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Functions

Definition (Function)
Let 𝐴 and 𝐵 be sets. A function (or total function) from 𝐴 to 𝐵 is a relation
where each element of 𝐴 is related to exactly one element of 𝐵.
We write 𝑓 ∶ 𝐴 → 𝐵 to indicate that 𝑓 is a function from 𝐴 to 𝐵.
If (𝑎, 𝑏) ∈ 𝑓, then we say 𝑓 (𝑎) = 𝑏.

Definitions (Domain, Codomain)
Let 𝑓 ∶ 𝐴 → 𝐵.
▶ 𝐴 is called the domain of 𝑓. It is the set of arguments (inputs).
▶ 𝐵 is called the codomain of 𝑓. It is the set of results (outputs).

We say 𝑓 maps 𝐴 to 𝐵.
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Range

Definition (Range)

Let 𝑓 ∶ 𝐴 → 𝐵. The range of 𝑓 is the set {𝑓 (𝑎) ∣ 𝑎 ∈ 𝐴}.
That is, the range of 𝑓 is all the outputs that 𝑓 actually produces.

Examples •
What is the range of each of the following ℝ → ℝ functions?
▶ 𝑓1(𝑥) = 2𝑥 − 3

ℝ

▶ 𝑓2(𝑥) = 𝑥2 + 1

[1, ∞)

▶ 𝑓3(𝑥) = sin(𝑥)

[−1, 1]

▶ 𝑓4(𝑥) = 𝑒𝑥

(0, ∞)
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Range

Definition (Range)

Let 𝑓 ∶ 𝐴 → 𝐵. The range of 𝑓 is the set {𝑓 (𝑎) ∣ 𝑎 ∈ 𝐴}.
That is, the range of 𝑓 is all the outputs that 𝑓 actually produces.

Examples •
What is the range of each of the following ℝ → ℝ functions?
▶ 𝑓1(𝑥) = 2𝑥 − 3 ℝ
▶ 𝑓2(𝑥) = 𝑥2 + 1 [1, ∞)
▶ 𝑓3(𝑥) = sin(𝑥) [−1, 1]
▶ 𝑓4(𝑥) = 𝑒𝑥 (0, ∞)
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Equality of Functions

Equality

Let 𝑓 , 𝑔 ∶ 𝐴 → 𝐵. Then 𝑓 is equal to 𝑔 (as functions) if 𝑓 = 𝑔 (as sets).
That means that 𝑓 (𝑎) = 𝑔(𝑎) for all 𝑎 ∈ 𝐴.

Examples

𝑓1(𝑥) = 2𝑥 𝑔1(𝑥) = 𝑥2 + 6𝑥 + 9
𝑓2(𝑥) = 𝑥 + 𝑥 𝑔2(𝑥) = (𝑥 + 3)2

This notion of equality is called extensional equality.
(In contrast, intensional equality means “defined the same way”, roughly.)
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Properties of Functions
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Injective (“one-to-one”) Functions

Definition (Injective)

Let 𝑓 ∶ 𝐴 → 𝐵. Then 𝑓 is injective (or “one-to-one”) if 𝑓 maps different
arguments to different results. That is:

𝑓 is injective ⟺ ∀𝑎, 𝑎′ ∈ 𝐴, 𝑎 ≠ 𝑎′ ⇒ 𝑓 (𝑎) ≠ 𝑓 (𝑎′)

Examples •
Consider the following ℝ → ℝ functions:
▶ 𝑓1(𝑥) = 2𝑥 − 3

injective

▶ 𝑓2(𝑥) = 𝑥2 + 1

not injective, 𝑓 (1) = 𝑓 (−1) = 2

▶ 𝑓3(𝑥) = sin(𝑥)

not injective, 𝑓 (0) = 𝑓 (2𝜋) = 0

▶ 𝑓4(𝑥) = 𝑒𝑥

injective
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Injective (“one-to-one”) Functions

Definition (Injective)

Let 𝑓 ∶ 𝐴 → 𝐵. Then 𝑓 is injective (or “one-to-one”) if 𝑓 maps different
arguments to different results. That is:

𝑓 is injective ⟺ ∀𝑎, 𝑎′ ∈ 𝐴, 𝑎 ≠ 𝑎′ ⇒ 𝑓 (𝑎) ≠ 𝑓 (𝑎′)

