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Back to Mathematics

Consider the following statement:
If 𝑥 > 10, then 𝑥 > 5.

Can we fit this into our logical
framework?

Let 𝐴 represent “𝑥 > 10”
and let 𝐵 represent “𝑥 > 5”.
Then 𝐴 ⇒ 𝐵.

There’s a relevant general rule:
If 𝑥 > 𝑦 and 𝑦 > 𝑧,
then 𝑥 > 𝑧.

Can we express that rule in logic?

Let 𝑃 represent “𝑥 > 𝑦”
and let 𝑄 represent “𝑦 > 𝑧”
and let 𝑅 represent “𝑥 > 𝑧”.
Then (𝑃 ∧ 𝑄) ⇒ 𝑅.

Can we use the rule (𝑃 ∧ 𝑄) ⇒ 𝑅 to show the instance 𝐴 ⇒ 𝐵?
No. Propositional logic is insufficient.
We need a logic that can talk about things and relationships between things.

Ryan Culpepper 03 Predicate Logic 2



Back to Mathematics

Consider the following statement:
If 𝑥 > 10, then 𝑥 > 5.

Can we fit this into our logical
framework?

Let 𝐴 represent “𝑥 > 10”
and let 𝐵 represent “𝑥 > 5”.
Then 𝐴 ⇒ 𝐵.

There’s a relevant general rule:
If 𝑥 > 𝑦 and 𝑦 > 𝑧,
then 𝑥 > 𝑧.

Can we express that rule in logic?

Let 𝑃 represent “𝑥 > 𝑦”
and let 𝑄 represent “𝑦 > 𝑧”
and let 𝑅 represent “𝑥 > 𝑧”.
Then (𝑃 ∧ 𝑄) ⇒ 𝑅.

Can we use the rule (𝑃 ∧ 𝑄) ⇒ 𝑅 to show the instance 𝐴 ⇒ 𝐵?
No. Propositional logic is insufficient.
We need a logic that can talk about things and relationships between things.

Ryan Culpepper 03 Predicate Logic 2



Back to Mathematics

Consider the following statement:
If 𝑥 > 10, then 𝑥 > 5.

Can we fit this into our logical
framework?

Let 𝐴 represent “𝑥 > 10”
and let 𝐵 represent “𝑥 > 5”.
Then 𝐴 ⇒ 𝐵.

There’s a relevant general rule:
If 𝑥 > 𝑦 and 𝑦 > 𝑧,
then 𝑥 > 𝑧.

Can we express that rule in logic?

Let 𝑃 represent “𝑥 > 𝑦”
and let 𝑄 represent “𝑦 > 𝑧”
and let 𝑅 represent “𝑥 > 𝑧”.
Then (𝑃 ∧ 𝑄) ⇒ 𝑅.

Can we use the rule (𝑃 ∧ 𝑄) ⇒ 𝑅 to show the instance 𝐴 ⇒ 𝐵?
No. Propositional logic is insufficient.
We need a logic that can talk about things and relationships between things.

Ryan Culpepper 03 Predicate Logic 2



Back to Mathematics

Consider the following statement:
If 𝑥 > 10, then 𝑥 > 5.

Can we fit this into our logical
framework?

Let 𝐴 represent “𝑥 > 10”
and let 𝐵 represent “𝑥 > 5”.
Then 𝐴 ⇒ 𝐵.

There’s a relevant general rule:
If 𝑥 > 𝑦 and 𝑦 > 𝑧,
then 𝑥 > 𝑧.

Can we express that rule in logic?

Let 𝑃 represent “𝑥 > 𝑦”
and let 𝑄 represent “𝑦 > 𝑧”
and let 𝑅 represent “𝑥 > 𝑧”.
Then (𝑃 ∧ 𝑄) ⇒ 𝑅.

Can we use the rule (𝑃 ∧ 𝑄) ⇒ 𝑅 to show the instance 𝐴 ⇒ 𝐵?
No. Propositional logic is insufficient.
We need a logic that can talk about things and relationships between things.

Ryan Culpepper 03 Predicate Logic 2



Back to Mathematics

Consider the following statement:
If 𝑥 > 10, then 𝑥 > 5.

Can we fit this into our logical
framework?

Let 𝐴 represent “𝑥 > 10”
and let 𝐵 represent “𝑥 > 5”.
Then 𝐴 ⇒ 𝐵.

