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Predicate Logic

Let 𝑃 be a set of people. Here are some predicates on 𝑃:

SiblingOf(𝑎, 𝑏) = “𝑎 and 𝑏 are siblings” where 𝑎, 𝑏 ∈ 𝑃
ChildOf(𝑐, 𝑝) = “𝑐 is a child of 𝑝” where 𝑐, 𝑝 ∈ 𝑃

DescendantOf(𝑎, 𝑑) = “𝑑 is a descendant of 𝑎” where 𝑎, 𝑑 ∈ 𝑃
RelatedTo(𝑎, 𝑏) = “𝑎 and 𝑏 are related (or equal)” where 𝑎, 𝑏 ∈ 𝑃

Interesting facts about these predicates:

▶ (Symmetry) If SiblingOf(𝑎, 𝑏), then SiblingOf(𝑏, 𝑎).
▶ (Transitivity) If DescendantOf(𝑎, 𝑏) and DescendantOf(𝑏, 𝑐), then

DescendantOf(𝑎, 𝑐).
▶ RelatedTo has both symmetry and transitivity.
▶ If you have ChildOf, you could generate DescendantOf. (How?)
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Predicate Logic

numbers are objects
sets are objects

predicates represent properties of objects
represent relationships between objects

??? represents properties of predicates

In first-order predicate logic, predicates are not objects.
(We can’t define predicates or functions on predicates.)

Solutions:
▶ higher-order logic (not in this class; see CS 420, CS 720)
▶ find a way to represent properties and relationships as objects
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Representing Properties and Relationships ••

Represent properties and relationships as objects — specifically, sets.
▶ Represent a property of elements of 𝐴 as a subset of 𝐴.
Examples:

Even ⊆ ℤ, Prime ⊆ ℕ

▶ Represent a relationship on elements of 𝐴 as a subset of 𝐴 × 𝐴.
Examples:

(<) ⊆ ℝ × ℝ, SiblingOf ⊆ Person × Person

▶ Represent a relationship between 𝐴 and 𝐵 as a subset of 𝐴 × 𝐵.
Examples:

ActedIn ⊆ Actors × Movies, HasLivedIn ⊆ Person × City

▶ …
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Relations
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Relations

Definition (Binary Relation)

Let 𝐴 and 𝐵 be sets.
▶ A binary relation on 𝐴 is a subset of 𝐴 × 𝐴.
▶ A binary relation from 𝐴 to 𝐵 is a subset of 𝐴 × 𝐵.

We often drop the qualifier “binary”, but there are other kinds of relations.

We use relations to model relationships between things.

Examples

Example relations on Person:
▶ is a child of
▶ is friends with
▶ is older than

Example relations from Person to City:
▶ lives in
▶ was born in
▶ has visited

Ryan Culpepper 04 Relations Relations 6



Example: Relations on People

ChildOf , SiblingOf ⊆ People × People

Andi Bill

Chris Dana EddieGina

InezJack Kat

(relations drawn as a directed graph, aka digraph)

ChildOf = {(Chris,Andi), (Chris,Bill),
(Dana,Andi), (Dana,Bill),
(Inez,Dana), (Inez, Eddie),
(Jack,Gina),
(Kat,Gina), (Kat,Chris)}

SiblingOf = {(Chris,Dana), (Dana,Chris),
(Jack,Kat), (Kat, Jack)}

DescendantOf = {(Inez,Andi), (Inez,Bill),
(Kat,Andi), (Kat,Bill)}
∪ ChildOf
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Example: Relations on Numbers

Let 𝐻 = {1, 2, 3, 4, 5}, and let 𝑆, LT, and LE be defined as follows:

𝑆 = {(1, 2), (2, 3), (3, 4), (4, 5)}
LT = {(1, 2), (1, 3), (1, 4), (1, 5),

(2, 3), (2, 4), (2, 5),
(3, 4), (3, 5),
(4, 5)}

LE = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)} ∪ LT

𝑆 represents the “successor” relation on 𝐻.
LT represents the “less than” relation on 𝐻.
LE represents “less than or equal to” relation on 𝐻.
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Example: Relation on T Stations

