Relations CS 220 — Applied Discrete Mathematics

February {12, 19, 24}, 2025

Ryan Culpepper

04 Relations

Let *P* be a set of people. Here are some predicates on *P*:

$$\begin{split} \text{SiblingOf}(a,b) &= ``a \text{ and } b \text{ are siblings''} & \text{where } a,b \in P \\ \text{ChildOf}(c,p) &= ``c \text{ is a child of } p'' & \text{where } c,p \in P \\ \text{DescendantOf}(a,d) &= ``d \text{ is a descendant of } a'' & \text{where } a,d \in P \\ \text{RelatedTo}(a,b) &= ``a \text{ and } b \text{ are related (or equal)''} & \text{where } a,b \in P \\ \end{split}$$

Interesting facts about these predicates:

Let *P* be a set of people. Here are some predicates on *P*:

$$\begin{split} \text{SiblingOf}(a,b) &= ``a \text{ and } b \text{ are siblings''} & \text{where } a,b \in P \\ \text{ChildOf}(c,p) &= ``c \text{ is a child of } p'' & \text{where } c,p \in P \\ \text{DescendantOf}(a,d) &= ``d \text{ is a descendant of } a'' & \text{where } a,d \in P \\ \text{RelatedTo}(a,b) &= ``a \text{ and } b \text{ are related (or equal)''} & \text{where } a,b \in P \\ \end{split}$$

Interesting facts about these predicates:

- (Symmetry) If SiblingOf(a, b), then SiblingOf(b, a).
- (Transitivity) If DescendantOf(a, b) and DescendantOf(b, c), then DescendantOf(a, c).
- RelatedTo has both symmetry and transitivity.
- ▶ If you have ChildOf, you could generate DescendantOf. (How?)

- numbers are objects
 - sets are objects
- predicates represent properties of objects represent relationships between objects
 - ??? represents properties of predicates

numbers are objects sets are objects predicates represent properties of objects represent relationships between objects ??? represents properties of predicates

In **first-order** predicate logic, predicates are not objects. (We can't define predicates or functions on predicates.)

	are objects
sets	are objects
predicates	represent properties of objects represent relationships between objects
???	represents properties of predicates

In **first-order** predicate logic, predicates are not objects. (We can't define predicates or functions on predicates.)

Solutions:

- higher-order logic (not in this class; see CS 420, CS 720)
- find a way to represent properties and relationships as objects

Represent properties and relationships as objects — specifically, sets.

- Represent a property of elements of A as a subset of A. Examples:
- Represent a relationship on elements of A as a subset of A × A. Examples:
- Represent a relationship between A and B as a subset of A × B. Examples:

Represent properties and relationships as objects - specifically, sets.

- ▶ Represent a property of elements of *A* as a subset of *A*. Examples: $Even \subseteq \mathbb{Z}$, $Prime \subseteq \mathbb{N}$
- Represent a relationship on elements of A as a subset of A × A. Examples:
- Represent a relationship between A and B as a subset of A × B. Examples:

Represent properties and relationships as objects - specifically, sets.

- ▶ Represent a property of elements of *A* as a subset of *A*. Examples: $Even \subseteq \mathbb{Z}$, $Prime \subseteq \mathbb{N}$
- ▶ Represent a relationship on elements of *A* as a subset of $A \times A$. Examples: (<) $\subseteq \mathbb{R} \times \mathbb{R}$, *SiblingOf* $\subseteq Person \times Person$
- Represent a relationship between A and B as a subset of A × B. Examples:

Represent properties and relationships as objects — specifically, sets.

- ▶ Represent a property of elements of *A* as a subset of *A*. Examples: $Even \subseteq \mathbb{Z}$, $Prime \subseteq \mathbb{N}$
- ▶ Represent a relationship on elements of *A* as a subset of $A \times A$. Examples: (<) $\subseteq \mathbb{R} \times \mathbb{R}$, *SiblingOf* $\subseteq Person \times Person$
- ▶ Represent a relationship between A and B as a subset of $A \times B$. Examples: $ActedIn \subseteq Actors \times Movies$, $HasLivedIn \subseteq Person \times City$

. . . .

Relations

Relations

Definition (Binary Relation)

Let A and B be sets.

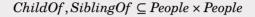
- ► A binary relation on A is a subset of A × A.
- A binary relation from A to B is a subset of $A \times B$.