There’s a relevant general rule:
If 𝑥 > 𝑦 and 𝑦 > 𝑧,
then 𝑥 > 𝑧.

Can we express that rule in logic?

Let 𝑃 represent “𝑥 > 𝑦”
and let 𝑄 represent “𝑦 > 𝑧”
and let 𝑅 represent “𝑥 > 𝑧”.
Then (𝑃 ∧ 𝑄) ⇒ 𝑅.

Can we use the rule (𝑃 ∧ 𝑄) ⇒ 𝑅 to show the instance 𝐴 ⇒ 𝐵?

No. Propositional logic is insufficient.
We need a logic that can talk about things and relationships between things.

Ryan Culpepper 03 Predicate Logic 2



Back to Mathematics

Consider the following statement:
If 𝑥 > 10, then 𝑥 > 5.

Can we fit this into our logical
framework?

Let 𝐴 represent “𝑥 > 10”
and let 𝐵 represent “𝑥 > 5”.
Then 𝐴 ⇒ 𝐵.

There’s a relevant general rule:
If 𝑥 > 𝑦 and 𝑦 > 𝑧,
then 𝑥 > 𝑧.

Can we express that rule in logic?

Let 𝑃 represent “𝑥 > 𝑦”
and let 𝑄 represent “𝑦 > 𝑧”
and let 𝑅 represent “𝑥 > 𝑧”.
Then (𝑃 ∧ 𝑄) ⇒ 𝑅.

Can we use the rule (𝑃 ∧ 𝑄) ⇒ 𝑅 to show the instance 𝐴 ⇒ 𝐵?
No. Propositional logic is insufficient.
We need a logic that can talk about things and relationships between things.

Ryan Culpepper 03 Predicate Logic 2



Open Statements

Definition (Open statement)

An open statement is a sentence that contains object variables whose
values are not known. If the variables were replaced with specific objects,
the sentence would be a statement.

Examples

▶ The arrays 𝐴 and 𝐵 have the same length.
▶ The priority of every job in ready_queue is less than 𝑝max.

We sometimes view an open statement as a statement-valued function.

Example

▶ 𝐸(𝑘) = “The integer 𝑘 is even.” (open statement)
▶ 𝐸(7) = “The integer 7 is even.” (statement, false)
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Predicate Logic

Definition (Predicate Logic)

Predicate logic (aka first-order logic) is an extension of propositional logic
that can also talk about objects and predicates about objects.

A proposition in predicate logic is one of the following:
▶ a propositional variable
▶ a compound proposition formed by a logical connective
▶ a predicate name 𝑃 applied to one or more object expressions
▶ a quantified proposition

An object expression is one of the following:
▶ a literal object, like 12, Boston, or {1, 3, 5}
▶ an object variable that is in scope
▶ applications of functions, operators, etc to other object expressions
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Predicates

Examples (Object Expressions)

▶ 12
▶ 3 + 4
▶ Boston

▶ {1, 4, 9}
▶ 𝑥 𝑥 must be in scope
▶ 1 + sin(𝜋𝑘)

Examples (Propositions using Predicates)

▶ Likes(Jenny,Back to the Future) Likes is a predicate name
▶ In(city,MA) In is a predicate name
▶ 𝑥 = 5
▶ 𝑛 ∈ ℕ
▶ 5 ∈ 𝐴

Jenny, Back to the Future, and MA are not object variables; they are literal objects (aka constants), like 5, ℕ.
Predicates named by symbols, like “=”, “∈”, and “⊆”, are usually written between their arguments.
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Quantified Propositions

Quantifier Proposition Read as
Universal ∀𝑥 ∈ 𝑆, 𝑃 “for all 𝑥 in 𝑆, 𝑃”
Existential ∃𝑥 ∈ 𝑆, 𝑃 “there exists 𝑥 in 𝑆 such that 𝑃”

The quantifier body 𝑃 can be any proposition; 𝑥 is in scope inside of 𝑃.