Alewife
Davis

Porter

Harvard
Central

Kendall/MIT
Charles/MGH

Park St.
Downtown Crossing

South Station
Broadway

Andrew
JFK/UMass

North Quincy

Wollaston
Quincy Center

Quincy Adams

Braintree

Savin Hill
Fields Corner
Shawmut

Ashmont

Let St = {Alewife,Davis, … }
Let RL ⊆ St × St be defined as follows:

RL = {(Alewife,Davis),
(Davis,Porter), (Davis,Alewife),
(Porter,Davis), (Porter,Harvard),
…
(Andrew, JFK/UMass), (Andrew,Broadway),
(JFK/UMass,Andrew), (JFK/UMass, Savin Hill),
(JFK/UMass,North Quincy),
… }

(𝑠1, 𝑠2) ∈ RL means
“can get from 𝑠1 to 𝑠2

in one step on Red Line”
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Examples: Relation from Person to City

HasLivedIn ⊆ Person × City

Alice

Bob

Carol

Devon

Esther

Francis

Person

Boston

Chicago

Las Vegas

San Diego

City

HasLivedIn =
{(Alice,Boston), (Alice,Chicago),
(Bob,Chicago),
(Carol,Chicago),
(Devon, Las Vegas),
(Esther,Chicago), (Esther, Las Vegas),
(Esther, San Diego),
(Francis, San Diego)}
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Relations vs Predicates

Relations and predicates serve the same purpose: to represent
relationships between things. Keep the formal distinction in mind:
▶ A relation is a set. It may contain some tuples and not others.
▶ A predicate is used in an open proposition, which may be true for some
values of object variables and false for others.

A relation can be defined by an open proposition using set-builder notation:

Divides = {(𝑑, 𝑛) | 𝑑 ∈ ℕ, 𝑛 ∈ ℕ, ∃𝑘 ∈ ℕ, 𝑘𝑑 = 𝑛⏟⏟⏟⏟⏟⏟⏟⏟⏟
open proposition on 𝑑, 𝑛

}
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

relation

For example, (3, 27) ∈ Divides because ∃𝑘 ∈ ℕ, 3𝑘 = 27. (𝑘 = 9 works.)
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Notation for Relations

Some relations are named by symbols.

If 𝑅 is a binary relation, it is common to write 𝑥𝑅𝑦 instead of (𝑥, 𝑦) ∈ 𝑅.

Example

< is a relation on ℝ
We typically write 3 < 5 instead of (3, 5) ∈ <.
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Properties of Relations
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Reflexivity

Definition (Reflexive)
A relation 𝑅 on a set 𝐴 is reflexive iff (𝑎, 𝑎) ∈ 𝑅 for every 𝑎 ∈ 𝐴.
That is, every element is related to itself.

Examples (Reflexive) •
Let 𝑆 = {1, 2, 3, 4}. Which of the following relations on 𝑆 is reflexive?
1. {(1, 1), (1, 2), (2, 3), (3, 3), (4, 4)}

no, missing (2, 2)

2. {(1, 1), (2, 2), (2, 3), (3, 3), (4, 1), (4, 4)}

yes

3. {(1, 1), (2, 2), (3, 3)}

no*, missing (4, 4)

Definition (Irreflexive)
A relation 𝑅 on 𝐴 is irreflexive if (𝑎, 𝑎) ∉ 𝑅 for all 𝑎 ∈ 𝑅.
That is, no element is related to itself.
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Symmetry

Definition (Symmetric)

A relation 𝑅 on a set 𝐴 is symmetric iff (𝑏, 𝑎) ∈ 𝑅 whenever (𝑎, 𝑏) ∈ 𝑅.