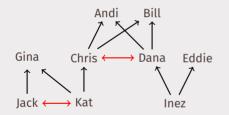
We often drop the qualifier "binary", but there are other kinds of relations.

We use relations to model relationships between things.

Examples	
Example relations on Person:	Example relations from <i>Person</i> to <i>City</i> :
is a child of	lives in
is friends with	was born in
is older than	has visited

Example: Relations on People

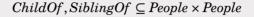


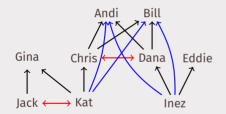


(relations drawn as a directed graph, aka digraph)

ChildOf = {(Chris, Andi), (Chris, Bill), (Dana, Andi), (Dana, Bill), (Inez, Dana), (Inez, Eddie), (Jack, Gina), (Kat, Gina), (Kat, Chris)} SiblingOf = {(Chris, Dana), (Dana, Chris), (Jack, Kat), (Kat, Jack)}

Example: Relations on People





(relations drawn as a directed graph, aka digraph)

 $ChildOf = \{(Chris, Andi), (Chris, Bill), \}$ (Dana, Andi), (Dana, Bill), (Inez, Dana), (Inez, Eddie), (Jack, Gina), (Kat, Gina), (Kat, Chris) } $SiblingOf = \{(Chris, Dana), (Dana, Chris), \}$ (lack, Kat), (Kat, lack) } *DescendantOf* = { (Inez, Andi), (Inez, Bill), (Kat, Andi), (Kat, Bill) } \cup *ChildOf*

Ryan Culpepper	04 Relations	Relations	

Let $H = \{1, 2, 3, 4, 5\}$, and let S, LT, and LE be defined as follows:

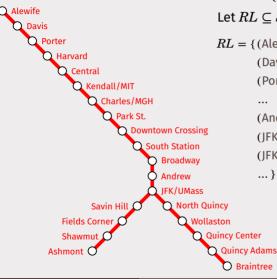
$$S = \{(1,2), (2,3), (3,4), (4,5)\}$$

$$LT = \{(1,2), (1,3), (1,4), (1,5), (2,3), (2,4), (2,5), (3,4), (3,5), (4,5)\}$$

$$LE = \{(1,1), (2,2), (3,3), (4,4), (5,5)\} \cup LT$$

S represents the "successor" relation on H. LT represents the "less than" relation on H. LE represents "less than or equal to" relation on H.

Example: Relation on T Stations



Rvan Culpepper

```
Let St = \{A | ewife, Davis, ... \}
```

Let $RL \subseteq St \times St$ be defined as follows:

Relations

 $RL = \{$ (Alewife, Davis),

(Davis, Porter), (Davis, Alewife), (Porter, Davis), (Porter, Harvard),

(Andrew, JFK/UMass), (Andrew, Broadway), (JFK/UMass, Andrew), (JFK/UMass, Savin Hill), (JFK/UMass, North Quincy),

.... }

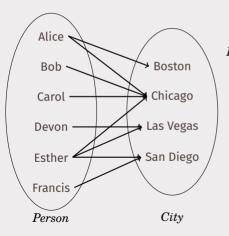
Braintree

04 Relations

 $(s_1, s_2) \in RL$ means "can get from s_1 to s_2 in one step on Red Line"

Examples: Relation from Person to City

 $HasLivedIn \subseteq Person \times City$



HasLivedIn =

{(Alice, Boston), (Alice, Chicago),
 (Bob, Chicago),
 (Carol, Chicago),
 (Devon, Las Vegas),
 (Esther, Chicago), (Esther, Las Vegas),
 (Esther, San Diego),
 (Francis, San Diego)}

Relations and predicates serve the same purpose: to represent relationships between things. Keep the formal distinction in mind:

- A relation is a set. It may contain some tuples and not others.
- A predicate is used in an open proposition, which may be true for some values of object variables and false for others.

A relation can be defined by an open proposition using set-builder notation:

$$Divides = \{(d,n) \mid d \in \mathbb{N}, n \in \mathbb{N}, \underbrace{\exists k \in \mathbb{N}, kd = n}_{\text{open proposition on } d, n}\}$$

For example, $(3, 27) \in Divides$ because $\exists k \in \mathbb{N}, 3k = 27$. (k = 9 works.)

Some relations are named by symbols.

If R is a binary relation, it is common to write xRy instead of $(x,y) \in R$.

Example

< is a relation on \mathbb{R} We typically write 3 < 5 instead of $(3,5) \in <$.

