
Integers
CS 220 — Applied Discrete Mathematics

March {24, 26}, 2025

Ryan Culpepper 06 Integers 1

Even and Odd

Definitions (Even, Odd)
An integer is even if it is twice some integer.
An integer is odd if it is one more than twice some integer.
That is:

𝑛 is even ⟺ ∃𝑘 ∈ ℤ, 𝑛 = 2𝑘
𝑛 is odd ⟺ ∃𝑘 ∈ ℤ, 𝑛 = 2𝑘 + 1

Lemma (Even-Odd)
If 𝑛 is odd, then 𝑛 + 1 is even.

Is this “lemma” true? How can you know?

Ryan Culpepper 06 Integers 2

Divisibility

Ryan Culpepper 06 Integers Divisibility 3

Divisibility

Definition (Divides)
Let 𝑑, 𝑛 ∈ ℤ. We say that 𝑑 divides 𝑛, written 𝑑|𝑛, if there exists some
integer 𝑘 such that 𝑛 = 𝑘𝑑. That is,

𝑑|𝑛 ⟺ ∃𝑘 ∈ ℤ, 𝑛 = 𝑘𝑑

We call 𝑑 a factor of 𝑛, and we call 𝑛 a multiple of 𝑑.

Facts about Divisibility

▶ If 𝑎|𝑏 and 𝑎| 𝑐, then 𝑎|(𝑏 + 𝑐).
▶ If 𝑎|𝑏 and 𝑘 ∈ ℤ, then 𝑎|𝑘𝑏.
▶ If 𝑎|𝑏 and 𝑏| 𝑐, then 𝑎| 𝑐.

Examples

▶ 3|6 and 3|9, so 3|15
▶ 5|10, so 5|20, 5|30, etc
▶ 4|8 and 8|24, so 4|24

Ryan Culpepper 06 Integers Divisibility 4

Prime and Composite

Definition (Prime, Composite)

Let 𝑛 be an integer greater than 1. Then 𝑛 is prime if its only positive
factors are 1 and 𝑛. That is:

𝑛 is prime ⟺ (𝑛 > 1) ∧ (∀𝑑 ∈ ℤ+, 𝑑|𝑛 ⇒ (𝑑 = 1 ∨ 𝑑 = 𝑛))

An integer 𝑛 greater than 1 that is not prime is called composite.
Note: 0 and 1 are considered neither prime nor composite.

Examples

▶ 3 is prime
▶ 4 is composite (since 2|4)
▶ 5 is prime

▶ 41 is prime
▶ 51 is composite (since 3|51)
▶ 61 is prime

Ryan Culpepper 06 Integers Divisibility 5

Alternative Definitions of Composite
Let 𝑛 ∈ ℤ+. The following statements are equivalent:
1. 𝑛 is composite.
2. 𝑛 has a factor strictly between 1 and 𝑛.
That is, ∃𝑑 ∈ ℤ, (1 < 𝑑 < 𝑛) ∧ (𝑑|𝑛).

3. 𝑛 has a prime factor strictly between 1 and 𝑛. ?
That is, ∃𝑑 ∈ ℤ, (𝑑 is prime) ∧ (1 < 𝑑 < 𝑛) ∧ (𝑑|𝑛).

4. 𝑛 is the product of two positive integers strictly between 1 and 𝑛.
That is, ∃𝑎, 𝑏 ∈ ℤ+, (1 < 𝑎 < 𝑛) ∧ (1 < 𝑏 < 𝑛) ∧ (𝑛 = 𝑎𝑏).

Examples

Consider 12, which is composite.
2. 12 has a factor strictly between 1 and 12 — for example, 6
3. 12 has a prime factor strictly between 1 and 12 — for example, 3
4. 12 is the product of positive integers strictly between 1 and 12
— for example, 3 ⋅ 4, or 2 ⋅ 6

Ryan Culpepper 06 Integers Divisibility 6

Facts about Prime and Composite Numbers

Theorem
If 𝑛 is a composite number, then 𝑛 has a prime divisor 𝑝 ≤ √𝑛.

Infinitude of Primes, aka Euclid’s Theorem (circa 300 BC)
There is no largest prime number.
That is, there are infinitely many primes.

Ryan Culpepper 06 Integers Divisibility 7

Prime Factorization

Fundamental Theorem of Arithmetic
Every integer greater than 1 can be written uniquely as the product of
primes, where the prime factors are written in order of increasing size.
(A prime may occur more than once in the product.)

For an integer 𝑛, this product is called the prime factorization of 𝑛.
If it includes a prime more than once, we usually write it raised to a power.

Examples •

▶ 15 =

3 ⋅ 5

▶ 17 =

17

▶ 48 =

2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 3 = 24 ⋅ 3

▶ 100 =

2 ⋅ 2 ⋅ 5 ⋅ 5 = 22 ⋅ 52

▶ 121 =

11 ⋅ 11 = 112

Ryan Culpepper 06 Integers Divisibility 8

Prime Factorization

Fundamental Theorem of Arithmetic
Every integer greater than 1 can be written uniquely as the product of
primes, where the prime factors are written in order of increasing size.
(A prime may occur more than once in the product.)

For an integer 𝑛, this product is called the prime factorization of 𝑛.
If it includes a prime more than once, we usually write it raised to a power.

Examples •

▶ 15 = 3 ⋅ 5
▶ 17 = 17
▶ 48 =

2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 3 = 24 ⋅ 3

▶ 100 =

2 ⋅ 2 ⋅ 5 ⋅ 5 = 22 ⋅ 52

▶ 121 =

11 ⋅ 11 = 112

Ryan Culpepper 06 Integers Divisibility 8

Prime Factorization

Fundamental Theorem of Arithmetic
Every integer greater than 1 can be written uniquely as the product of
primes, where the prime factors are written in order of increasing size.
(A prime may occur more than once in the product.)