Examples (Symmetric) •
Let 𝑆 = {1, 2, 3, 4}. Which of the following relations is symmetric?
1. {(1, 1), (1, 2), (1, 3), (2, 1), (3, 1)}

yes

2. {(1, 2), (2, 3), (3, 4)}

no, missing (2, 1), etc

3. {(2, 2), (3, 3)}

yes

Definitions (Antisymmetric, Asymmetric)
A relation 𝑅 on 𝐴 is antisymmetric iff whenever (𝑎, 𝑏) ∈ 𝑅 and (𝑏, 𝑎) ∈ 𝑅, 𝑎 = 𝑏.
A relation 𝑅 on 𝐴 is asymmetric iff (𝑎, 𝑏) ∈ 𝑅 implies that (𝑏, 𝑎) ∉ 𝑅.
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Transitivity

Definition (Transitive)
A relation 𝑅 on 𝐴 is transitive iff (𝑎, 𝑐) ∈ 𝑅 whenever (𝑎, 𝑏) ∈ 𝑅 and (𝑏, 𝑐) ∈ 𝑅.

∀𝑎, 𝑏, 𝑐 ∈ 𝐴, (𝑎, 𝑏) ∈ 𝑅 ∧ (𝑏, 𝑐) ∈ 𝑅 ⇒ (𝑎, 𝑐) ∈ 𝑅

Examples (Transitive) •
Let 𝑆 = {1, 2, 3, 4}. Which of the following relations is transitive?
1. {(1, 1), (1, 2), (2, 2), (2, 1), (3, 3)}

yes

2. {(1, 3), (3, 2), (2, 1)}

no, missing (1, 2), etc

3. {(2, 4), (4, 3), (2, 3), (4, 1)}

no, missing (2, 1)

Transitivity means
if you can get from one point to another in two hops,
then you can also get there directly in one hop
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Example: Properties of Relations

Recall 𝐻 and its relations:

𝐻 = {1, 2, 3, 4, 5}
𝑆 = {(1, 2), (2, 3), (3, 4), (4, 5)}

LT = {(1, 2), (1, 3), (1, 4), (1, 5),
(2, 3), (2, 4), (2, 5),
(3, 4), (3, 5),
(4, 5)}

LE = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)} ∪ LT

Of the relations 𝑆, LT, and LE, which are
▶ reflexive?
▶ symmetric?
▶ transitive?
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Example: Properties of Relations

Recall the family tree example:

Andi Bill

Chris Dana EddieGina

InezJack Kat

Of ChildOf (↑), SiblingOf (↑), and DescendantOf (↑ ∪ ↑), which are
▶ reflexive?
▶ symmetric?
▶ transitive?
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Operations on Relations
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Set Operations on Relations

Relations are sets, so we can apply set operations to them.

Suppose 𝐴 and 𝐵 are sets, and 𝑅 ⊆ 𝐴 × 𝐵 and 𝑆 ⊆ 𝐴 × 𝐵.
▶ 𝑅 ∪ 𝑆 relates 𝑎 to 𝑏 if either 𝑅 or 𝑆 relates them.
▶ 𝑅 ∩ 𝑆 relates 𝑎 to 𝑏 if both 𝑅 and 𝑆 relate them.
▶ 𝑅 − 𝑆 relates 𝑎 to 𝑏 if 𝑅 relates them and 𝑆 does not.

That is:

𝑅 ∪ 𝑆 = {(𝑎, 𝑏) ∣ (𝑎, 𝑏) ∈ 𝑅 ∨ (𝑎, 𝑏) ∈ 𝑆}
𝑅 ∩ 𝑆 = {(𝑎, 𝑏) ∣ (𝑎, 𝑏) ∈ 𝑅 ∧ (𝑎, 𝑏) ∈ 𝑆}
𝑅 − 𝑆 = {(𝑎, 𝑏) ∣ (𝑎, 𝑏) ∈ 𝑅 ∧ (𝑎, 𝑏) ∉ 𝑆}

(It is uncommon to take a Cartesian product (×) or power set (𝒫) of a relation.)
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Example: Set Operations on the Red Line

Alewife
Davis

Porter

Harvard
Central

Kendall/MIT
Charles/MGH

Park St.
Downtown Crossing

South Station
Broadway

Andrew
JFK/UMass

North Quincy

Wollaston
Quincy Center

Quincy Adams

Braintree

Savin Hill
Fields Corner
Shawmut

Ashmont

RL ⊆ St × St is “one step on the Red Line”.