Examples •
Consider the following ℝ → ℝ functions:
▶ 𝑓1(𝑥) = 2𝑥 − 3 injective
▶ 𝑓2(𝑥) = 𝑥2 + 1 not injective, 𝑓 (1) = 𝑓 (−1) = 2
▶ 𝑓3(𝑥) = sin(𝑥) not injective, 𝑓 (0) = 𝑓 (2𝜋) = 0
▶ 𝑓4(𝑥) = 𝑒𝑥 injective
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Surjective (“onto”) Functions

Definition (Surjective)

Let 𝑓 ∶ 𝐴 → 𝐵. Then 𝑓 is surjective (or “onto”) if the set of 𝑓’s results covers
all of 𝐵. That is:

𝑓 is surjective ⟺ ∀𝑏 ∈ 𝐵, ∃𝑎 ∈ 𝐴, 𝑓 (𝑎) = 𝑏

A function is surjective if its range is equal to its codomain.

Examples •
Consider the following ℝ → ℝ functions:
▶ 𝑓1(𝑥) = 2𝑥 − 3

surjective, range is ℝ

▶ 𝑓2(𝑥) = 𝑥2 + 1

not surjective, range is [−1, ∞)

▶ 𝑓3(𝑥) = sin(𝑥)

not surjective, range is [−1, 1]

▶ 𝑓4(𝑥) = 𝑒𝑥

not surjective, range is (0, ∞)
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Surjective (“onto”) Functions

Definition (Surjective)

Let 𝑓 ∶ 𝐴 → 𝐵. Then 𝑓 is surjective (or “onto”) if the set of 𝑓’s results covers
all of 𝐵. That is:

𝑓 is surjective ⟺ ∀𝑏 ∈ 𝐵, ∃𝑎 ∈ 𝐴, 𝑓 (𝑎) = 𝑏

A function is surjective if its range is equal to its codomain.

Examples •
Consider the following ℝ → ℝ functions:
▶ 𝑓1(𝑥) = 2𝑥 − 3 surjective, range is ℝ
▶ 𝑓2(𝑥) = 𝑥2 + 1 not surjective, range is [−1, ∞)
▶ 𝑓3(𝑥) = sin(𝑥) not surjective, range is [−1, 1]
▶ 𝑓4(𝑥) = 𝑒𝑥 not surjective, range is (0, ∞)
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Bijective Functions

Definition (Bijective)

Let 𝑓 ∶ 𝐴 → 𝐵. Then 𝑓 is bijective iff it is both injective and surjective.
That is, each element in 𝐴 is matched with exactly one element in 𝐵,
and vice versa.
A bijection is also called a one-to-one correspondence (!).

Examples •
Consider the following ℝ → ℝ functions:
▶ 𝑓1(𝑥) = 2𝑥 − 3

bijective

▶ 𝑓2(𝑥) = 𝑥2 + 1

not bijective (neither injective nor surjective)

▶ 𝑓3(𝑥) = sin(𝑥)

not bijective (neither injective nor surjective)

▶ 𝑓4(𝑥) = 𝑒𝑥

not bijective (not surjective)
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Bijective Functions

Definition (Bijective)

Let 𝑓 ∶ 𝐴 → 𝐵. Then 𝑓 is bijective iff it is both injective and surjective.
That is, each element in 𝐴 is matched with exactly one element in 𝐵,
and vice versa.
A bijection is also called a one-to-one correspondence (!).

Examples •
Consider the following ℝ → ℝ functions:
▶ 𝑓1(𝑥) = 2𝑥 − 3 bijective
▶ 𝑓2(𝑥) = 𝑥2 + 1 not bijective (neither injective nor surjective)
▶ 𝑓3(𝑥) = sin(𝑥) not bijective (neither injective nor surjective)
▶ 𝑓4(𝑥) = 𝑒𝑥 not bijective (not surjective)
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Exercise: Classify Functions •