For an integer 𝑛, this product is called the prime factorization of 𝑛.
If it includes a prime more than once, we usually write it raised to a power.

Examples •

▶ 15 = 3 ⋅ 5
▶ 17 = 17
▶ 48 = 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 3 = 24 ⋅ 3
▶ 100 = 2 ⋅ 2 ⋅ 5 ⋅ 5 = 22 ⋅ 52

▶ 121 = 11 ⋅ 11 = 112

Ryan Culpepper 06 Integers Divisibility 8

Greatest Common Divisor (GCD)

Definition (Greatest Common Divisor)
Let 𝑎, 𝑏 ∈ ℤ+. The greatest common divisor of 𝑎 and 𝑏, written gcd(𝑎, 𝑏), is
the greatest 𝑑 ∈ ℤ+ such that 𝑑|𝑎 and 𝑑|𝑏.

Example

▶ What is gcd(48, 72)?
The positive divisors of 48 are 1, 2, 3, 4, 6, 8, 12, 16, 24, 48.
The positive divisors of 72 are 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72.
The common divisors are 1, 2, 3, 4, 6, 8, 12, 24.
So gcd(48, 72) = 24.

▶ What is gcd(19, 72)?
The positive divisors of 19 are 1, 19.
The common divisors are 1.
So gcd(19, 72) = 1.

Ryan Culpepper 06 Integers Divisibility 9

Calculating the GCD

Fact about GCD
If 𝑎, 𝑏, 𝑐 ∈ ℤ+, then gcd(𝑎𝑐, 𝑏𝑐) = 𝑐 ⋅ gcd(𝑎, 𝑏).

We can use this fact to make a better algorithm for computing the GCD.

Algorithm

To compute gcd(𝑎, 𝑏):
1. Rewrite 𝑎 and 𝑏 with their prime
factorizations

2. While 𝑎 and 𝑏 share a prime factor:
▶ Factor it out (with the minimum
exponent from the two arguments).

▶ Repeat with the rest of the prime
factorization.

3. When 𝑎 and 𝑏 have no prime factors
in common, gcd(𝑎, 𝑏) = 1. (Why?)

Example

gcd(48, 72)
= gcd(24 ⋅ 31, 23 ⋅ 32)
= 23 ⋅ gcd(21 ⋅ 31, 32)
= 23 ⋅ 31 ⋅ gcd(21, 31)
= 23 ⋅ 31 ⋅ 1 = 24

Later, we’ll learn an even
better algorithm for GCD.

Ryan Culpepper 06 Integers Divisibility 10

Calculating the GCD

Fact about GCD
If 𝑎, 𝑏, 𝑐 ∈ ℤ+, then gcd(𝑎𝑐, 𝑏𝑐) = 𝑐 ⋅ gcd(𝑎, 𝑏).

We can use this fact to make a better algorithm for computing the GCD.

Algorithm

To compute gcd(𝑎, 𝑏):
1. Rewrite 𝑎 and 𝑏 with their prime
factorizations

2. While 𝑎 and 𝑏 share a prime factor:
▶ Factor it out (with the minimum
exponent from the two arguments).

▶ Repeat with the rest of the prime
factorization.

3. When 𝑎 and 𝑏 have no prime factors
in common, gcd(𝑎, 𝑏) = 1. (Why?)

Example

gcd(48, 72)
= gcd(24 ⋅ 31, 23 ⋅ 32)
= 23 ⋅ gcd(21 ⋅ 31, 32)
= 23 ⋅ 31 ⋅ gcd(21, 31)
= 23 ⋅ 31 ⋅ 1 = 24

Later, we’ll learn an even
better algorithm for GCD.

Ryan Culpepper 06 Integers Divisibility 10

Relatively Prime

Definition (Relatively Prime)

Two integers 𝑎 and 𝑏 are relatively prime, aka coprime, if gcd(𝑎, 𝑏) = 1.
That is, they have no positive factor in common other than 1.

Examples

▶ Are 15 and 28 relatively prime?
▶ Are 35 and 28 relatively prime?
▶ Are 55 and 28 relatively prime?

Ryan Culpepper 06 Integers Divisibility 11

Least Common Multiple

Definition (Least Common Multiple)

Let 𝑎, 𝑏 ∈ ℤ+. The least common multiple of 𝑎 and 𝑏, written lcm(𝑎, 𝑏), is
the least 𝑛 ∈ ℤ+ such that 𝑎|𝑛 and 𝑏|𝑛.

Examples

▶ What is lcm(3, 7)?
The multiples of 3 are 3, 6, 9, 12, 15, 18, 21, 24, 27,… .
The multiples of 7 are 7, 14, 21, 28, 35, 42, 49,… .
The common multiples are 21, 42,… .
So lcm(3, 7) = 21.

▶ What is lcm(4, 6)?
The common multiples are 12, 24,… . So lcm(4, 6) = 12.

▶ What is lcm(5, 10)?
The common multiples are 5, 10,… . So lcm(5, 10) = 10.

Ryan Culpepper 06 Integers Divisibility 12

Calculating the LCM

Facts about LCM

▶ If 𝑎, 𝑏, 𝑐 ∈ ℤ+, then lcm(𝑎𝑐, 𝑏𝑐) = 𝑐 ⋅ lcm(𝑎, 𝑏).
▶ If 𝑎 and 𝑏 are relatively prime, then lcm(𝑎, 𝑏) = 𝑎 ⋅ 𝑏.

Algorithm

(Same as GCD algorithm, except #3.)