Let St′ = {South Station,Broadway,Andrew}.
RL ∩ (St′ × St′) represents the Red Line restricted to
those stations.

Suppose GL ⊆ St × St represents the “one step”
relation for the Green Line.
RL ∪ GL represents “reachable in one step using
either the Red or Green Line”.

Suppose BL ⊆ St × St and OL ⊆ St × St represent the
“one step” relations for the Blue and Orange Lines,
respectively.
Let 𝑇 ⊆ St × St be 𝑇 = RL ∪ GL ∪ BL ∪ OL.
𝑇 means “reachable in one step using the subway”.
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Composing Relations

Definition (Composite)

Let 𝑅 ⊆ 𝐴 × 𝐵 and 𝑆 ⊆ 𝐵 × 𝐶. The composite of 𝑅 and 𝑆, written 𝑆 ∘ 𝑅, is
defined as {(𝑎, 𝑐) ∣ (𝑎, 𝑏) ∈ 𝑅, (𝑏, 𝑐) ∈ 𝑆}. That is,

∀𝑎 ∈ 𝐴, ∀𝑐 ∈ 𝐶, [(𝑎, 𝑐) ∈ 𝑆 ∘ 𝑅 ⟺ ∃𝑏 ∈ 𝐵, (𝑎, 𝑏) ∈ 𝑅 ∧ (𝑏, 𝑐) ∈ 𝑆]

If you can get from 𝑎 to 𝑏 by 𝑅,
and you can get from 𝑏 to 𝑐 by 𝑆,
then you can get from 𝑎 to 𝑐 by 𝑆 ∘ 𝑅.

𝑆 ∘ 𝑅 means “𝑅 first, then 𝑆”
Be careful of the order. The notation follows function composition notation,
where (𝑔 ∘ 𝑓 )(𝑥) = 𝑔(𝑓 (𝑥)).
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Example: Composing Relations

HasLivedIn ∘ IsFriendsWith

IsFriendsWith HasLivedIn

Alice

Bob

Carol

Devon

Esther

Francis

Person

Alice

Bob

Carol

Devon

Esther

Francis

Person

Boston

Chicago

Las Vegas

San Diego

City

= {(Alice,Chicago),
(Esther,Chicago),
(Esther, San Diego)}

Note that Bob, Carol, and
Francis are not part of the
result!
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Powers of Relations

Definition (Powers of a Relation)
Let 𝐴 be a set, and 𝑅 ⊆ 𝐴 × 𝐴. The powers of 𝑅 are defined as follows:
▶ 𝑅1 = 𝑅
▶ 𝑅𝑛+1 = 𝑅𝑛 ∘ 𝑅

That is, 𝑅𝑛 = 𝑅 ∘ 𝑅 ∘ … ∘ 𝑅⏟⏟⏟⏟⏟⏟⏟
𝑛 times

.
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Example: Composition & Powers, Numbers

Recall 𝐻 = {1, 2, 3, 4, 5}. We have

𝑆 = {(1, 2), (2, 3), (3, 4), (4, 5)}
𝑆2 = 𝑆 ∘ 𝑆 = {(1, 3), (2, 4), (3, 5)}

𝑆3 = 𝑆2 ∘ 𝑆 = {(1, 4), (2, 5)}
𝑆4 = 𝑆3 ∘ 𝑆 = {(1, 5)}
𝑆5 = 𝑆4 ∘ 𝑆 = ∅

LT = 𝑆 ∪ 𝑆2 ∪ 𝑆3 ∪ 𝑆4

What properties does LT have, again?
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Example: Composition & Powers, the Red Line