Properties of Relations

Reflexivity

Definition (Reflexive)

A relation R on a set A is **reflexive** iff $(a, a) \in R$ for every $a \in A$. That is, every element is related to itself.

Examples (Reflexive)

Let $S = \{1, 2, 3, 4\}$. Which of the following relations on S is reflexive?

- 1. $\{(1,1), (1,2), (2,3), (3,3), (4,4)\}$
- 2. $\{(1,1), (2,2), (2,3), (3,3), (4,1), (4,4)\}$
- 3. $\{(1,1), (2,2), (3,3)\}$

Definition (Irreflexive)

A relation R on A is **irreflexive** if $(a, a) \notin R$ for all $a \in R$.

That is, no element is related to itself.

Ryan Culpepper

04 Relations

Reflexivity

Definition (Reflexive)

A relation R on a set A is **reflexive** iff $(a, a) \in R$ for every $a \in A$. That is, every element is related to itself.

Examples (Reflexive)

Let $S = \{1, 2, 3, 4\}$. Which of the following relations on S is reflexive?

1. $\{(1,1), (1,2), (2,3), (3,3), (4,4)\}$ no, missing (2,2)

2.
$$\{(1,1), (2,2), (2,3), (3,3), (4,1), (4,4)\}$$

3. $\{(1,1), (2,2), (3,3)\}$

yes no*. missing (4, 4)

Definition (Irreflexive)

A relation R on A is **irreflexive** if $(a, a) \notin R$ for all $a \in R$.

That is, no element is related to itself.

Symmetry

Definition (Symmetric)

A relation R on a set A is symmetric iff $(b, a) \in R$ whenever $(a, b) \in R$.

Examples (Symmetric)

Let $S = \{1, 2, 3, 4\}$. Which of the following relations is symmetric?

- 1. $\{(1,1), (1,2), (1,3), (2,1), (3,1)\}$
- 2. $\{(1,2), (2,3), (3,4)\}$
- 3. $\{(2,2), (3,3)\}$

Definitions (Antisymmetric, Asymmetric)

A relation R on A is **antisymmetric** iff whenever $(a, b) \in R$ and $(b, a) \in R$, a = b. A relation R on A is **asymmetric** iff $(a, b) \in R$ implies that $(b, a) \notin R$.

Symmetry

Definition (Symmetric)

A relation R on a set A is symmetric iff $(b, a) \in R$ whenever $(a, b) \in R$.

Examples (Symmetric)	•
Let $S = \{1, 2, 3, 4\}$. Which of the following relation	ns is symmetric?
1. $\{(1,1), (1,2), (1,3), (2,1), (3,1)\}$	yes
2. $\{(1,2), (2,3), (3,4)\}$	no, missing $(2,1)$, etc
3. $\{(2,2), (3,3)\}$	yes

Definitions (Antisymmetric, Asymmetric)

A relation R on A is **antisymmetric** iff whenever $(a, b) \in R$ and $(b, a) \in R$, a = b. A relation R on A is **asymmetric** iff $(a, b) \in R$ implies that $(b, a) \notin R$.

Transitivity

Definition (Transitive)

A relation R on A is **transitive** iff $(a,c) \in R$ whenever $(a,b) \in R$ and $(b,c) \in R$.

$$\forall a, b, c \in A, \ (a, b) \in R \land (b, c) \in R \ \Rightarrow \ (a, c) \in R$$

Examples (Transitive)

Let $S = \{1, 2, 3, 4\}$. Which of the following relations is transitive?

- 1. $\{(1,1), (1,2), (2,2), (2,1), (3,3)\}$
- 2. $\{(1,3), (3,2), (2,1)\}$
- 3. $\{(2,4), (4,3), (2,3), (4,1)\}$

Transitivity means

if you can get from one point to another *in two hops*, *then* you can also get there directly *in one hop*

Ryan Culpepper

04 Relations

Transitivity

Definition (Transitive)

A relation R on A is **transitive** iff $(a,c) \in R$ whenever $(a,b) \in R$ and $(b,c) \in R$.

```
\forall a, b, c \in A, (a, b) \in R \land (b, c) \in R \implies (a, c) \in R
```

Examples (Transitive)

Let $S = \{1, 2, 3, 4\}$. Which of the following relations is transitive?