Examples

▶ “Every real number is less than, equal to, or greater than zero.”
∀𝑥 ∈ ℝ, (𝑥 < 0 ∨ 𝑥 = 0 ∨ 𝑥 > 0)

▶ “For every real number, there is a smaller real number.”
∀𝑥 ∈ ℝ, ∃𝑦 ∈ ℝ, 𝑦 < 𝑥

▶ “There is a smallest natural number.”
∃𝑧 ∈ ℕ, ∀𝑛 ∈ ℕ, 𝑧 ≤ 𝑛

▶ “There is a color other than blue.”
∃𝑐 ∈ Color, 𝑐 ≠ blue
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Univeral Quantifier as Conjunction

The universal quantifier acts like a (possibly infinite) conjunction:

∀𝑛 ∈ ℕ, 𝑃(𝑛) = ⋀
𝑛∈ℕ

𝑃(𝑛) = 𝑃(0) ∧ 𝑃(1) ∧ 𝑃(2) ∧ …

The proposition is true when 𝑃 holds for every element of the given set.

∀𝑥 ∈ 𝑆, 𝑃(𝑥) = ⋀
𝑥∈𝑆

𝑃(𝑥) =

for 𝑥 ∈ 𝑆 do
if 𝑃(𝑥) then
continue

else
return F

end if
end for
return T

A value of 𝑥 that makes 𝑃(𝑥) false is called a counterexample.
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Existential Quantifier as Disjunction
The existential quantifier acts like a (possibly infinite) disjunction:

∃𝑛 ∈ ℕ, 𝑃(𝑛) = ⋁
𝑛∈ℕ

𝑃(𝑛) = 𝑃(0) ∨ 𝑃(1) ∨ 𝑃(2) ∨ …

The proposition is true when 𝑃 holds for some (at least one, maybe more)
element of the given set.

∃𝑥 ∈ 𝑆, 𝑃(𝑥) = ⋁
𝑥∈𝑆

𝑃(𝑥) =

for 𝑥 ∈ 𝑆 do
if 𝑃(𝑥) then
return T

else
continue

end if
end for
return F

A value of 𝑥 that makes 𝑃(𝑥) true is called a witness.
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Exercises: Evaluating Quantified Propositions ••

Let 𝐻 = {1, 2, 3, 4, 5}. Judge the truth of the following propositions.
Provide a witness or counterexample if appropriate.
▶ ∃𝑛 ∈ 𝐻, Odd(𝑛)

T with witness 𝑛 = 1 (or 3 or 5)

▶ ∀𝑛 ∈ 𝐻, Even(𝑛)

F with counterexample 𝑛 = 1 (or 3 or 5)

▶ ∀𝑛 ∈ 𝐻, ∃𝑚 ∈ 𝐻, 𝑚 + 𝑛 = 6

T, each 𝑛 has an 𝑚-witness: 𝑛 1 2 3 4 5
𝑚 5 4 3 2 1

▶ ∃𝑛 ∈ 𝐻, ∀𝑚 ∈ 𝐻, Odd(𝑚) ⇒ 𝑚 < 𝑛

F, each 𝑛 has an 𝑚-counterexample: 𝑛 1 2 3 4 5
𝑚 5 5 5 5 5 (etc)

▶ ∃𝑛 ∈ 𝐻, ∀𝑚 ∈ 𝐻, Even(𝑚) ⇒ 𝑚 < 𝑛

T with witness 𝑛 = 5
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DeMorgan’s Laws for Quantifiers

¬(𝐴 ∧ 𝐵) = ¬𝐴 ∨ ¬𝐵 ¬(∀𝑥 ∈ 𝑆, 𝑃(𝑥)) = ∃𝑥 ∈ 𝑆, ¬𝑃(𝑥)

¬(𝐴 ∨ 𝐵) = ¬𝐴 ∧ ¬𝐵 ¬(∃𝑥 ∈ 𝑆, 𝑃(𝑥)) = ∀𝑥 ∈ 𝑆, ¬𝑃(𝑥)

Examples

▶ “It is not true that every natural number is even.”
= “There exists some natural number that is not even.”

▶ “It is not true that there exists some person who is immortal.”
= “Every person is not immortal.” = “Every person is mortal.”

▶ “It is not true that there is someone who is both garrulous and taciturn.”
= “For every person, they are not both garrulous and taciturn.”
= “For every person, either they are not garrulous or they are not taciturn.”
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Translating Statements into Predicate Logic
Translating English statements into predicate logic propositions:
▶ Rephrase the conversational English into the pseudo-English
constructs below, working from the “outside” inward. Watch out for
▶ implicitly universal statements
▶ verbs with compound objects (eg, “I like apples and oranges.”)
▶ verbs with quantified objects (eg, “10 is greater than some odd number.”)