Alewife
Davis

Porter

Harvard
Central

Kendall/MIT
Charles/MGH

Park St.
Downtown Crossing

South Station
Broadway

Andrew
JFK/UMass

North Quincy

Wollaston
Quincy Center

Quincy Adams

Braintree

Savin Hill
Fields Corner
Shawmut

Ashmont

RL is “reachable in one step using the Red Line”, etc.
Let 𝑇 ⊆ 𝑆 = RL ∪ GL ∪ BL ∪ OL.
𝑇 means “reachable in one step using the subway”.

GL ∘ RL means “reachable by riding one step on the
Red Line, then one step on the Green Line”.

RL2 = RL ∘ RL means “reachable by riding exactly
two stops on the Red Line”.
𝑇2 = 𝑇 ∘ 𝑇 means “reachable by riding exactly two
stops on the subway”.
𝑇 ∪ 𝑇2 means “reachable by riding one or two stops
on the subway”.
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Composition and Transitivity

Theorem
Let 𝑅 be a relation on 𝐴. 𝑅 is transitive iff 𝑅𝑛 ⊆ 𝑅 for all 𝑛 ∈ ℤ+.
Actually, it’s even simpler: 𝑅 is transitive iff 𝑅2 ⊆ 𝑅.

Recall: 𝑅 is transitive iff whenever 𝑅 contains (𝑎, 𝑏) and (𝑏, 𝑐) it also
contains (𝑎, 𝑐). Those (𝑎, 𝑐) pairs are exactly what 𝑅2 = 𝑅 ∘ 𝑅 computes.

Observation
Let 𝑅 be a relation on 𝐴. Even if 𝑅 is not already transitive, we can create a
transitive relation by taking

𝑅+ = 𝑅 ∪ 𝑅2 ∪ 𝑅3 ∪ 𝑅4 ∪ ⋯ =
∞
⋃

𝑛=1
𝑅𝑛

𝑅+ is called the transitive closure of 𝑅.
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Closures of Relations

Definitions
Let 𝑅 be a relation on 𝐴. That is, 𝑅 ⊆ 𝐴 × 𝐴. Then
▶ the reflexive closure of 𝑅 (wrt 𝐴) is the smallest relation 𝑅′

such that 𝑅 ⊆ 𝑅′ and 𝑅′ is reflexive (wrt 𝐴)
▶ the symmetric closure of 𝑅 is the smallest relation 𝑅′

such that 𝑅 ⊆ 𝑅′ and 𝑅′ is symmetric
▶ the transitive closure of 𝑅 is the smallest relation 𝑅′

such that 𝑅 ⊆ 𝑅′ and 𝑅′ is transitive
▶ the reflexive-reflexive closure of 𝑅 is the smallest relation 𝑅′

such that 𝑅 ⊆ 𝑅′ and 𝑅′ is reflexive (wrt A) and transitive
▶ …
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Examples: Closures

Relations on ℝ:
▶ the reflexive closure of < (wrt ℝ) is ≤
▶ the symmetric closure of < is ≠
▶ the transitive closure of < is <, because < is already transitive
▶ the transitive closure of ≤ is ≤, because ≤ is already transitive

Recall: 𝐻 = {1, 2, 3, 4, 5}, and 𝑆 = {(1, 2), (2, 3), (3, 4), (4, 5)}.
▶ the transitive closure of 𝑆 is LT
▶ the reflexive closure of LT (wrt 𝐻) is LE
▶ the reflexive-transitive closure of 𝑆 is LE
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Examples: Closures (on the Red Line)

Recall RL ⊆ St × St, meaning “reachable in one step on the Red Line”.
▶ the reflexive closure of RL is

RL ∪ {(𝑠, 𝑠) ∣ 𝑠 ∈ St}, meaning “reachable in zero or one steps”
▶ the symmetric closure of RL is

RL, because RL is already symmetric
▶ the transitive closure of RL is

RL+ = ⋃∞
𝑘=1 RL𝑘, meaning “reachable in one or more steps”

▶ the reflexive-transitive closure of RL is
RL∗ = RL+ ∪ {(𝑠, 𝑠) ∣ 𝑠 ∈ RL}, “reachable in zero or more steps”
In fact, RL∗ = RL+, because RL+ is already reflexive. (Why?)