Which of the following ℤ → ℤ functions are injective? surjective? bijective?
▶ 𝑓 (𝑛) = 2𝑛 + 1

injective, ¬surjective, ¬bijective

▶ 𝑔(𝑛) = 𝑛2 − 1

¬injective, ¬surjective, ¬bijective

▶ ℎ(𝑛) = 5 − 𝑛

injective, surjective, bijective

Which of the following 𝐻 → 𝐻 functions are injective? surjective? bijective?
(Recall 𝐻 = {1, 2, 3, 4, 5}.)
▶ 𝑝 = {(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)}

injective, surjective, bijective

▶ 𝑞 = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)}

injective, surjective, bijective

▶ 𝑟 = {(1, 1), (2, 3), (3, 3), (4, 3), (5, 5)}

¬injective, ¬surjective, ¬bijective
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Exercise: Classify Functions •

Which of the following ℤ → ℤ functions are injective? surjective? bijective?
▶ 𝑓 (𝑛) = 2𝑛 + 1 injective, ¬surjective, ¬bijective
▶ 𝑔(𝑛) = 𝑛2 − 1 ¬injective, ¬surjective, ¬bijective
▶ ℎ(𝑛) = 5 − 𝑛 injective, surjective, bijective

Which of the following 𝐻 → 𝐻 functions are injective? surjective? bijective?
(Recall 𝐻 = {1, 2, 3, 4, 5}.)
▶ 𝑝 = {(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)}

injective, surjective, bijective

▶ 𝑞 = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)}

injective, surjective, bijective

▶ 𝑟 = {(1, 1), (2, 3), (3, 3), (4, 3), (5, 5)}

¬injective, ¬surjective, ¬bijective
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Exercise: Classify Functions •

Which of the following ℤ → ℤ functions are injective? surjective? bijective?
▶ 𝑓 (𝑛) = 2𝑛 + 1 injective, ¬surjective, ¬bijective
▶ 𝑔(𝑛) = 𝑛2 − 1 ¬injective, ¬surjective, ¬bijective
▶ ℎ(𝑛) = 5 − 𝑛 injective, surjective, bijective

Which of the following 𝐻 → 𝐻 functions are injective? surjective? bijective?
(Recall 𝐻 = {1, 2, 3, 4, 5}.)
▶ 𝑝 = {(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)} injective, surjective, bijective
▶ 𝑞 = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)} injective, surjective, bijective
▶ 𝑟 = {(1, 1), (2, 3), (3, 3), (4, 3), (5, 5)} ¬injective, ¬surjective, ¬bijective
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Functions and the Cardinality of Sets ••
Let 𝐻 = {1, 2, 3, 4, 5} and let 𝐵 = {0, 1}.

▶ Is there a bijective function 𝐻 → 𝐵?

No. We can’t match them up one-to-one.
▶ Is there an injective function 𝐻 → 𝐵?
No, we “run out” of 𝐵 first.

▶ Is there a surjective function 𝐻 → 𝐵?
Yes, there are several.

Observation
Let 𝐴, 𝐵 be finite sets. Then
▶ There is a bijective function 𝐴 → 𝐵 iff ∣𝐴∣ = |𝐵|.
▶ There is an injective function 𝐴 → 𝐵 iff ∣𝐴∣ ≤ |𝐵|.
▶ There is a surjective function 𝐴 → 𝐵 iff ∣𝐴∣ ≥ |𝐵|.
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Functions and the Cardinality of Sets ••
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Functions and the Cardinality of Sets

Definition (Cardinality)

∣𝐴∣ ≤ |𝐵| ⟺ there is some injective function 𝐴 → 𝐵
∣𝐴∣ = |𝐵| ⟺ there is some bijective function 𝐴 → 𝐵
∣𝐴∣ > |𝐵| ⟺ there is no injective function 𝐴 → 𝐵

Definition (Countable)
A set is countable if it has the same cardinality as ℕ.
That is, a set is countable if there is a bijection from it to ℕ.

Definition (Uncountable)
A set is uncountable if its cardinality is larger than that of ℕ.
That is, a set if uncountable if there is no injection from it to ℕ.
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Functions on Totally Ordered Sets

Definitions (Strictly Increasing, Strictly Decreasing)

Let 𝑓 ∶ ℝ → ℝ.
▶ 𝑓 is called strictly increasing if

∀𝑥, 𝑥′ ∈ ℝ, 𝑥 < 𝑥′ ⇒ 𝑓 (𝑥) < 𝑓 (𝑥′)

▶ 𝑓 is called strictly decreasing if

∀𝑥, 𝑥′ ∈ ℝ, 𝑥 < 𝑥′ ⇒ 𝑓 (𝑥) > 𝑓 (𝑥′)

All strictly increasing and strictly decreasing functions are injective.