To compute lcm(𝑎, 𝑏):
1. Rewrite 𝑎 and 𝑏 with their prime
factorizations

2. Factor out shared prime factors.
3. When 𝑎 and 𝑏 have no prime factors
in common, lcm(𝑎, 𝑏) = 𝑎 ⋅ 𝑏.

Example

lcm(48, 72)
= lcm(24 ⋅ 31, 23 ⋅ 32)
= 23 ⋅ lcm(21 ⋅ 31, 32)
= 23 ⋅ 31 ⋅ lcm(21, 31)
= 23 ⋅ 31 ⋅ (21 ⋅ 31)
= 24 ⋅ 6 = 144

Ryan Culpepper 06 Integers Divisibility 13

Calculating the LCM

Facts about LCM

▶ If 𝑎, 𝑏, 𝑐 ∈ ℤ+, then lcm(𝑎𝑐, 𝑏𝑐) = 𝑐 ⋅ lcm(𝑎, 𝑏).
▶ If 𝑎 and 𝑏 are relatively prime, then lcm(𝑎, 𝑏) = 𝑎 ⋅ 𝑏.

Algorithm

(Same as GCD algorithm, except #3.)

To compute lcm(𝑎, 𝑏):
1. Rewrite 𝑎 and 𝑏 with their prime
factorizations

2. Factor out shared prime factors.
3. When 𝑎 and 𝑏 have no prime factors
in common, lcm(𝑎, 𝑏) = 𝑎 ⋅ 𝑏.

Example

lcm(48, 72)
= lcm(24 ⋅ 31, 23 ⋅ 32)
= 23 ⋅ lcm(21 ⋅ 31, 32)
= 23 ⋅ 31 ⋅ lcm(21, 31)
= 23 ⋅ 31 ⋅ (21 ⋅ 31)
= 24 ⋅ 6 = 144

Ryan Culpepper 06 Integers Divisibility 13

“Simplified” Algorithms for GCD and LCM
Let 𝑎, 𝑏 ∈ ℤ+. We can compute gcd(𝑎, 𝑏) and lcm(𝑎, 𝑏) as follows:
1. Rewrite 𝑎 and 𝑏 as their prime factorizations.
2. Extend the prime factorizations so they use exactly the same set of
primes. If a prime was not previously used, its exponent is 0.

3. Then gcd(𝑎, 𝑏) is computed by taking the product of the primes with
the minimum exponent from both factorizations, and
lcm(𝑎, 𝑏) is computed by taking the product of the primes with the
maximum exponent from both factorizations.

Example

36 = 22 ⋅ 32 = 22 ⋅ 32 ⋅ 50

200 = 23 ⋅ 52 = 23 ⋅ 30 ⋅ 52

gcd(36, 200) = 2min(2,3) ⋅ 3min(2,0) ⋅ 5min(0,2) = 22 ⋅ 30 ⋅ 50 = 4
lcm(36, 200) = 2max(2,3) ⋅ 3max(2,0) ⋅ 5max(0,2) = 23 ⋅ 32 ⋅ 52 = 1800

Ryan Culpepper 06 Integers Divisibility 14

Division

Ryan Culpepper 06 Integers Division 15

Division

Definition (Divisor, Dividend, Quotient, Remainder)
Let 𝑛 ∈ ℤ and 𝑑 ∈ ℤ+.
Then there are unique integers 𝑞 and 𝑟 with 0 ≤ 𝑟 < 𝑑 such that

𝑛 = 𝑞𝑑 + 𝑟

We call 𝑛 the dividend, 𝑑 the divisor, 𝑞 the quotient, and 𝑟 the remainder.

Example

Suppose we divide 17 by 5. We have 17 = 3 ⋅ 5 + 2.
That is, 17 is the dividend, 5 is the divisor, 3 is the quotient, and 2 is the remainder.
▶ “Dividing 17 by 5 produces the quotient 3 with remainder 2.”
▶ “The quotient of 17 divided by 5 is 3.”
▶ “The remainder of 17 divided by 5 is 2.”

(It is also true that 17 = 2 ⋅ 5 + 7, but that doesn’t satisfy the requirements.)
Ryan Culpepper 06 Integers Division 16

Examples: Division

Recall: 𝑛 = 𝑞𝑑 + 𝑟 where 0 ≤ 𝑟 < 𝑑.

Examples

▶ Divide −11 by 3.
We get −11 = (−4) ⋅ 3 + 1.
That is, the quotient is −4 and the remainder is 1.

▶ Divide 5 by 1.
We get 5 = 5 ⋅ 1 + 0.
That is, the quotient is 5 and the remainder is 0.

Ryan Culpepper 06 Integers Division 17

The Modulo Operator

Definition (Modulo)
Let 𝑎 ∈ ℤ and let𝑚 ∈ ℤ+.
Then 𝑎mod𝑚 is the remainder when 𝑎 is divided by𝑚.

Examples •

▶ 9mod4 = 1
▶ 9mod3 = 0
▶ 9mod10 = 9
▶ (−13)mod4 = 3

▶ 10mod6 =

4

▶ 12mod6 =

0

▶ (−1)mod6 =

5

▶ (−8)mod6 =

4

CS 220 vs Programming Languages
Your favorite programming language may define its “division” and “remainder” or
“modulo” operators differently. In CS 220, we use the definition above.
See “Division and Modulus for Computer Scientists” by Daan Leijen for discussion.

Ryan Culpepper 06 Integers Division 18

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/divmodnote-letter.pdf

The Modulo Operator

Definition (Modulo)
Let 𝑎 ∈ ℤ and let𝑚 ∈ ℤ+.
Then 𝑎mod𝑚 is the remainder when 𝑎 is divided by𝑚.