- 1. $\{(1,1), (1,2), (2,2), (2,1), (3,3)\}$ ves 2. $\{(1,3), (3,2), (2,1)\}$ no. missing (1,2), etc
- 3. $\{(2,4), (4,3), (2,3), (4,1)\}$

```
no. missing (2, 1)
```

Transitivity means

if you can get from one point to another in two hops. then you can also get there directly in one hop

Rvan Culpepper

04 Relations

Recall *H* and its relations:

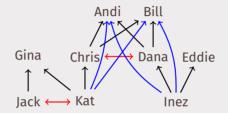
$$\begin{split} H &= \{1, 2, 3, 4, 5\} \\ S &= \{(1, 2), (2, 3), (3, 4), (4, 5)\} \\ LT &= \{(1, 2), (1, 3), (1, 4), (1, 5), \\ &\quad (2, 3), (2, 4), (2, 5), \\ &\quad (3, 4), (3, 5), \\ &\quad (4, 5)\} \\ LE &= \{(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)\} \cup LT \end{split}$$

Of the relations S, LT, and LE, which are

- reflexive?
- symmetric?
- transitive?

Example: Properties of Relations

Recall the family tree example:



Of $ChildOf(\uparrow)$, $SiblingOf(\uparrow)$, and $DescendantOf(\uparrow \cup \uparrow)$, which are

- reflexive?
- symmetric?
- transitive?

Operations on Relations

Relations are sets, so we can apply set operations to them.

Suppose A and B are sets, and $R \subseteq A \times B$ and $S \subseteq A \times B$.

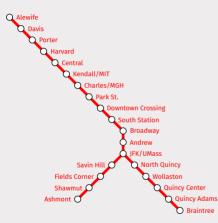
- ▶ $R \cup S$ relates a to b if either R or S relates them.
- ▶ $R \cap S$ relates a to b if both R and S relate them.
- \triangleright R S relates a to b if R relates them and S does not.

That is:

$$\begin{split} R \cup S &= \{ (a,b) \mid (a,b) \in R \lor (a,b) \in S \} \\ R \cap S &= \{ (a,b) \mid (a,b) \in R \land (a,b) \in S \} \\ R - S &= \{ (a,b) \mid (a,b) \in R \land (a,b) \notin S \} \end{split}$$

(It is uncommon to take a Cartesian product (\times) or power set (\mathcal{P}) of a relation.)

Example: Set Operations on the Red Line



 $RL \subseteq St \times St$ is "one step on the Red Line".

Let $St' = \{$ South Station, Broadway, Andrew $\}$. $RL \cap (St' \times St')$ represents the Red Line restricted to those stations.

Suppose $GL \subseteq St \times St$ represents the "one step" relation for the Green Line.

 $RL \cup GL$ represents "reachable in one step using either the Red or Green Line".

Suppose $BL \subseteq St \times St$ and $OL \subseteq St \times St$ represent the "one step" relations for the Blue and Orange Lines, respectively.

¹⁵ Let $T \subseteq St \times St$ be $T = RL \cup GL \cup BL \cup OL$. ² T means "reachable in one step using the subway".

Definition (Composite)

Let $R \subseteq A \times B$ and $S \subseteq B \times C$. The **composite** of R and S, written $S \circ R$, is defined as $\{(a,c) \mid (a,b) \in R, (b,c) \in S\}$. That is,

 $\forall a \in A, \ \forall c \in C, \ [(a,c) \in S \circ R \iff \exists b \in B, \ (a,b) \in R \land (b,c) \in S]$

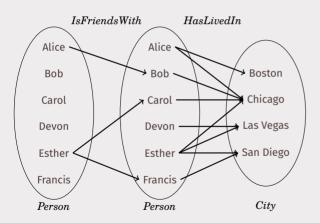
If you can get from a to b by R, and you can get from b to c by S, then you can get from a to c by $S \circ R$.

$S \circ R$ means "R first, then S"

Be careful of the order. The notation follows function composition notation, where $(g \circ f)(x) = g(f(x))$.

Example: Composing Relations

$HasLivedIn \circ IsFriendsWith$

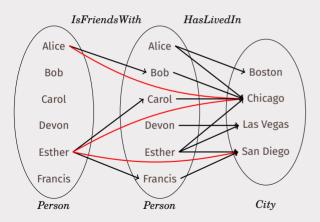


= {(Alice, Chicago), (Esther, Chicago), (Esther, San Diego)}

Note that Bob, Carol, and Francis are not part of the result!