The definitions generalize to any functions from a totally ordered set to
another totally ordered set.
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Functions on Partially Ordered Sets

Definition (Monotone, Monotonic)
Let 𝑓 ∶ 𝐴 → 𝐵. Let ⊑𝐴 be a partial order on 𝐴 and ⊑𝐵 be a partial order on
𝐵. Then 𝑓 is called monotone or monotonic or monotone non-decreasing if

∀𝑎, 𝑎′ ∈ 𝐴, 𝑎 ⊑𝐴 𝑎′ ⇒ 𝑓 (𝑎) ⊑𝐵 𝑓 (𝑎′)

Example (Application)
Optimizing compilers use the monotone
data flow analysis framework, which
expresses analyses using monotone
functions. More precise inputs lead to
more precise outputs, and each analysis
step can make progress, but it cannot
change its mind.

undef

multi

0−1 1−2 2⋯ ⋯
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Partial Functions

Definition (Partial Function, Total Function)

▶ A partial function is a relation from 𝐴 to 𝐵 where each element of 𝐴 is related
to at most one element of 𝐵. That is, there may be elements of the domain for
which the partial function is undefined.

▶ A total function is a relation from 𝐴 to 𝐵 where each element of 𝐴 is related to
exactly one element of 𝐵. That is, a total function is defined everywhere on its
domain. Every total function is also a partial function.

Examples

▶ 𝑓 (𝑥) = 1
𝑥+1 is a partial function on ℝ → ℝ; it is not total

▶ ℎ = {(2𝑛, 𝑛) ∣ 𝑛 ∈ ℕ} is a partial function on ℕ → ℕ; it is not total

In math, “function” may mean partial or total function, depending on context.
In this class, “function” means total function.
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Operations on Functions
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Function Composition

Definition (Composition)

Let 𝑓 ∶ 𝐴 → 𝐵 and 𝑔 ∶ 𝐵 → 𝐶. The (function) composition of 𝑓 with 𝑔 is
written 𝑔 ∘ 𝑓, and it is defined as

(𝑔 ∘ 𝑓 )(𝑎) = 𝑔(𝑓 (𝑎))

(Function composition is just relation composition on relations that are functions.)

Example

Suppose we have 𝑓 , 𝑔 ∶ ℝ → ℝ defined as follows:

𝑓 (𝑥) = 2𝑥 − 1 𝑔(𝑥) = 𝑥2 + 4

Then we can calculate (𝑔 ∘ 𝑓 )(𝑥) as follows:

(𝑔 ∘ 𝑓 )(𝑥) = 𝑔(𝑓 (𝑥)) = 𝑔(2𝑥 − 1) = (2𝑥 − 1)2 + 4 = 4𝑥2 − 4𝑥 + 5
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Image and Pre-Image

Definition (Image)

Let 𝑓 ∶ 𝐴 → 𝐵, and let 𝑋 ⊆ 𝐴.
The image of 𝑋 under 𝑓, written 𝑓 (𝑋), is

𝑓 (𝑋) = {𝑓 (𝑥) ∣ 𝑥 ∈ 𝑋}

That is, the image of 𝑋 is the set of all outputs produced by some input from 𝑋.

Definition (Pre-Image)

Let 𝑓 ∶ 𝐴 → 𝐵, and let 𝑌 ⊆ 𝐵.
The pre-image of 𝑌 under 𝑓, written 𝑓 −1(𝑌), is

𝑓 −1(𝑌) = {𝑥 ∣ 𝑥 ∈ 𝐴, 𝑓 (𝑥) ∈ 𝑌}

That is, the pre-image of 𝑌 is the set of all inputs that produce some output in 𝑌.
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Image and Pre-Image

Recall: If 𝑓 ∶ 𝐴 → 𝐵, and 𝑋 ⊆ 𝐴 and 𝑌 ⊆ 𝐵, then

𝑓 (𝑋) = {𝑓 (𝑥) ∣ 𝑥 ∈ 𝑋} all outputs from inputs from 𝑋

𝑓 −1(𝑌) = {𝑥 ∣ 𝑥 ∈ 𝐴, 𝑓 (𝑥) ∈ 𝑌} all inputs that produce outputs in 𝑌

Examples •
Suppose 𝑓 ∶ ℝ → ℝ is defined as 𝑓 (𝑥) = 𝑥2.
▶ 𝑓 ({1, 2, 3}) =

{1, 4, 9}

▶ 𝑓 ({−2, 2}) =

{4}

▶ 𝑓 ([2, 5]) =

[4, 25]

▶ 𝑓 −1({1}) =

{−1, 1}

▶ 𝑓 −1({−2}) =

∅ okay!