The transitive closure of “can get there in one step”
is “can get there in one or more steps”.
The reflexive-transitive closure of “can get there in one step”
is “can get there in zero or more steps”.
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Calculating Closures

Let 𝑅 be a relation on 𝐴.

▶ The reflexive closure of 𝑅 is

𝑅 ∪ {(𝑎, 𝑎) ∣ 𝑎 ∈ 𝐴}

▶ The symmetric closure of 𝑅 is

𝑅 ∪ {(𝑏, 𝑎) ∣ (𝑎, 𝑏) ∈ 𝑅}

▶ The transitive closure of 𝑅 is

𝑅 ∪ 𝑅2 ∪ 𝑅3 ∪ ⋯ =
∞
⋃

𝑛=1
𝑅𝑛
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Transitive Closure of a Directed Graph

If you think of a relation 𝑅 as a directed graph, it is transitive if
▶ for every path from 𝑎 to 𝑏 containing two or more edges,
there is an edge directly connecting 𝑎 and 𝑏

To compute the transitive closure of 𝑅:
1. start with the graph of 𝑅
2. while there is a path from 𝑎 to 𝑏 with two edges
but no edge from 𝑎 to 𝑏
add an edge from 𝑎 to 𝑏
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More Kinds of Relations
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Partial Orders

Partial orders are a relaxed generalization of ≤-like relations.

Definition (Partial Order, Partial Ordering)

Let ⊑ be a relation on 𝐴. ⊑ is a partial order (aka, partial ordering) if it is
▶ reflexive, ∀𝑎 ∈ 𝐴, 𝑎 ⊑ 𝑎
▶ transitive, ∀𝑎, 𝑏, 𝑐 ∈ 𝐴, (𝑎 ⊑ 𝑏 ∧ 𝑏 ⊑ 𝑐) ⇒ 𝑎 ⊑ 𝑐
▶ and antisymmetric ∀𝑎, 𝑏 ∈ 𝐴, (𝑎 ⊑ 𝑏 ∧ 𝑏 ⊑ 𝑎) ⇒ 𝑎 = 𝑏

Recall: 𝑅 is antisymmetric if it doesn’t contain any “mirrored pairs”.
That is, if 𝑎 ≠ 𝑏, then 𝑅 cannot contain both (𝑎, 𝑏) and (𝑏, 𝑎).

Definition (Partially Ordered Set, poset)

A set 𝐴 with a partial order ⊑ on 𝐴 is called a partially ordered set, often
shortened to poset.
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Examples: Partial Orders
A partial order is reflexive, transitive, and antisymmetric.

Examples

Which of the following are partial orders on 𝐻?
▶ 𝐿𝑇 = {(𝑎, 𝑏) ∣ 𝑎 ∈ 𝐻, 𝑏 ∈ 𝐻, 𝑎 < 𝑏}

no, not reflexive

▶ 𝐿𝐸 = {(𝑎, 𝑏) ∣ 𝑎 ∈ 𝐻, 𝑏 ∈ 𝐻, 𝑎 ≤ 𝑏}

yes

▶ 𝑆 = {(1, 2), (2, 3), (3, 4), (4, 5)}

no, not reflexive, not transitive

▶ {(1, 1), (1, 2), (2, 2), (3, 3), (4, 4), (5, 4), (5, 5)}

yes!

▶ {(1, 1), (2, 2), (3, 3), (4, 4), (5, 1), (5, 2), (5, 3), (5, 4), (5, 5)}

yes!