Example: Composing Relations

$HasLivedIn \circ IsFriendsWith$



= {(Alice, Chicago), (Esther, Chicago), (Esther, San Diego)}

Note that Bob, Carol, and Francis are not part of the result!

Definition (Powers of a Relation)

Let A be a set, and $R \subseteq A \times A$. The **powers** of R are defined as follows:

$$R^{1} = R$$

$$R^{n+1} = R^{n} \circ R$$
That is, $R^{n} = \underbrace{R \circ R \circ \dots \circ R}_{n \text{ times}}$.

Recall $H = \{1, 2, 3, 4, 5\}$. We have

$$\begin{split} S &= \{(1,2),(2,3),(3,4),(4,5) \\ S^2 &= S \circ S = \{(1,3),(2,4),(3,5)\} \\ S^3 &= S^2 \circ S = \{(1,4),(2,5)\} \\ S^4 &= S^3 \circ S = \{(1,5)\} \\ S^5 &= S^4 \circ S = \emptyset \\ LT &= S \cup S^2 \cup S^3 \cup S^4 \end{split}$$

What properties does LT have, again?

Example: Composition & Powers, the Red Line

RL is "reachable in one step using the Red Line", etc. Let $T \subseteq S = RL \cup GL \cup BL \cup OL$. T means "reachable in one step using the subway".

 $GL \circ RL$ means "reachable by riding one step on the Red Line, then one step on the Green Line".

 $RL^2 = RL \circ RL$ means "reachable by riding exactly two stops on the Red Line".

 $T^2 = T \circ T$ means "reachable by riding exactly two stops on the subway".

 $T \cup T^2$ means "reachable by riding one or two stops outputs on the subway".

Theorem

Let R be a relation on A. R is transitive iff $R^n \subseteq R$ for all $n \in \mathbb{Z}^+$. Actually, it's even simpler: R is transitive iff $R^2 \subseteq R$.

Recall: *R* is transitive iff whenever *R* contains (a, b) and (b, c) it also contains (a, c). Those (a, c) pairs are exactly what $R^2 = R \circ R$ computes.

Observation

Let R be a relation on A. Even if R is not already transitive, we can create a transitive relation by taking

$$R^+ = R \cup R^2 \cup R^3 \cup R^4 \cup \dots = \bigcup_{n=1}^{\infty} R^n$$

 R^+ is called the transitive closure of R.

Definitions

Let *R* be a relation on *A*. That is, $R \subseteq A \times A$. Then

- ▶ the **reflexive closure** of R (wrt A) is the smallest relation R' such that $R \subseteq R'$ and R' is reflexive (wrt A)
- ▶ the symmetric closure of R is the smallest relation R' such that $R \subseteq R'$ and R' is symmetric
- ▶ the **transitive closure** of *R* is the smallest relation R' such that $R \subseteq R'$ and R' is transitive
- ► the **reflexive-reflexive closure** of R is the smallest relation R' such that $R \subseteq R'$ and R' is reflexive (wrt A) and transitive

Relations on \mathbb{R} :

- the reflexive closure of < (wrt \mathbb{R}) is \leq
- ► the symmetric closure of < is ≠</p>
- the transitive closure of < is <, because < is already transitive</p>
- the transitive closure of \leq is \leq , because \leq is already transitive

Recall: $H = \{1, 2, 3, 4, 5\}$, and $S = \{(1, 2), (2, 3), (3, 4), (4, 5)\}$.

- the transitive closure of S is LT
- ▶ the reflexive closure of *LT* (wrt *H*) is *LE*
- the reflexive-transitive closure of S is LE

Examples: Closures (on the Red Line)

Recall $RL \subseteq St \times St$, meaning "reachable in one step on the Red Line".

- ▶ the reflexive closure of RL is $RL \cup \{(s,s) \mid s \in St\}$, meaning "reachable in zero or one steps"
- the symmetric closure of RL is RL, because RL is already symmetric
- ► the transitive closure of RL is $RL^+ = \bigcup_{k=1}^{\infty} RL^k$, meaning "reachable in one or more steps"
- ▶ the reflexive-transitive closure of RL is $RL^* = RL^+ \cup \{(s,s) \mid s \in RL\}$, "reachable in zero or more steps" In fact, $RL^* = RL^+$, because RL^+ is already reflexive. (Why?)

The transitive closure of "can get there in one step" is "can get there in **one or more** steps".

The reflexive-transitive closure of "can get there in one step" is "can get there in **zero or more** steps".