▶ 𝑓 −1({−4, 9}) =

{−3, 3} okay!

Note: the image and pre-image operations take a set and produce a set.
Both are defined for all functions, but the pre-image of some sets might be empty.
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Image and Pre-Image
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𝑓 (𝑋) = {𝑓 (𝑥) ∣ 𝑥 ∈ 𝑋} all outputs from inputs from 𝑋

𝑓 −1(𝑌) = {𝑥 ∣ 𝑥 ∈ 𝐴, 𝑓 (𝑥) ∈ 𝑌} all inputs that produce outputs in 𝑌

Examples •
Suppose 𝑓 ∶ ℝ → ℝ is defined as 𝑓 (𝑥) = 𝑥2.
▶ 𝑓 ({1, 2, 3}) = {1, 4, 9}
▶ 𝑓 ({−2, 2}) = {4}
▶ 𝑓 ([2, 5]) = [4, 25]

▶ 𝑓 −1({1}) =

{−1, 1}

▶ 𝑓 −1({−2}) =

∅ okay!

▶ 𝑓 −1({−4, 9}) =

{−3, 3} okay!

Note: the image and pre-image operations take a set and produce a set.
Both are defined for all functions, but the pre-image of some sets might be empty.
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Inverse Function

Definition (Inverse)
Let 𝑓 ∶ 𝐴 → 𝐵, and suppose 𝑓 is a bijection. Then it has an inverse function,
written 𝑓 −1 ∶ 𝐵 → 𝐴, defined by

𝑓 −1(𝑦) = 𝑥 such that 𝑓 (𝑥) = 𝑦

(The notation is the same as the pre-image.)

Example

Let 𝑓 ∶ ℝ → ℝ be defined as 𝑓 (𝑥) = 2𝑥 + 1.
This 𝑓 is bijective, and we can write its inverse as 𝑓 −1(𝑦) = 𝑦−1

2 .

For example, 𝑓 (5) = 11, and 𝑓 −1(11) = 5.

Ryan Culpepper 05 Functions Operations on Functions 19



Real-Valued Functions

Definition (Real-Valued Function)
A function 𝑓 is called a real-valued function if its codomain is ℝ.
That is, 𝑓 ∶ 𝐴 → ℝ, for some 𝐴.

Definition (Sum and Product of Functions)
Let 𝑓 , 𝑔 ∶ 𝐴 → ℝ. Then 𝑓 + 𝑔 ∶ 𝐴 → ℝ and 𝑓 ⋅ 𝑔 ∶ 𝐴 → ℝ:

(𝑓 + 𝑔)(𝑥) = 𝑓 (𝑥) + 𝑔(𝑥)
(𝑓 ⋅ 𝑔)(𝑥) = 𝑓 (𝑥) ⋅ 𝑔(𝑥)
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Important Functions
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The Identity Function

Definition (Identity Function)

The identity function on a set 𝐴, written id𝐴 ∶ 𝐴 → 𝐴, is defined by

id𝐴(𝑎) = 𝑎

That is, its result is always the same as its argument.

Examples

▶ idℝ(2) = 2
▶ idℝ(1.7) = 1.7
▶ idℝ(𝜋) = 𝜋

id𝐴 is reflexive when viewed as a relation on 𝐴.
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Floor and Ceiling

Definitions (Floor, Ceiling)

▶ The floor function is a function ℝ → ℤ, written ⌊𝑥⌋.
⌊𝑥⌋ is the greatest integer less than or equal to 𝑥.
(This is sometimes called “rounding towards −∞”.)

▶ The ceiling function is a function ℝ → ℤ, written ⌈𝑥⌉.
⌈𝑥⌉ is the least integer greater than or equal to 𝑥.
(This is sometimes called “rounding towards +∞”.)