Observation
If (𝑆, ⊑) is a finite partially ordered set, then the elements of 𝑆 can be
written down so that all ⊑ arrows (except self-loops) go from left to right.
(This is related to a concept called topological sort.)
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Examples: Partial Orders
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Examples
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Observation
If (𝑆, ⊑) is a finite partially ordered set, then the elements of 𝑆 can be
written down so that all ⊑ arrows (except self-loops) go from left to right.
(This is related to a concept called topological sort.)
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Examples: Partial Orders, the Inclusion Order

For any set 𝐴, ⊆ is a partial order on 𝒫(𝐴).
For example, here’s the diagram* of ⊆ on 𝒫({1, 2, 3}):

∅

{1}

{2}

{3}

{2, 3}

{1, 3}

{1, 2}

{1, 2, 3}

*I’ve left out some arrows. This is the Hasse diagram or transitive reduction
of the actual partial order.

Here are the rest of the arrows.
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For any set 𝐴, ⊆ is a partial order on 𝒫(𝐴).
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{1}
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*I’ve left out some arrows. This is the Hasse diagram or transitive reduction
of the actual partial order. Here are the rest of the arrows.
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Examples: Partial Orders, the Flat Lattice

Here is a partial order (in fact, a lattice) on

{undef,multi} ∪ ℤ

This lattice is useful for constant propagation in an optimizing compiler.

undef

multi

0−1 1−2 2⋯ ⋯

Usually, undef is written ⊥, and multi is written ⊤.

Ryan Culpepper 04 Relations More Kinds of Relations 37



Comparable

Definition (Comparable)

Let (𝑆, ⊑) be a partially ordered set, and let 𝑎 ∈ 𝑆 and 𝑏 ∈ 𝑆.
Then 𝑎 and 𝑏 are comparable if either 𝑎 ⊑ 𝑏 or 𝑏 ⊑ 𝑎.
Otherwise they are incomparable.

Examples (𝐻, 𝑅)
Are the following comparable in

𝑅 = {(1, 1), (1, 2), (2, 2), (3, 3),
(4, 4), (5, 4), (5, 5)}

▶ 1 and 2

yes

▶ 3 and 4

no

▶ 4 and 5

yes

Examples (𝒫({1, 2, 3}), ⊆)
Are the following comparable?
▶ ∅ and {1, 2, 3}

yes

▶ {1, 2} and {1, 3}

no

▶ {1} and {1, 3}

yes

▶ {2} and {3}

no
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Comparable

Definition (Comparable)

Let (𝑆, ⊑) be a partially ordered set, and let 𝑎 ∈ 𝑆 and 𝑏 ∈ 𝑆.
Then 𝑎 and 𝑏 are comparable if either 𝑎 ⊑ 𝑏 or 𝑏 ⊑ 𝑎.
Otherwise they are incomparable.

Examples (𝐻, 𝑅)
Are the following comparable in

𝑅 = {(1, 1), (1, 2), (2, 2), (3, 3),
(4, 4), (5, 4), (5, 5)}

▶ 1 and 2 yes
▶ 3 and 4 no
▶ 4 and 5 yes

Examples (𝒫({1, 2, 3}), ⊆)
Are the following comparable?
▶ ∅ and {1, 2, 3} yes
▶ {1, 2} and {1, 3} no
▶ {1} and {1, 3} yes
▶ {2} and {3} no
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Total Orders

Total orders are a less relaxed generalization of ≤-like relations.

Definition (Total Order)
Let ⊑ be a relation on 𝑆. ⊑ is a total order (aka linear order) if
▶ ⊑ is a partial order, and
▶ every 𝑎 and 𝑏 in 𝑆 are comparable (by ⊑)

Then (𝑆, ⊑) is a totally ordered set.

Examples

▶ ≤ and ≥ are total orders on ℝ (and on ℕ, ℤ, ℚ, etc)
▶ ⊆ on 𝒫(𝑆) is a partial order but generally not a total order
(When is it a total order?)
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Equivalence Relations
Equivalence relations are a generalization of =-like relations.