Examples •

▶ 9mod4 = 1
▶ 9mod3 = 0
▶ 9mod10 = 9
▶ (−13)mod4 = 3

▶ 10mod6 = 4
▶ 12mod6 = 0
▶ (−1)mod6 = 5
▶ (−8)mod6 = 4

CS 220 vs Programming Languages
Your favorite programming language may define its “division” and “remainder” or
“modulo” operators differently. In CS 220, we use the definition above.
See “Division and Modulus for Computer Scientists” by Daan Leijen for discussion.

Ryan Culpepper 06 Integers Division 18

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/divmodnote-letter.pdf

Modular Arithmetic

Ryan Culpepper 06 Integers Modular Arithmetic 19

Congruence Modulo𝑚

Definition
Let 𝑎, 𝑏 ∈ ℤ and let𝑚 ∈ ℤ+. Then 𝑎 and 𝑏 are congruent modulo𝑚, written
𝑎 ≡ 𝑏 (mod 𝑚), when𝑚 divides their difference. That is:

𝑎 ≡ 𝑏 (mod 𝑚) ⟺ 𝑚|(𝑎 − 𝑏)

The integer𝑚 is called the modulus.

Examples

▶ 5 ≡ 7 (mod 2) same parity
▶ 25 ≡ 95 (mod 10) same last digit
▶ 3 ≡ 15 (mod 12) same clock position
▶ −90 ≡ 270 (mod 360) same angle (in degrees)

Ryan Culpepper 06 Integers Modular Arithmetic 20

Facts about Congruence Modulo𝑚
Let𝑚 ∈ ℤ+ and let 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℤ. Then:

Equivalent Definitions

The following statements are equivalent:
▶ 𝑎 ≡ 𝑏 (mod 𝑚)
▶ 𝑚|(𝑎 − 𝑏)
▶ 𝑎mod𝑚 = 𝑏mod𝑚
▶ there is some 𝑘 ∈ ℤ such that 𝑎 = 𝑏 + 𝑘𝑚

Congruence Properties

If 𝑎 ≡ 𝑏 (mod 𝑚) and 𝑐 ≡ 𝑑 (mod 𝑚), then
▶ 𝑎 + 𝑐 ≡ 𝑏 + 𝑑 (mod 𝑚)
▶ 𝑎 − 𝑐 ≡ 𝑏 − 𝑑 (mod 𝑚)
▶ 𝑎 ⋅ 𝑐 ≡ 𝑏 ⋅ 𝑑 (mod 𝑚)

Ryan Culpepper 06 Integers Modular Arithmetic 21

Congruence Modulo𝑚 is an Equivalence Relation

Let𝑚 ∈ ℤ+. Then _ ≡ _ (mod 𝑚) is an equivalence relation.
Note: By _ ≡ _ (mod 𝑚) I really mean {(𝑎, 𝑏) ∣ 𝑎, 𝑏 ∈ ℤ, 𝑎 ≡ 𝑏 (mod 𝑚)}.

Examples •
What are the equivalence classes of _ ≡ _ (mod 4)?

▶ {… ,−12,−8,−4, 0, 4, 8, 12,… } {𝑎 ∣ 𝑎mod4 = 0}
▶ {… ,−11,−7,−3, 1, 5, 9, 13,… } {𝑎 ∣ 𝑎mod4 = 1}
▶ {… ,−10,−6,−2, 2, 6, 10, 14,… } {𝑎 ∣ 𝑎mod4 = 2}
▶ {… ,−9,−5,−1, 3, 7, 11, 15,… } {𝑎 ∣ 𝑎mod4 = 3}

Ryan Culpepper 06 Integers Modular Arithmetic 22

Congruence Modulo𝑚 is an Equivalence Relation

Let𝑚 ∈ ℤ+. Then _ ≡ _ (mod 𝑚) is an equivalence relation.
Note: By _ ≡ _ (mod 𝑚) I really mean {(𝑎, 𝑏) ∣ 𝑎, 𝑏 ∈ ℤ, 𝑎 ≡ 𝑏 (mod 𝑚)}.

Examples •
What are the equivalence classes of _ ≡ _ (mod 4)?
▶ {… ,−12,−8,−4, 0, 4, 8, 12,… } {𝑎 ∣ 𝑎mod4 = 0}
▶ {… ,−11,−7,−3, 1, 5, 9, 13,… } {𝑎 ∣ 𝑎mod4 = 1}
▶ {… ,−10,−6,−2, 2, 6, 10, 14,… } {𝑎 ∣ 𝑎mod4 = 2}
▶ {… ,−9,−5,−1, 3, 7, 11, 15,… } {𝑎 ∣ 𝑎mod4 = 3}

Ryan Culpepper 06 Integers Modular Arithmetic 22

Integers and Finite Representations

In computer hardware, we use fixed-size storage to represent integers.
That means we’re only representing a proper subset: Int ⊂ ℤ.
We need versions of the integer operations that cooperate.
▶ The true result of the operation on ℤ might be too large or too small to
represent. This is called overflow.

▶ What should the hardware operations do instead?

What is a good set Int?
What is good behavior for the operations to have?

Ryan Culpepper 06 Integers Modular Arithmetic 23

Integers and Finite Representations

To be concrete, let’s limit our representation to two digits.
That is, Int = {0, 1,… , 10, 11,… , 98, 99}.
Possible modifications to integer operations:
▶ If a computation overflows, crash (raise exception, or panic, or trap).
▶ If a computation overflows, produce a special value (Boom).
▶ Clamp positive overflows to 99, negative overflows to 0.
▶ Use modular arithmetic with 100 as the modulus.
That is, overflow results “wrap around”.