Examples

⌊6⌋ = 6 ⌈6⌉ = 6
⌊1.2⌋ = 1 ⌈1.2⌉ = 2

⌊−7.4⌋ = −8 ⌈−7.4⌉ = −7
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Min and Max

There are partial functions min ∶ 𝒫(ℝ) → ℝ and max ∶ 𝒫(ℝ) → ℝ that
take a set of numbers and return the minimum or maximum element,
respectively (if it exists).

Examples

▶ min {1, 2, 3} = 1
▶ max {1, 2, 3} = 3
▶ min {(𝑛 + 3)2 ∣ 𝑛 ∈ ℕ} = 9
▶ max {𝑥 ∣ 𝑥 ∈ ℝ, 𝑥2 ≤ 2} = √2

The following are undefined:
▶ min(∅), max(∅)
▶ min(ℝ), max(ℝ)
▶ max {𝑥 ∣ 𝑥 ∈ ℝ, 𝑥2 < 2}

min and max are also sometimes written as indexed computations:

min
𝑛∈ℕ

(𝑛 − 2)2 = min {(𝑛 − 2)2 ∣ 𝑛 ∈ ℕ}
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Using Min and Max

Mathematicians often define things as “the greatest blah such that blah”
(or “least”). We can write those definitions in terms of min, max, and sets.

Example

Let’s re-examine the floor and ceiling functions:

⌊𝑥⌋ = “the greatest integer less than or equal to 𝑥”
= max {𝑧 ∣ 𝑧 ∈ ℤ, 𝑧 ≤ 𝑥}

⌈𝑥⌉ = “the least integer greater than or equal to 𝑥”
= min {𝑧 ∣ 𝑧 ∈ ℤ, 𝑧 ≥ 𝑥}
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Min and Max for Partial Orders
We can generalize min and max to any partially-ordered set.

Definition (Minimum, Maximum)
Let (𝐴, ⊑) be a partially-ordered set, and let 𝑋 ⊆ 𝐴. The minimum and
maximum of 𝑋 are defined as

min⊑(𝑋) = 𝑥 ⟺ 𝑥 ∈ 𝑋 ∧ (∀𝑎 ∈ 𝑋, 𝑥 ⊑ 𝑎)
max⊑(𝑋) = 𝑥 ⟺ 𝑥 ∈ 𝑋 ∧ (∀𝑎 ∈ 𝑋, 𝑎 ⊑ 𝑥)

Such an 𝑥 might not exist, but if it does then it is unique. (Why?)

Example

reflexive-closure𝐴(𝑅) = “the smallest relation containing 𝑅 that is reflexive on 𝐴”

= min⊆ {𝑅′ ∣ 𝑅′ ⊆ 𝐴 × 𝐴, 𝑅 ⊆ 𝑅′, id𝐴 ⊆ 𝑅′}
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Argmin and Argmax

Definitions (Argmin, Argmax)

Let 𝑓 ∶ 𝐴 → ℝ. Then
▶ arg min 𝑓 returns the input value that minimizes the function’s output
▶ arg max 𝑓 returns the input value that maximizes the function’s output

The result might not be defined, if the function does not have a minimum/maximum
output, or if the minimum/maximum output is produced by multiple inputs.

Example

arg min and arg max can also be written as indexed computations:

arg max
𝑥∈[0,2𝜋]

(sin 𝑥) = 𝜋
2

because sin 𝑥 achieves its maximum value 1 at 𝑥 = 𝜋
2

(within the domain [0, 2𝜋]).
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Defining Functions
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Defining Functions by Cases

A function can be defined by multiple cases, each of which specifies a
condition and a result. (This is the math version of if-then-else.)

The cases should not overlap—or if they do, they should produce consistent
results on the overlapping points.

Example

The following notation is usually used for functions defined by cases:

𝑓 (𝑥) =
⎧{
⎨{⎩

𝑥 when 𝑥 ≥ 0
0 when 𝑥 < 0

To evaluate 𝑓:
▶ 𝑓 (1) falls into the first case, so 𝑓 (1) = 1
▶ 𝑓 (−2) falls into the second case, so 𝑓 (−2) = 0
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Defining Functions by Patterns

Another way of defining a function is to give one or more (non-overlapping)
definitions using “pattern matching” arguments.