Let R be a relation on A.

► The reflexive closure of *R* is

 $R \cup \{(a,a) \mid a \in A\}$

► The symmetric closure of *R* is

 $R \cup \{(b,a) \mid (a,b) \in R\}$

The transitive closure of R is

$$R\cup R^2\cup R^3\cup\cdots=\bigcup_{n=1}^\infty R^n$$

If you think of a relation R as a directed graph, it is transitive if

for every path from a to b containing two or more edges, there is an edge directly connecting a and b

To compute the transitive closure of *R*:

- 1. start with the graph of R
- while there is a path from a to b with two edges but no edge from a to b add an edge from a to b

More Kinds of Relations

Partial orders are a relaxed generalization of \leq -like relations.

Definition (Partial Order, Partial Ordering)

Let \sqsubseteq be a relation on A. \sqsubseteq is a **partial order** (aka, **partial ordering**) if it is

- ► reflexive, $\forall a \in A, \ a \sqsubseteq a$
- ► transitive, $\forall a, b, c \in A, (a \sqsubseteq b \land b \sqsubseteq c) \Rightarrow a \sqsubseteq c$
- ▶ and antisymmetric $\forall a, b \in A, (a \sqsubseteq b \land b \sqsubseteq a) \Rightarrow a = b$

Recall: *R* is antisymmetric if it doesn't contain any "mirrored pairs". That is, if $a \neq b$, then *R* cannot contain both (a,b) and (b,a).

Definition (Partially Ordered Set, poset)

A set A with a partial order \sqsubseteq on A is called a **partially ordered set**, often shortened to **poset**.

Examples: Partial Orders

A partial order is reflexive, transitive, and antisymmetric.

Examples

Which of the following are partial orders on *H*?

- ► $LT = \{(a, b) \mid a \in H, b \in H, a < b\}$
- ► $LE = \{(a, b) \mid a \in H, b \in H, a \le b\}$
- $\blacktriangleright S = \{(1,2), (2,3), (3,4), (4,5)\}$
- $\blacktriangleright \{(1,1), (1,2), (2,2), (3,3), (4,4), (5,4), (5,5)\}$
- $\blacktriangleright \{(1,1), (2,2), (3,3), (4,4), (5,1), (5,2), (5,3), (5,4), (5,5)\}$

Examples: Partial Orders

A partial order is reflexive, transitive, and antisymmetric.

Examples

Which of the following are partial orders on H?

- ► $LT = \{(a, b) \mid a \in H, b \in H, a < b\}$ no, not reflexive
- ► $LE = \{(a, b) \mid a \in H, b \in H, a \le b\}$
- ► $S = \{(1,2), (2,3), (3,4), (4,5)\}$ no, not reflexive, not transitive
- $\blacktriangleright \{(1,1), (1,2), (2,2), (3,3), (4,4), (5,4), (5,5)\}$ yes!
- $\blacktriangleright \{(1,1), (2,2), (3,3), (4,4), (5,1), (5,2), (5,3), (5,4), (5,5)\}$ yes!

ves

Examples: Partial Orders

A partial order is reflexive, transitive, and antisymmetric.

Examples

Which of the following are partial orders on H?

- ► $LT = \{(a, b) \mid a \in H, b \in H, a < b\}$ no, not reflexive
- ► $LE = \{(a, b) \mid a \in H, b \in H, a \le b\}$
- ► $S = \{(1,2), (2,3), (3,4), (4,5)\}$ no, not reflexive, not transitive
- $\blacktriangleright \{(1,1), (1,2), (2,2), (3,3), (4,4), (5,4), (5,5)\}$ yes!
- $\blacktriangleright \{(1,1), (2,2), (3,3), (4,4), (5,1), (5,2), (5,3), (5,4), (5,5)\}$ yes!

Observation

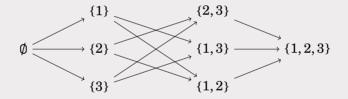
If (S, \sqsubseteq) is a finite partially ordered set, then the elements of S can be written down so that all \sqsubseteq arrows (except self-loops) go from left to right. (This is related to a concept called topological sort.)

ves

Examples: Partial Orders, the Inclusion Order

For any set A, \subseteq is a partial order on $\mathcal{P}(A)$.