Ryan Culpepper 06 Integers Modular Arithmetic 24

Properties of Integer Operations

𝑎 + (𝑏 + 𝑐) = (𝑎 + 𝑏) + 𝑐 Associativity
𝑎 + (𝑏 − 𝑐) = (𝑎 + 𝑏) − 𝑐 Associativity

𝑎(𝑏 + 𝑐) = 𝑎𝑏 + 𝑎𝑐 Distributivity
𝑎(𝑏 − 𝑐) = 𝑎𝑏 − 𝑎𝑐 Distributivity

0 ⋅ 𝑎 = 0 Dominance
𝑎|𝑏 ∧ 𝑎| 𝑐 ⇒ 𝑎|(𝑏 + 𝑐) DividesSum

𝑎 > 0 ⇒ 𝑎 + 𝑏 > 𝑏 GreaterSum

Ryan Culpepper 06 Integers Modular Arithmetic 25

Examples: Boom Arithmetic

I’ll write ⊞,⊟,⊠ for the operations of “Boom arithmetic”.

Examples

80 ⊞ (50 ⊟ 40) = 80 ⊞ 10 = 90
(80 ⊞ 50) ⊟ 40 = Boom⊟ 40 = Boom no Associative

10 ⊠ (30 ⊟ 24) = 10 ⊠ 6 = 60
(10 ⊠ 30) ⊟ (10 ⊠ 24) = Boom⊟ Boom = Boom no Distributive

0 ⊠ (50 ⊞ 50) = 0 ⊠ Boom = Boom (?) no Dominance

3|99 ∧ 3|3, 99 ⊞ 3 = Boom, 3 ∤ Boom no DividesSum

50 > 0, 50 ⊞ 80 = Boom ≯ 80 no GreaterSum

However, if you get a number, you know it’s the correct result.

Ryan Culpepper 06 Integers Modular Arithmetic 26

Modular Arithmetic

Definition (Modular Arithmetic)
Let𝑚 ∈ ℤ+. Then modular arithmetic with𝑚 as the modulus produces 𝑟mod𝑚
when standard arithmetic produces 𝑟. That is, results “wrap around” at𝑚.

I’ll write ⊞,⊟,⊠ for modular arithmetic with modulus of 100.
(This notation is not standard.)

Example

80 ⊞ (50 ⊟ 40) = 80 ⊞ 10 = 90
(80 ⊞ 50) ⊟ 40 = 30 ⊟ 40 = 90 Associative

10 ⊠ (30 ⊟ 24) = 10 ⊠ 6 = 60
(10 ⊠ 30) ⊟ (10 ⊠ 24) = 0 ⊟ 40 = 60 Distributive

0 ⊠ (50 ⊞ 50) = 0 ⊠ 0 = 0 Dominance

3|99 ∧ 3|3, 99 ⊞ 3 = 2, 3 ∤ 2 no DividesSum

50 > 0, 50 ⊞ 80 = 30 ≯ 80 no GreaterSum

Ryan Culpepper 06 Integers Modular Arithmetic 27

Choices: Integer Operation Behavior

Which behavior is better?

Which behavior do programming platforms implement?

Ryan Culpepper 06 Integers Modular Arithmetic 28

Choices: Integer Operation Behavior

Hardware:
▶ Implements modular arithmetic for integers, but also sets flags
(overflow, etc) that can be branched on.

▶ Implements extended Boom-like system for floating-point numbers.
(Includes +∞,−∞, NaN.)

Lisp/Scheme/Racket:
▶ Dodges the question by implementing arbitrary-precision integer
arithmetic, rational arithmetic, etc.

Java:
▶ Implements modular arithmetic.

C:
▶ Heh, heh, heh…

Ryan Culpepper 06 Integers Modular Arithmetic 29

Choices: Integer Operation Behavior

Hardware:
▶ Implements modular arithmetic for integers, but also sets flags
(overflow, etc) that can be branched on.

▶ Implements extended Boom-like system for floating-point numbers.
(Includes +∞,−∞, NaN.)

Lisp/Scheme/Racket:
▶ Dodges the question by implementing arbitrary-precision integer
arithmetic, rational arithmetic, etc.

Java:
▶ Implements modular arithmetic.

C:
▶ Heh, heh, heh…

Ryan Culpepper 06 Integers Modular Arithmetic 29

Choices: Integer Operation Behavior

Hardware:
▶ Implements modular arithmetic for integers, but also sets flags
(overflow, etc) that can be branched on.

▶ Implements extended Boom-like system for floating-point numbers.
(Includes +∞,−∞, NaN.)

Lisp/Scheme/Racket:
▶ Dodges the question by implementing arbitrary-precision integer
arithmetic, rational arithmetic, etc.

Java:
▶ Implements modular arithmetic.

C:
▶ Heh, heh, heh…

Ryan Culpepper 06 Integers Modular Arithmetic 29

Choices: Integer Operation Behavior

Hardware:
▶ Implements modular arithmetic for integers, but also sets flags
(overflow, etc) that can be branched on.

▶ Implements extended Boom-like system for floating-point numbers.
(Includes +∞,−∞, NaN.)

Lisp/Scheme/Racket:
▶ Dodges the question by implementing arbitrary-precision integer
arithmetic, rational arithmetic, etc.

Java:
▶ Implements modular arithmetic.

C:
▶ Heh, heh, heh…

Ryan Culpepper 06 Integers Modular Arithmetic 29

Integer Operations in C
What happens on integer overflow?
▶ for unsigned integer types: modular arithmetic
▶ for signed integer types: undefined behavior

Undefined behavior:
Anything at all can happen; the Standard imposes no requirements. The
program may fail to compile, or it may execute incorrectly (either crashing
or silently generating incorrect results), or it may fortuitously do exactly
what the programmer intended.