Definition (Equivalence Relation)

Let ∼ be a relation on 𝐴. It is an equivalence relation iff it is
▶ reflexive ∀𝑎 ∈ 𝐴, 𝑎 ∼ 𝑎
▶ symmetric ∀𝑎, 𝑏 ∈ 𝐴, 𝑎 ∼ 𝑏 ⇒ 𝑏 ∼ 𝑎
▶ transitive ∀𝑎, 𝑏, 𝑐 ∈ 𝐴, (𝑎 ∼ 𝑏 ∧ 𝑏 ∼ 𝑐) ⇒ 𝑎 ∼ 𝑐

Then if 𝑎 ∼ 𝑏, we say 𝑎 and 𝑏 are equivalent (according to ).

Examples

Some equivalence relations on the natural numbers (ℕ):
▶ =
▶ “have the same quotient when divided by 7”
▶ “have the same last digit” = “have same remainder if divided by 10”
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Examples: Equivalence Relations on Strings

Some possible equivalence relations (≡) on strings:
▶ if they have both the same sequence of characters

"Apple" ≢ "apple"
▶ if, after both strings are case-folded (roughly, letters converted to
lowercase), both have the same sequence of characters
"Apple" ≡ "apple", "Straße" ≡ "strasse", "two fish" ≢ "twofish"

▶ if, after case folding and whitespace removal, both have the same
sequence of characters
"Apple" ≡ "apple", "Straße" ≡ "strasse", "two fish" ≡ "twofish"
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Examples: Equivalence Relations on Binary Trees

Some possible equivalence relations (≡) on binary trees:
▶ if both have the same elements and the same tree structure

4

2

1 3

6

5

≢
3

2

1

5

4 6

▶ if both have the same elements in the same left-to-right order
(but maybe different structures)

4

2

1 3

6

5

≡
3

2

1

5

4 6

≢
8

4

2

7

1 5

▶ if both have the same tree structure (but maybe different elements)
4

2

1 3

6

5

≢
3

2

1

5

4 6

≡
8

4

2

7

1 5
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Equivalence Classes

Definition (Equivalence Class)

Let ∼ be an equivalence relation on 𝑆, and let 𝑎 ∈ 𝑆.
The equivalence class of 𝑎 (under ∼), written [𝑎]∼, is the set of all elements
equivalent to 𝑎:

[𝑎]∼ = {𝑏 ∣ 𝑎 ∼ 𝑏}

(If the relation is clear from context, we can omit the subscript and just write [𝑎].)

Examples ••

▶ For ℕ with the “have the same last digit” relation:
[24] =

{4, 14, 24, 34, 44, … } (last digit is 4)

▶ For ℕ with the “have the same quotient when divided by 7” relation:
[24] =

{21, 22, 23, 24, 25, 26, 27} (quotient is 3)
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Equivalence Classes

Facts about Equivalence Classes

Let ∼ be a equivalence relation on 𝑆. Then
▶ 𝑎 ∈ [𝑎] for every 𝑎 ∈ 𝑆
▶ 𝑎 ∼ 𝑏 ⟺ [𝑎] = [𝑏]
▶ 𝑎 ≁ 𝑏 ⟺ [𝑎] ∩ [𝑏] = ∅
▶ {[𝑎] ∣ 𝑎 ∈ 𝑆} is a partition of 𝑆

Example
The equivalence relation “ends with the same digit” partitions ℕ into 10
equivalence classes:

{{0, 10, 20, … } , {1, 11, 21, … } , {2, 12, 32, … } , … , {9, 19, 29, … }}
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Topic List

▶ relations as sets of pairs
▶ digraph (directed graph) representation
▶ relation properties: reflexive, symmetric, antisymmetric, transitive
▶ relation composition (∘), powers
▶ {reflexive,symmetric,transitive}-closure
▶ partial order, total order
▶ equivalence relation, equivalent
▶ equivalence classes
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