
Reals
CS 220 — Applied Discrete Mathematics

March 26, 2025

Ryan Culpepper 06 Reals 1



Representing the Reals

We’ve talked about how to represent ℤ given “hardware limitations”:
▶ Pick a (contiguous) set of 𝑚 “representatives”: Int ⊂ ℤ.
▶ Implement operations using modular arithmetic with modulus 𝑚.

How can we represent ℝ?

▶ Pick a set of “representatives”: Float ⊂ ℝ (*)
▶ Implement operations …somehow.

Two basic strategies:
▶ fixed-point representation & arithmetic
▶ floating-point representation & arithmetic

Ryan Culpepper 06 Reals Introduction 2



Representing the Reals

We’ve talked about how to represent ℤ given “hardware limitations”:
▶ Pick a (contiguous) set of 𝑚 “representatives”: Int ⊂ ℤ.
▶ Implement operations using modular arithmetic with modulus 𝑚.

How can we represent ℝ?
▶ Pick a set of “representatives”: Float ⊂ ℝ (*)
▶ Implement operations …somehow.

Two basic strategies:
▶ fixed-point representation & arithmetic
▶ floating-point representation & arithmetic

Ryan Culpepper 06 Reals Introduction 2



Fixed-Point Representation

Definition (Fixed-Point Representation)

A fixed-point representation of real numbers devotes fixed amounts of
space to the whole part and fractional part.

For example: four (decimal) digits total, two before the decimal point and
two after the decimal point. (The decimal “point” is in a “fixed” position.)

Advantages:
▶ can implement easily on top of integer support
for example, fractional dollars = integer number of cents

▶ good for domains that already use given granularity
Disadvantages:
▶ often can’t represent data with the domain’s natural scale
▶ poor at handling quantities at different scales; difficult to re-use code

Ryan Culpepper 06 Reals Fixed-Point Arithmetic 3



Floating-Point Representation

Definition (Floating-Point Representation)

A floating-point representation of real numbers devotes variable amounts
of space to the whole part and fractional part.
A number is represented as a significand multiplied by a scale calculated
from an exponent, similar to scientific notation.

For example: Float = {(𝑠, 𝑒) ∣ 𝑠 ∈ {0, … , 999} , 𝑒 ∈ {−5, … , 4}}
▶ (𝑠, 𝑒) represents 𝑠 × 10𝑒

▶ four digits total: three digits of significand, one digit of exponent
▶ normalization:

▶ keep 𝑠 in range {100, … , 999} if possible
for example, 1.0 is represented as 100 × 10−2

▶ pick one exponent for zero: for example, 0.0 is represented as 0 × 10−5

▶ IEEE 754 uses sign bit; also adds +∞, −∞, NaN

Ryan Culpepper 06 Reals Floating-Point Arithmetic 4



Floating-Point Arithmetic

Like arithmetic using scientific notation (except no significant digits!):
▶ 𝑠1 × 10𝑒1 ⊞ 𝑠2 × 10𝑒2 and 𝑠1 × 10𝑒1 ⊟ 𝑠2 × 10𝑒2

First, put both on the same scale (may temporarily use extra digits).
Add/subtract, then re-normalize, round to closest element of Float.

▶ 𝑠1 × 10𝑒1 ⊠ 𝑠2 × 10𝑒2

Multiply significands (may use extra digits!), add exponents,
then re-normalize, round to closest element of Float.

Examples

Compute 123 × 103 ⊞ 456 × 101:
▶ Rescale: 123.0 × 103 ⊞ 004.6 × 103 (one extra temporary digit)
▶ Add: 127.6 × 103

▶ Round: 128 × 103

Ryan Culpepper 06 Reals Floating-Point Arithmetic 5



Example: Non-Associative

Consider 123 × 100 ⊞ 246 × 103 ⊟ 246 × 103:

(123 × 100 ⊞ 246 × 103) ⊟ 246 × 103

= 246 × 103 ⊟ 246 × 103

= 0

123 × 100 ⊞ (246 × 103 ⊟ 246 × 103)
= 123 × 100 ⊞ 0
= 123 × 100 ¬Associative

Numerical algorithms must be careful to avoid or mitigate such errors.
Keywords: numerical analysis, error analysis, numerical stability, catastrophic cancellation

“What Every Computer Scientist Should Know About Floating-Point Arithmetic” (Goldberg 1991)

Ryan Culpepper 06 Reals Floating-Point Arithmetic 6

https://dl.acm.org/doi/10.1145/103162.103163


Example: Pathologically Non-Associative
Consider 500 × 104 ⊞ 500 × 104 ⊞ − 500 × 104 ⊞ − 500 × 104:

((500 × 104 ⊞ 500 × 104) ⊞ −500 × 104) ⊞ −500 × 104

= (+∞ ⊞ −500 × 104) ⊞ −500 × 104

= +∞ ⊞ −500 × 104

= +∞

500 × 104 ⊞ (500 × 104 ⊞ (−500 × 104 ⊞ −500 × 104))

= 500 × 104 ⊞ (500 × 104 ⊞ −∞)

= 500 × 104 ⊞ −∞
= −∞

(500 × 104 ⊞ 500 × 104) ⊞ (−500 × 104 ⊞ −500 × 104)
= ∞ ⊞ −∞
= NaN

500 × 104 ⊞ (500 × 104 ⊞ −500 × 104) ⊞ −500 × 104

= 500 × 104 ⊞ 0 ⊞ −500 × 104

= 500 × 104 ⊞ −500 × 104

= 0

Ryan Culpepper 06 Reals Floating-Point Arithmetic 7


	Introduction
	Fixed-Point Arithmetic
	Floating-Point Arithmetic