▶ Replace pseudo-English with logical quantifiers and connectives.
Replace simple statements with uses of predicates.

Pseudo-English Logic
for every Type 𝑥, ∀𝑥 ∈ Type,
there exists some Type 𝑥 such that ∃𝑥 ∈ Type,

and ∧
or ∨

if then ⇒
it is not true that ¬( )
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Examples: Translating Statements

Sets:

𝑃 = a set of people 𝐴 = a set of actors
𝑀 = a set of movies 𝐺 = a set of genres

Predicates:

Likes(𝑝, 𝑥) where 𝑝 ∈ 𝑃, 𝑥 ∈ (𝑀 ∪ 𝐺 ∪ 𝐴)
HasGenre(𝑚, 𝑔) where 𝑚 ∈ 𝑀, 𝑔 ∈ 𝐺

ActedIn(𝑎, 𝑚) where 𝑎 ∈ 𝐴, 𝑚 ∈ 𝑀
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Examples: Translating Statements ••
1. “Everyone has some movie that they like.”

= “for every person 𝑝, 𝑝 has some movie that they like”
= ∀𝑝 ∈ 𝑃, “𝑝 has some movie that they like”
= ∀𝑝 ∈ 𝑃, “there exists some movie 𝑚 such that 𝑝 likes 𝑚”
= ∀𝑝 ∈ 𝑃, ∃𝑚 ∈ 𝑀, “𝑝 likes 𝑚”
= ∀𝑝 ∈ 𝑃, ∃𝑚 ∈ 𝑀, Likes(𝑝, 𝑚)

2. “There is some movie that everyone likes.”

= “there exists a movie 𝑚 such that everyone likes 𝑚”
= ∃𝑚 ∈ 𝑀, “everyone likes 𝑚”
= ∃𝑚 ∈ 𝑀, “for every person 𝑝, 𝑝 likes 𝑚”
= ∃𝑚 ∈ 𝑀, ∀𝑝 ∈ 𝑃, “𝑝 likes 𝑚”
= ∃𝑚 ∈ 𝑀, ∀𝑝 ∈ 𝑃, Likes(𝑝, 𝑚)

3. “Every movie has some fan (a person who likes it).”

= “for every movie 𝑚, 𝑚 has some fan (a person who likes it)”
= ∀𝑚 ∈ 𝑀, “𝑚 has some fan (a person who likes it)”
= ∀𝑚 ∈ 𝑀, “there is some person 𝑝 such that 𝑝 likes 𝑚”
= ∀𝑚 ∈ 𝑀, ∃𝑝 ∈ 𝑃, “𝑝 likes 𝑚”
= ∀𝑚 ∈ 𝑀, ∃𝑝 ∈ 𝑃, Likes(𝑝, 𝑚)
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= ∀𝑚 ∈ 𝑀, ∃𝑝 ∈ 𝑃, “𝑝 likes 𝑚”
= ∀𝑚 ∈ 𝑀, ∃𝑝 ∈ 𝑃, Likes(𝑝, 𝑚)
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Examples: Translating Statements

Summary:
1. “Everyone has some movie that they like.”
= ∀𝑝 ∈ 𝑃, ∃𝑚 ∈ 𝑀, Likes(𝑝, 𝑚)

2. “There is some movie that everyone likes.”
= ∃𝑚 ∈ 𝑀, ∀𝑝 ∈ 𝑃, Likes(𝑝, 𝑚)

3. “Every movie has some fan (a person who likes it).”
= ∀𝑚 ∈ 𝑀, ∃𝑝 ∈ 𝑃, Likes(𝑝, 𝑚)

Note:
▶ Quantifier order matters! Compare #1 (∀𝑝, ∃𝑚) and #2 (∃𝑚, ∀𝑝).
▶ Quantifier choice matters! Compare #2 (∃𝑚, ∀𝑝) and #3 (∀𝑚, ∃𝑝).
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Exercise: Translating Statements ••

1. Everyone likes Pulp Fiction or Bridesmaids.

∀𝑝 ∈ 𝑃, Likes(𝑝,Pulp Fiction) ∨ Likes(𝑝,Bridesmaids)

2. No one likes Borderlands.

(“no one” = “there is not someone”)
¬∃𝑝 ∈ 𝑃, Likes(𝑝,Borderlands)