For example, here's the diagram* of \subseteq on $\mathcal{P}(\{1, 2, 3\})$:



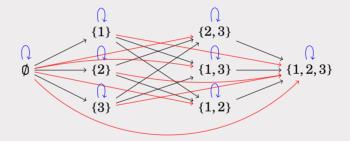
*I've left out some arrows. This is the Hasse diagram or transitive reduction of the actual partial order.

Ryan Culpepper	04 Relations	More Kinds of Relations	36

Examples: Partial Orders, the Inclusion Order

For any set A, \subseteq is a partial order on $\mathcal{P}(A)$.

For example, here's the diagram* of \subseteq on $\mathcal{P}(\{1, 2, 3\})$:



*I've left out some arrows. This is the Hasse diagram or transitive reduction of the actual partial order. Here are the rest of the arrows.

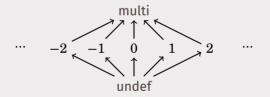
R١	/an	Cul	ne	nı	her
· ''y	un	Cui	·ΡC	PI	JCI

Examples: Partial Orders, the Flat Lattice

Here is a partial order (in fact, a lattice) on

 $\{\text{undef}, \text{multi}\} \cup \mathbb{Z}$

This lattice is useful for constant propagation in an optimizing compiler.



Usually, undef is written \bot , and multi is written \top .

Ryan Culpepper

Definition (Comparable)

Let (S, \sqsubseteq) be a partially ordered set, and let $a \in S$ and $b \in S$. Then a and b are **comparable** if either $a \sqsubseteq b$ or $b \sqsubseteq a$. Otherwise they are **incomparable**.

Examples (H, R)

Are the following comparable in $R = \{(1,1), (1,2), (2,2), (3,3), (4,4), (5,4), (5,5)\}$

- 1 and 2
- 3 and 4
- ▶ 4 and 5

Examples ($\mathcal{P}(\{1,2,3\}),\subseteq$)

Are the following comparable?

- \emptyset and $\{1, 2, 3\}$
- ▶ {1,2} and {1,3}
- ▶ {1} and {1,3}
- ▶ {2} and {3}

Definition (Comparable)

Let (S, \sqsubseteq) be a partially ordered set, and let $a \in S$ and $b \in S$. Then a and b are **comparable** if either $a \sqsubseteq b$ or $b \sqsubseteq a$. Otherwise they are **incomparable**.

Examples (H, R)

Are the following comparable in $R = \{(1,1), (1,2), (2,2), (3,3), (4,4), (5,4), (5,5)\}$

- ► 1 and 2 yes
- ► 3 and 4 no
- ► 4 and 5 yes

Examples ($\mathcal{P}(\{1,2,3\}),\subseteq$)

Are the following comparable?

- \emptyset and $\{1, 2, 3\}$
- ▶ {1,2} and {1,3}
- ▶ {1} and {1,3}
- ▶ {2} and {3}

Definition (Comparable)

Let (S, \sqsubseteq) be a partially ordered set, and let $a \in S$ and $b \in S$. Then a and b are **comparable** if either $a \sqsubseteq b$ or $b \sqsubseteq a$. Otherwise they are **incomparable**.

Examples (H, R)

Are the following comparable in $R = \{(1,1), (1,2), (2,2), (3,3), (4,4), (5,4), (5,5)\}$

- 1 and 2 yes
 3 and 4 no
- ► 4 and 5 yes

Examples ($\mathcal{P}(\{1,2,3\}), \subseteq$)

Are the following comparable?

- \emptyset and $\{1, 2, 3\}$ yes
- ► {1,2} and {1,3} no
- ► {1} and {1,3} yes
- ► {2} and {3} no

Total Orders

Total orders are a less relaxed generalization of \leq -like relations.

Definition (Total Order)

Let \sqsubseteq be a relation on S. \sqsubseteq is a **total order** (aka **linear order**) if

- \blacktriangleright \sqsubseteq is a partial order, and
- every a and b in S are comparable (by \sqsubseteq)

Then (S, \sqsubseteq) is a **totally ordered set**.

Examples

- ▶ \leq and \geq are total orders on \mathbb{R} (and on \mathbb{N} , \mathbb{Z} , \mathbb{Q} , etc)
- ▶ \subseteq on $\mathscr{P}(S)$ is a partial order but generally not a total order (When is it a total order?)

Equivalence Relations

Equivalence relations are a generalization of =-like relations.