Up to and including nasal demons (see Jargon File):

Permissible undefined behavior ranges from ignoring the situation com-
pletely with unpredictable results, to having demons fly out of your nose.

John F. Woods, comp.std.c

Recommended reading:
▶ “A Guide to Undefined Behavior in C and C++, Part {1,2,3}” by John Regehr

Ryan Culpepper 06 Integers Modular Arithmetic 30

https://blog.regehr.org/archives/213

Integer Operations in C
What happens on integer overflow?
▶ for unsigned integer types: modular arithmetic
▶ for signed integer types: undefined behavior

Undefined behavior:
Anything at all can happen; the Standard imposes no requirements. The
program may fail to compile, or it may execute incorrectly (either crashing
or silently generating incorrect results), or it may fortuitously do exactly
what the programmer intended.

Up to and including nasal demons (see Jargon File):

Permissible undefined behavior ranges from ignoring the situation com-
pletely with unpredictable results, to having demons fly out of your nose.

John F. Woods, comp.std.c

Recommended reading:
▶ “A Guide to Undefined Behavior in C and C++, Part {1,2,3}” by John Regehr

Ryan Culpepper 06 Integers Modular Arithmetic 30

https://blog.regehr.org/archives/213

Modular Arithmetic, Refactored

Let’s introduce repInt ∶ ℤ → Int as the function that takes an integer and
returns its equivalent representative in Int:

repInt(𝑎) = the unique 𝑐 ∈ Int such that 𝑐 ≡ 𝑎 (mod 𝑚)
= the unique 𝑐 ∈ Int such that 𝑐 = 𝑎 + 𝑘𝑚 for some 𝑘 ∈ ℤ

where𝑚 is the modulus associated with Int (100 in our running example).
Then ⊞,⊟,⊠ ∶ Int × Int → Int are simply the following:

𝑎 ⊞ 𝑏 = repInt(𝑎 + 𝑏) 𝑎 ⊠ 𝑏 = repInt(𝑎 ⋅ 𝑏)
𝑎 ⊟ 𝑏 = repInt(𝑎 − 𝑏)

That is: calculate the “true result”, then find its representative.

Ryan Culpepper 06 Integers Modular Arithmetic 31

Examples: Modular Arithmetic •

Let Int = {0, 1, 2,…99}, and let ⊞, ⊟, ⊠ use Int (with𝑚 = 100).
▶ 12 ⊞ 23 = repInt(35) = 35
▶ 60 ⊞ 55 = repInt(115) = 15
▶ 98 ⊟ 44 = repInt(54) = 54
▶ 20 ⊟ 37 = repInt(−17) = 83
▶ 9 ⊠ 9 = repInt(81) = 81
▶ 12 ⊠ 12 = repInt(144) = 44
▶ (0 ⊟ 3) ⊠ 16 = repInt(−48) = 52 *

actually, = repInt(−3) ⊠ 16 = 97 ⊠ 16 = repInt(1552) = 52

▶ (0 ⊟ 8) ⊠ 16 = repInt(−128) = 72 *

actually, = repInt(−8) ⊠ 16 = 92 ⊠ 16 = repInt(1472) = 72

Fortunately, we can delay the repInt to the very end or apply it at each intermediate
step — we get the same answer either way! (Why? Review Congruence Properties.)

Ryan Culpepper 06 Integers Modular Arithmetic 32

Examples: Modular Arithmetic •

Let Int = {0, 1, 2,…99}, and let ⊞, ⊟, ⊠ use Int (with𝑚 = 100).
▶ 12 ⊞ 23 = repInt(35) = 35
▶ 60 ⊞ 55 = repInt(115) = 15
▶ 98 ⊟ 44 = repInt(54) = 54
▶ 20 ⊟ 37 = repInt(−17) = 83
▶ 9 ⊠ 9 = repInt(81) = 81
▶ 12 ⊠ 12 = repInt(144) = 44
▶ (0 ⊟ 3) ⊠ 16 = repInt(−48) = 52 *
actually, = repInt(−3) ⊠ 16 = 97 ⊠ 16 = repInt(1552) = 52

▶ (0 ⊟ 8) ⊠ 16 = repInt(−128) = 72 *
actually, = repInt(−8) ⊠ 16 = 92 ⊠ 16 = repInt(1472) = 72

Fortunately, we can delay the repInt to the very end or apply it at each intermediate
step — we get the same answer either way! (Why? Review Congruence Properties.)

Ryan Culpepper 06 Integers Modular Arithmetic 32

Representing Negative Integers

We already “have” the negative numbers:

Examples

▶ −1 ≡ 99 (mod 100)
▶ −2 ≡ 98 (mod 100)
▶ −50 ≡ 50 (mod 100)
▶ …

▶ repInt(−1) = 99
▶ repInt(−2) = 98
▶ repInt(−50) = 50
▶ …

But Int contains no negative numbers, and we never get a “negative result”:
0 ⊟ 1 = 99, not −1.

Ryan Culpepper 06 Integers Modular Arithmetic 33

Representing Negative Numbers
We can keep the basic idea of modular arithmetic with modulus 100 but
move the “window” of representative numbers:

Instead of Int = {0, 1, 2,… , 99},
let Int = {−50,−49,… ,−1, 0, 1, 2,…49}.

