definition in predicate logic? Suppose A and B are sets. Then $A \subseteq B \iff \forall x \in A, x \in B$.

But *A* and *B* are variables. Shouldn't they be bound by quantifiers? $\forall A, B \in ???, (A \subseteq B \iff \forall x \in A, x \in B)$

Recall the definition of subset:

Definition (Subset)

Suppose A and B are sets. A is a **subset** of B, written $A \subseteq B$, if every element of A is also an element of B.

Can we express this definition in predicate logic? Suppose A and B are sets. Then $A \subseteq B \iff \forall x \in A, x \in B$.

But A and B are variables. Shouldn't they be bound by quantifiers? $\forall A, B \in ???, (A \subseteq B \iff \forall x \in A, x \in B)$

There is no "set of all sets".* I'll use the following notation instead:

 $\forall A, B : \mathbf{Set}, \ (A \subseteq B \iff \forall x \in A, \ x \in B)$

Restrictions on Set

Do not use Set inside of set-builder notation.

Ryan Culpepper

$$\begin{array}{ll} \forall A,B: \mathbf{Set}, \ (A \subseteq B \iff \forall x \in A, \ x \in B) \\ \forall A,B: \mathbf{Set}, \ (A \subset B \iff A \subseteq B \land A \neq B) \\ \forall A,B: \mathbf{Set}, \ A \times B = \{(a,b) \mid a \in A, \ b \in B\} \\ \forall A,B: \mathbf{Set}, \ \mathcal{P}(A) = \{S \mid S \subseteq A\} \\ \forall A,B: \mathbf{Set}, \ A \cup B = \{x \mid x \in A \lor x \in B\} \\ \forall A,B: \mathbf{Set}, \ A \cap B = \{x \mid x \in A \land x \in B\} \\ \forall A,B: \mathbf{Set}, \ A \cap B = \{x \mid x \in A \land x \notin B\} \\ \forall A,B: \mathbf{Set}, \ A \cap B = \{x \mid x \in A \land x \notin B\} \\ \forall A,B: \mathbf{Set}, \ A \cap B = \{x \mid x \in A \land x \notin B\} \\ \forall A,B: \mathbf{Set}, \ A \cap B = \{x \mid x \in A \land x \notin B\} \\ \forall A,B: \mathbf{Set}, \ A \cap B = \{x \mid x \in A \land x \notin B\} \\ \forall A,B: \mathbf{Set}, \ A \cap B = \{x \mid x \in A \land x \notin B\} \\ \forall A,B: \mathbf{Set}, \ A \cap B = \{x \mid x \in A \land x \notin B\} \\ \forall A,B: \mathbf{Set}, \ A \cap B = \{x \mid x \in A \land x \notin B\} \\ \forall A,B: \mathbf{Set}, \ A \cap B = \{x \mid x \in A \land x \notin B\} \\ \forall A,B: \mathbf{Set}, \ A \cap B = \{x \mid x \in A \land x \notin B\} \\ \forall A,B: \mathbf{Set}, \ A \cap B = \{x \mid x \in A \land x \notin B\} \\ \forall A,B: \mathbf{Set}, \ A \cap B = \{x \mid x \in A \land x \notin B\} \\ \forall A,B: \mathbf{Set}, \ A \cap B = \{x \mid x \in A \land x \notin B\} \\ \forall A,B: \mathbf{Set}, \ A \cap B = \{x \mid x \in A \land x \notin B\} \\ \forall A,B: \mathbf{Set}, \ A \cap B = \{x \mid x \in A \land x \notin B\} \\ \forall A \in B : \mathbf{Set}, \ A \cap B = \{x \mid x \in A \land x \notin B\} \\ \forall A \in B : \mathbf{Set}, \ A \cap B = \{x \mid x \in A \land x \notin B\} \\ \forall A \in B : \mathbf{Set}, \ A \cap B = \{x \mid x \in A \land x \notin B\} \\ \forall A \in B : \mathbf{Set}, \ A \cap B = \{x \mid x \in A \land x \notin B\} \\ \forall A \in B : \mathbf{Set}, \ A \cap B = \{x \mid x \in A \land x \notin B\} \\ \forall A \in B : \mathbf{Set}, \ A \cap B = \{x \mid x \in A \land x \notin B\} \\ \forall A \in B : \mathbf{Set}, \ A \cap B = \{x \mid x \in A \land x \notin B\} \\ \forall A \in B : \mathbf{Set}, \ A \cap B = \{x \mid x \in A \land x \notin B\} \\ \forall A \in B : \mathbf{Set}, \ A \cap B = \{x \mid x \in A \land x \notin B\} \\ \forall A \in B : \mathbf{Set}, \ A \cap B \in B \\ \forall A \in B : \mathbf{Set}, \ A \cap B \in B \\ \forall A \in B : \mathbf{Set}, \ A \cap B \in B \\ \forall A \in B : \mathbf{Set}, \ A \cap B \in B \\ \forall A \in B : \mathbf{Set}, \ A \cap B \in B \\ \forall A \in B : \mathbf{Set}, \ A \cap B \in B \\ \forall A \in B : \mathbf{Set}, \ A \cap B \in B \\ \forall A \in B : \mathbf{Set}, \ A \cap B \in B \\ \forall A \in B : \mathbf{Set}, \ A \cap B \in B \\ \forall A \in B : \mathbf{Set}, \ A \cap B \in B \\ \forall A \in B : \mathbf{Set}, \ A \cap B \in B \\ \forall A \in B : \mathbf{Set}, \ A \cap B \in B \\ \forall A \in B : \mathbf{Set}, \ A \cap B \in B \\ \forall A \in B : \mathbf{Set}, \ A \cap B \in B \\ \forall A \in B : \mathbf{Set}, \ A \cap B \in B \\ \forall A \in B : \mathbf{Set}, \ A \cap B \in B \\ \forall A \in B : \mathbf{Set}, \ A \cap B \in B \\ \forall A \in B : \mathbf{Set}, \ A \cap B \in B \\ \forall A \in B \\ \forall A \in B \ A \in B \\ \forall$$

Some versions of predicate logic use quantifiers where the variables does not have an associated set:

$$\forall x, P(x) \qquad \exists x, P(x)$$

Then the variable ranges over the implicit **universe of discourse**.

You can convert between bounded and unbounded quantifiers, but each quantifier has a different conversion rules:

$$\forall x \in S, P(x) = \forall x, x \in S \Rightarrow P(x) \\ \exists x \in S, P(x) = \exists x, x \in S \land P(x)$$

Quantifiers in the textbooks

Applied Discrete Mathematics uses quantifiers without set bounds. Book of Proof uses quantifiers with set bounds.

Ryan Culpepper

- open statement
- predicate logic: predicates, object variables
- ► quantifiers: universal (∀) vs existential (∃)
- evaluating quantified propositions
- translating statements into predicate logic