Definition (Equivalence Relation)

Let \sim be a relation on A. It is an **equivalence relation** iff it is

- ► reflexive $\forall a \in A, a \sim a$
- ► symmetric $\forall a, b \in A, a \sim b \Rightarrow b \sim a$
- transitive

$$\forall a, b, c \in A, \ (a \sim b \land b \sim c) \Rightarrow a \sim c$$

Then if $a \sim b$, we say a and b are **equivalent** (according to).

Examples

Some equivalence relations on the natural numbers (\mathbb{N}) :

▶ =

- "have the same quotient when divided by 7"
- "have the same last digit" = "have same remainder if divided by 10"

Examples: Equivalence Relations on Strings

Some possible equivalence relations (\equiv) on strings:

- if they have both the same sequence of characters "Apple" ≠ "apple"
- if, after both strings are case-folded (roughly, letters converted to lowercase), both have the same sequence of characters

"Apple" ≡ "apple", "Straße" ≡ "strasse", "two fish" ≢ "twofish"

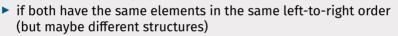
 if, after case folding and whitespace removal, both have the same sequence of characters

"Apple" ≡ "apple", "Straße" ≡ "strasse", "two fish" ≡ "twofish"

Examples: Equivalence Relations on Binary Trees

Some possible equivalence relations (\equiv) on **binary trees**:

if both have the same elements and the same tree structure



if both have the same tree structure (but maybe different elements)

$$\begin{array}{c} 4 \\ 2 \\ 3 \\ 3 \\ 5 \\ \end{array} = \begin{array}{c} 3 \\ 1 \\ 4 \\ 6 \\ \end{array} = \begin{array}{c} 3 \\ 5 \\ 1 \\ 4 \\ 6 \\ \end{array} = \begin{array}{c} 8 \\ 4 \\ 7 \\ 1 \\ 4 \\ 6 \\ \end{array}$$

Definition (Equivalence Class)

Let \sim be an equivalence relation on S, and let $a \in S$. The **equivalence class** of a (under \sim), written $[a]_{\sim}$, is the set of all elements equivalent to a:

$$a]_{\sim} = \{b \mid a \sim b\}$$

(If the relation is clear from context, we can omit the subscript and just write [a].)

Examples

- For N with the "have the same last digit" relation:
 [24] =
- For N with the "have the same quotient when divided by 7" relation: [24] =

••

Definition (Equivalence Class)

Let \sim be an equivalence relation on S, and let $a \in S$. The **equivalence class** of a (under \sim), written $[a]_{\sim}$, is the set of all elements equivalent to a:

$$a]_{\sim} = \{b \mid a \sim b\}$$

(If the relation is clear from context, we can omit the subscript and just write [a].)

Examples

- For \mathbb{N} with the "have the same last digit" relation: [24] = {4, 14, 24, 34, 44, ... } (last digit is 4)
- For \mathbb{N} with the "have the same quotient when divided by 7" relation: [24] =

••

Definition (Equivalence Class)

Let \sim be an equivalence relation on S, and let $a \in S$. The **equivalence class** of a (under \sim), written $[a]_{\sim}$, is the set of all elements equivalent to a:

$$a]_{\sim} = \{b \mid a \sim b\}$$

(If the relation is clear from context, we can omit the subscript and just write [a].)

Examples

- For \mathbb{N} with the "have the same last digit" relation: [24] = {4, 14, **24**, 34, 44, ... } (last digit is 4)
- For \mathbb{N} with the "have the same quotient when divided by 7" relation: [24] = {21, 22, 23, 24, 25, 26, 27} (quotient is 3)

Facts about Equivalence Classes

Let \sim be a equivalence relation on S. Then

- ▶ $a \in [a]$ for every $a \in S$
- $\blacktriangleright a \sim b \iff [a] = [b]$

$$\blacktriangleright a \not\sim b \iff [a] \cap [b] = \emptyset$$

• $\{[a] \mid a \in S\}$ is a partition of S

Example

The equivalence relation "ends with the same digit" partitions $\mathbb N$ into 10 equivalence classes:

```
\{\{0, 10, 20, \dots\}, \{1, 11, 21, \dots\}, \{2, 12, 32, \dots\}, \dots, \{9, 19, 29, \dots\}\}
```

- relations as sets of pairs
- digraph (directed graph) representation
- relation properties: reflexive, symmetric, antisymmetric, transitive
- relation composition (°), powers
- {reflexive,symmetric,transitive}-closure
- partial order, total order
- equivalence relation, equivalent
- equivalence classes