Definition
The definitions of ⊞,⊟,⊠ are the same, but they refer to the new Int set:

𝑎 ⊞ 𝑏 = the unique 𝑐 ∈ Int such that 𝑐 ≡ 𝑎 + 𝑏 (mod 𝑚)
𝑎 ⊟ 𝑏 = the unique 𝑐 ∈ Int such that 𝑐 ≡ 𝑎 − 𝑏 (mod 𝑚)
𝑎 ⊠ 𝑏 = the unique 𝑐 ∈ Int such that 𝑐 ≡ 𝑎 ⋅ 𝑏 (mod 𝑚)

Or equivalently:

repInt(𝑎) = the unique 𝑐 ∈ Int such that 𝑐 ≡ 𝑎 (mod 𝑚)

𝑎 ⊞ 𝑏 = repInt(𝑎 + 𝑏) 𝑎 ⊟ 𝑏 = repInt(𝑎 − 𝑏) 𝑎 ⊠ 𝑏 = repInt(𝑎 ⋅ 𝑏)

Ryan Culpepper 06 Integers Modular Arithmetic 34

Exercise: Arithmetic with Negative Numbers •

Let Int = {−50,−49,… ,−1, 0, 1, 2,…49}.
▶ 12 ⊞ 23 =
▶ 30 ⊞ 25 =
▶ −20 ⊟ 30 =
▶ −35 ⊟ 45 =
▶ 12 ⊠ 12 =
▶ −3 ⊠ 16 =
▶ −4 ⊠ 16 =

Ryan Culpepper 06 Integers Modular Arithmetic 35

Other Bases

Ryan Culpepper 06 Integers Other Bases 36

Integers in Other Bases

Definition (Base)
Let 𝑏 (the base) be a positive integer greater than 1.
Then if 𝑛 ∈ ℤ+, it can be expressed uniquely in the form:

𝑛 = 𝑎𝑘𝑏
𝑘 + 𝑎𝑘−1𝑏

𝑘−1 +⋯+ 𝑎1𝑏 + 𝑎0

where 𝑘 is a nonnegative integer, 𝑎0, 𝑎1,… , 𝑎𝑘 are nonnegative integers less
than 𝑏, and 𝑎𝑘 > 0.

Then 𝑛 can be written “in base 𝑏” as “(𝑎𝑘𝑎𝑘−1 …𝑎1𝑎0)𝑏”.
That is, we use a subscript to indicate the base.
Sometimes we drop the parentheses.
If 𝑛 = 0, then by convention we write “(0)𝑏” or “0𝑏”.

Ryan Culpepper 06 Integers Other Bases 37

Examples: Bases
Example for 𝑏 = 10 (decimal):

(859)10 = 8 ⋅ 102 + 5 ⋅ 101 + 9 ⋅ 100

= 8 ⋅ 100 + 5 ⋅ 10 + 9 ⋅ 1

Example for 𝑏 = 2 (binary):

(10110)2 = 1 ⋅ 24 + 0 ⋅ 23 + 1 ⋅ 22 + 1 ⋅ 21 + 0 ⋅ 20

= 1 ⋅ 16 + 0 ⋅ 8 + 1 ⋅ 4 + 1 ⋅ 2 + 0 ⋅ 1
= 22

Example for 𝑏 = 16 (hexadecimal):

(3A0F)16 = 3 ⋅ 163 + 10 ⋅ 162 + 0 ⋅ 161 + 15 ⋅ 160

= 3 ⋅ 4096 + 10 ⋅ 256 + 0 ⋅ 16 + 15 ⋅ 16
= 14863

In hexadecimal notation, we use letters A to F to indicate numbers 10 to 15.

Ryan Culpepper 06 Integers Other Bases 38

Examples: Bases

Example for 𝑏 = 64 (Base64, ignoring padding):

(Zm9v)64 = 25 ⋅ 643 + 38 ⋅ 642 + 61 ⋅ 641 + 47 ⋅ 640

= 25 ⋅ 262144 + 38 ⋅ 4096 + 61 ⋅ 64 + 47 ⋅ 1
= 6713199

(Zm9v)64 = 25 ⋅ 643 + 38 ⋅ 642 + 61 ⋅ 641 + 47 ⋅ 640

= (011001)2 ⋅ (26)3 + (100110)2 ⋅ (26)2

+ (111101)2 ⋅ (26)1 + (101111)2 ⋅ (26)0

= (011001 100110 111101 101111)2
= (01100110 01101111 01101111)2

In Base64, we use A–Z, then a–z, then 0–9, then …it varies.
Each Base64 character encodes 6 bits, so 4 characters per 3 bytes.

Ryan Culpepper 06 Integers Other Bases 39

Converting to a Base

Given a base 𝑏 ∈ ℤ+ and a number 𝑛 ∈ ℤ+:
▶ Divide 𝑛 by 𝑏 to get the quotient 𝑞 and remainder 𝑟.
▶ If 𝑞 > 0, recursively convert 𝑞 to base 𝑏 to get a “digit” sequence.
If 𝑞 = 0, then start with the empty sequence.

▶ Add 𝑟 to the end of the sequence.

Example

convert4(30) = convert4(7) || “2” 30 = 7 ⋅ 4 + 2
= (convert4(1) || “3”) || “2” 7 = 1 ⋅ 4 + 3
= (“1” || “3”) || “2” 1 = 0 ⋅ 4 + 1
= “132”

So 30 = (132)4.

Ryan Culpepper 06 Integers Other Bases 40

Arithmetic: Addition

“Long addition” works the same in different bases:

11
7

1
58310

+ 493210
1251510

1
1

1
0112

+ 10102
101012

11
1

1
324

+ 2234
10214

For addition of (𝑥𝑛 …𝑥1𝑥0)𝑏 and (𝑦𝑛 …𝑦1𝑦0)𝑏 with “carries” (𝑐𝑛+1 …𝑐1):
▶ Start at the rightmost (lowest) digit/bit. Define 𝑐0 = 0.
▶ For each 𝑘:

▶ Compute 𝑠 = 𝑥𝑘 + 𝑦𝑘 + 𝑐𝑘
▶ Divide 𝑠 by 𝑏; set 𝑐𝑘+1 to the quotient and 𝑧𝑘 to the remainder.