Example

We could define a function 𝑓 ∶ ℕ → ℕ that acts differently depending on
whether the argument is odd or even:

𝑓 (2𝑘) = 𝑘3

𝑓 (2𝑘 + 1) = 2𝑘

To evaluate 𝑓:
▶ 𝑓 (7) can be expressed as 𝑓 (2 ⋅ 3 + 1),
so the second case matches with 𝑘 = 3, so 𝑓 (7) = 23 = 8

▶ 𝑓 (8) can be expressed as 𝑓 (2 ⋅ 4),
so the first case matches with 𝑘 = 4, so 𝑓 (8) = 43 = 64
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Other Ways of Representing Functions

Paul

Kathy

Linda

Nick

Max

Boston

New York

Hong Kong

Paris 𝑥 LivesIn(𝑥)
Max Boston
Nick Boston
Linda Paris
Kathy Hong Kong
Paul New York
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Anonymous Functions

In mathematics, functions are usually defined by giving them a name.
But sometimes it is useful to refer to a function without a name.
▶ “maps-to notation”
For example, (𝑥 ↦ 𝑥2) is the function that squares its argument.

▶ “𝜆 (lambda) notation”
For example, (𝜆𝑥. 2𝑥 + 1) is the function that takes a number, doubles
it, and adds 1.
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Homomorphisms
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Homomorphisms

Definition (Homomorphism)

Let 𝐴 and 𝐵 be sets, and let 𝑐𝐴 ∶ 𝐴 × 𝐴 → 𝐴 and 𝑐𝐵 ∶ 𝐵 × 𝐵 → 𝐵 be binary functions
on 𝐴 and 𝐵, respectively, and let 𝑓 ∶ 𝐴 → 𝐵,.
The function 𝑓 is a homomorphism (wrt 𝑐𝐴, 𝑐𝐵) if

∀𝑎1, 𝑎2 ∈ 𝐴, 𝑓 (𝑐𝐴(𝑎1, 𝑎2)) = 𝑐𝐵(𝑓 (𝑎1), 𝑓 (𝑎2))

(We can generalize from one binary operation 𝑐 to multiple 𝑛-ary operations.)

In this situation:
▶ 𝐴 and 𝐵 are two representations of the same information.
▶ There is some some computation 𝑐 to perform.
▶ The final result is represented as an element of 𝐵.
▶ We have the freedom of two options:

▶ perform the computation in 𝐴 using 𝑐𝐴, then translate to 𝐵 using 𝑓
▶ translate to 𝐵 using 𝑓, then perform the computation in 𝐵 using 𝑐𝐵

This freedom is the invisible foundation of all computation.
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Isomorphisms

Definition (Isomorphism)

An isomorphism is a bijective homomorphism.

Definition (Isomorphic)

Two sets are isomorphic if there is some isomorphism between them.

In this situation, additionally:
▶ We have the freedom to translate back and forth between 𝐴 and 𝐵.
The translation does not lose information.

In practice, we often have a surjective homomorphism instead of an
isomorphism, so there is no unique inverse, but we can pick an element for
the backwards translation.
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Examples: Homomorphisms and Isomorphism

Example (Logarithms)

𝐴 = ℝ+

𝑐𝐴(𝑥, 𝑦) = 𝑥 ⋅ 𝑦
𝑑𝐴(𝑥) = 𝑛√𝑥

log
−−→

𝐵 = ℝ
𝑐𝐵(𝑥′, 𝑦′) = 𝑥′ + 𝑦′

𝑑𝐵(𝑥′) = 𝑥′

𝑛

https://www.youtube.com/watch?v=habHK6wLkic

Example (3D Geometry)

𝐴 = affine transformations

𝑐𝐴(𝑋, 𝑌) = compose 𝑋 and 𝑌
𝑑𝐴(𝑋) = transform point 𝑃 by 𝑋

⎡
⎢
⎢
⎢
⎣

𝑥𝑥 𝑥𝑦 𝑥𝑧 𝑥0
𝑦𝑥 𝑦𝑦 𝑦𝑧 𝑦0
𝑧𝑥 𝑧𝑦 𝑧𝑧 𝑧0
0 0 0 1

⎤
⎥
⎥
⎥
⎦−−−−−−→

𝐵 = 4 × 4 matrices on ℝ
𝑐𝐵(𝑋′, 𝑌 ′) = 𝑋′𝑌 ′

𝑑𝐵(𝑋′) = 𝑋′𝑃

Ryan Culpepper 05 Functions Homomorphisms 36

https://www.youtube.com/watch?v=habHK6wLkic


Hilbert’s Hotel
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Professor Hilbert’s Hotel

Professor Hilbert runs a special hotel, with infinitely many rooms.
▶ That is, each room has a distinct room number (∈ ℕ)
and for every 𝑛 ∈ ℕ there is a room labeled 𝑛.