3. If a person likes The Matrix, they also like John Wick.

(implicit “every”)
∀𝑝 ∈ 𝑃, Likes(𝑝, The Matrix) ⇒ Likes(𝑝, John Wick)

4. If someone likes Batman & Robin, they like every movie.

(implicit “every”)
∀𝑝 ∈ 𝑃, Likes(𝑝,Batman & Robin) ⇒ (∀𝑚 ∈ 𝑀, Likes(𝑝, 𝑚))

5. Everyone likes someone who likes Sharknado.

(ambiguous)
∀𝑝 ∈ 𝑃, ∃𝑞 ∈ 𝑃, Likes(𝑝, 𝑞) ∧ Likes(𝑞, Sharknado) or
∀𝑝 ∈ 𝑃, ∀𝑞 ∈ 𝑃, Likes(𝑞, Sharknado) ⇒ Likes(𝑝, 𝑞)
Everyone needs someone with a minivan.
Everyone avoids someone with a nasty cough.
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Quantifiers and Sets
Recall the definition of subset:

Definition (Subset)
Suppose 𝐴 and 𝐵 are sets. 𝐴 is a subset of 𝐵, written 𝐴 ⊆ 𝐵,
if every element of 𝐴 is also an element of 𝐵.

Can we express this definition in predicate logic?

Suppose 𝐴 and 𝐵 are sets. Then 𝐴 ⊆ 𝐵 ⟺ ∀𝑥 ∈ 𝐴, 𝑥 ∈ 𝐵.

But 𝐴 and 𝐵 are variables. Shouldn’t they be bound by quantifiers?
∀𝐴, 𝐵 ∈ ? ? ?, (𝐴 ⊆ 𝐵 ⟺ ∀𝑥 ∈ 𝐴, 𝑥 ∈ 𝐵)

There is no “set of all sets”.* I’ll use the following notation instead:
∀𝐴, 𝐵 ∶ Set, (𝐴 ⊆ 𝐵 ⟺ ∀𝑥 ∈ 𝐴, 𝑥 ∈ 𝐵)

Restrictions on Set
Do not use Set inside of set-builder notation.
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Some Definitions Restated

∀𝐴, 𝐵 ∶ Set, (𝐴 ⊆ 𝐵 ⟺ ∀𝑥 ∈ 𝐴, 𝑥 ∈ 𝐵) Subset
∀𝐴, 𝐵 ∶ Set, (𝐴 ⊂ 𝐵 ⟺ 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵) Proper Subset
∀𝐴, 𝐵 ∶ Set, 𝐴 × 𝐵 = {(𝑎, 𝑏) ∣ 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} Cartesian Product

∀𝐴 ∶ Set, 𝒫(𝐴) = {𝑆 ∣ 𝑆 ⊆ 𝐴} Power Set
∀𝐴, 𝐵 ∶ Set, 𝐴 ∪ 𝐵 = {𝑥 ∣ 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵} Union
∀𝐴, 𝐵 ∶ Set, 𝐴 ∩ 𝐵 = {𝑥 ∣ 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵} Intersection
∀𝐴, 𝐵 ∶ Set, 𝐴 − 𝐵 = {𝑥 ∣ 𝑥 ∈ 𝐴 ∧ 𝑥 ∉ 𝐵} Difference
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Quantifiers without Set Bounds
Some versions of predicate logic use quantifiers where the variables does
not have an associated set:

∀𝑥, 𝑃(𝑥) ∃𝑥, 𝑃(𝑥)

Then the variable ranges over the implicit universe of discourse.

You can convert between bounded and unbounded quantifiers,
but each quantifier has a different conversion rules:

∀𝑥 ∈ 𝑆, 𝑃(𝑥) = ∀𝑥, 𝑥 ∈ 𝑆 ⇒ 𝑃(𝑥)
∃𝑥 ∈ 𝑆, 𝑃(𝑥) = ∃𝑥, 𝑥 ∈ 𝑆 ∧ 𝑃(𝑥)

Quantifiers in the textbooks
Applied Discrete Mathematics uses quantifiers without set bounds.
Book of Proof uses quantifiers with set bounds.
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Topic List

▶ open statement
▶ predicate logic: predicates, object variables
▶ quantifiers: universal (∀) vs existential (∃)
▶ evaluating quantified propositions
▶ translating statements into predicate logic
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