▶ The result is (𝑐𝑛+1𝑧𝑛𝑧𝑛−1 …𝑧1𝑧0)𝑏. (Drop leading zero if necessary.)

Digital logic: a “full adder” takes 3 input bits and produces 2 output bits.

Ryan Culpepper 06 Integers Other Bases 41

Arithmetic: Multiplication

“Long multiplication” works the same in different bases:

22010
× 14910

198010
880 10

+ 220 10
3278010

10112
× 1012

10112
0000 2

+ 1011 2
1101112

Ryan Culpepper 06 Integers Other Bases 42

Binary Integers

Processor (CPU, GPU) implementations of integers typically combine
▶ base-2 representation
▶ modular arithmetic with modulus of 2𝑛 (for 𝑛 ∈ {8, 16, 32, 64,… })

We’ll use 6 bits for our running examples.
▶ The modulus is 26 = 64.
▶ Int = {−32,… , 31}
▶ Let ⊞,⊟,⊠ use Int and modulus 64.

We still need to define:
▶ a representation strategy mapping Int to sequences of 6 bits
that is, a bijection bin ∶ Int → {0, 1}6

▶ binary implementations of ⊞,⊟,⊠ that satisfy their specification in
terms of modular arithmetic (ideally, just “long addition”, etc)

Ryan Culpepper 06 Integers Integers and Bits 43

Representing Integers with Bits

Recall Int = {−32,… , 31}, and the modulus is 64.
We want bin ∶ Int → {0, 1}6.
▶ If 𝑛 is nonnegative, we’ll use its ordinary base-2 representation.
▶ If 𝑛 is negative, ...?

Let’s think about some examples.
▶ Consider −1. According to the principles of modular arithmetic, it
should act the same as 63, since −1 ≡ 63 (mod 64).
And we do know how to represent 63 using 6 bits: 63 = 1111112.
So let’s represent −1 with the bits 1111112.

▶ Another example: −12. It should act like 52, since −12 ≡ 52 (mod 64).
So we’ll represent −12 with the bits 1101002, since 52 = 1101002.

▶ One more: −32. It should act like 32, since −32 ≡ 32 (mod 64).
So we’ll represent −32 with the bits 1000002, since 32 = 1000002.

Ryan Culpepper 06 Integers Integers and Bits 44

Representing Integers with Bits

Recall Int = {−32,… , 31}, and the modulus is 64.
We want bin ∶ Int → {0, 1}6.
▶ If 𝑛 is nonnegative, we’ll use its ordinary base-2 representation.
▶ If 𝑛 is negative, ...?

Let’s think about some examples.
▶ Consider −1. According to the principles of modular arithmetic, it
should act the same as 63, since −1 ≡ 63 (mod 64).
And we do know how to represent 63 using 6 bits: 63 = 1111112.
So let’s represent −1 with the bits 1111112.

▶ Another example: −12. It should act like 52, since −12 ≡ 52 (mod 64).
So we’ll represent −12 with the bits 1101002, since 52 = 1101002.

▶ One more: −32. It should act like 32, since −32 ≡ 32 (mod 64).
So we’ll represent −32 with the bits 1000002, since 32 = 1000002.

Ryan Culpepper 06 Integers Integers and Bits 44

Representing Integers with Bits
Let UInt = {0,… , 63}. Those are “ordinarily” representable in base 2 using
6 bits. Let repUInt ∶ ℤ → UInt be the representative-finder for UInt.

bin ∶ Int → {0, 1}6

bin(𝑛) = convert2(repUInt(𝑛))

=
⎧{
⎨{⎩

convert2(𝑛) if 𝑛 ≥ 0; that is, 0 ≤ 𝑛 ≤ 31
convert2(2

6 + 𝑛)) if 𝑛 < 0; that is, −32 ≤ 𝑛 ≤ −1

This is called the two’s complement representation of integers.

Examples

bin(0) = 0000002

bin(1) = 0000012 bin(−1) = convert2(63) = 1111112

bin(12) = 0011002 bin(−12) = convert2(52) = 1101002

bin(31) = 0111112 bin(−31) = convert2(33) = 1000012

bin(−32) = convert2(32) = 1000002

Ryan Culpepper 06 Integers Integers and Bits 45

Arithmetic with Bits

17
⊞ 12

29

0100012
⊞ 0011002

0111012

12
⊞ −20

−8

0
1
0

1
11002

⊞ 1011002
1110002

27
⊞ 12

−15

1
0

1
110112

⊞ 0011002
1001112

−30
⊞ −20

14

1
1000102

⊞ 1011002
0011102

Addition is just binary “long addition” discarding bits above the 6th.

Ryan Culpepper 06 Integers Integers and Bits 46

Topic List

▶ divides (𝑎|𝑏), factor, multiple
▶ prime, composite
▶ fundamental theorem of arithmetic, prime factorization
▶ division: dividend, divisor, quotient, remainder
▶ greatest common divisor, least common multiple (gcd, lcm)
▶ relatively prime
▶ modulo operator (mod)
▶ congruence modulo𝑚 (𝑎 ≡ 𝑏 (mod 𝑚))
▶ representing integers, modular arithmetic
▶ representing negative integers
▶ integers in other bases, conversion between bases
▶ arithmetic (addition, multiplication) in other bases
▶ two’s complement

Ryan Culpepper 06 Integers Summary 47

	Divisibility
	Division
	Modular Arithmetic
	Other Bases
	Integers and Bits
	Summary