▶ The hotel also has an excellent PA system.

One day, the hotel happens to be completely full.
A new person enters the hotel and asks for a room.

Hilbert says “Certainly!” He announces over the PA system:
Pardon the disruption, every guest please change rooms.
Move to the room number of your current room plus one.

The guests move, and the new person gets the now-empty room Zero,
so everyone has a room.
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Professor Hilbert’s Hotel

Then an infinitely long bus pulls up.
The driver comes to the reception desk.

My bus has a seat for every 𝑛 ∈ ℕ, and each seat has a passenger.
Can you find rooms for us all?

Hilbert says “Certainly!” He gets on the PA system again:
Apologies, please change rooms again.
Move to the room number that is double your current room number.

The guests move, and he says to the driver:
Each of your passengers can take the room whose number is one
more than twice their seat number.

And so there was room for everyone.
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Professor Hilbert’s Hotel
Then an infinite caravan of infinitely long buses pulls up…

0, 0 0, 1 0, 2 0, 3 …
1, 0 1, 1 1, 2 1, 3 …
2, 0 2, 1 2, 2 2, 3 …
3, 0 3, 1 3, 2 3, 3 …
…

Hilbert says “Certainly!”
The formula is a bit complicated, but passengers get admitted in groups
according to the sum of their bus number and their seat number:

0, 0
0, 1 1, 0
0, 2 1, 1 2, 0
0, 3 1, 2 2, 1 3, 0 …

And so there is space for everyone.
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Professor Cantor’s Shift

Professor Hilbert’s shift ends, and Professor Cantor takes over.
A spaceship lands nearby. The pilot says:

My ship has a passenger for every number in ℝ.
Do you have room for everyone?

Cantor says “No.”
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Professor Cantor’s Shift

The driver says
Okay, that figures. Most of them are unimportant, anyway.
My important passengers are all in the unit interval [0, 1).
Do you at least have room for them?

Cantor says “No.”
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Professor Cantor’s Shift

The driver says
My most important passengers, the VIPs, are all in the unit interval
[0, 1) and their decimal expansions only include the digits 0 and 1.
Surely you have room for them?

Cantor says “No.”

Suppose I could fit everyone.
The assignment would look like this:

0 ↦ 0 . 0 0 0 0 1 …
1 ↦ 0 . 0 1 1 0 1 …
2 ↦ 0 . 1 0 1 0 1 …
3 ↦ 0 . 1 0 1 0 0 …
4 ↦ 0 . 0 1 1 1 0 …

But consider the main diagonal.
What about the number formed by
flipping each digit?

0.10011 …
That person can’t be on the list.
That is, I can show that every possible
“solution” is broken. It can’t be done.
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Infinite Cardinalities

|ℕ| = |ℕ + {0} |
|ℕ| = |ℕ + ℕ|
|ℕ| = |ℕ × ℕ|

|ℕ| < |ℝ|
|ℕ| < ∣ [0, 1) ∣
|ℕ| < ∣𝒫(ℕ)∣

where 𝐴 + 𝐵 = ({0} × 𝐴) ∪ ({1} × 𝐵) — the “tagged union” of 𝐴 and 𝐵
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Topic List

▶ (total) function, domain, codomain, range
▶ injective, surjective, bijective
▶ partial vs total function
▶ strictly increasing/decreasing, monotone
▶ function composition (∘)
▶ image, pre-image
▶ inverse
▶ identity function
▶ floor (⌊ ⌋), ceiling (⌈ ⌉)
▶ min, max, arg min, arg max
▶ function notations: cases, pattern-matching, tables, etc
▶ homomorphisms, isomorphisms
▶ Hilbert’s Hotel, cardinalities of infinite sets
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