
Recursion and Induction
CS 220 — Applied Discrete Mathematics

April {9, 14}, 2025

Ryan Culpepper 08 Recursion and Induction 1

Recursive Definitions

Definition (Recursive)
A definition is recursive if its right-hand side refers to the name or symbol
being defined. We also say the definition is self-referential.

Ryan Culpepper 08 Recursion and Induction Recursive Definitions 2

Recursive Definitions

Some things that look like recursive definitions may not be:

Examples

▶ 𝑥 = 𝑥2 specification (two solutions)
▶ 𝑥 = 𝑥 + 1 unsatisfiable/contradictory
▶ 𝑥 = 𝑥 underconstrained
▶ 𝑥 = 1

2 (𝑥2 + 1) ?? (one solution)
▶ “This statement is false.” interestingly problematic

For functions, we usually play it safe: definition by cases, with
▶ one or more non-recursive base cases
▶ and recursive cases that recur on strictly smaller arguments

If a recursive function definition does not have that structure,
it may not be well-defined.

Ryan Culpepper 08 Recursion and Induction Recursive Definitions 3

Recursively-Defined Things

▶ recursively-defined functions
▶ recursively-defined sets (and types)
▶ recursively-defined relations

Don’t say “recursive set”.

The set itself is not recursive (eg, self-containing; see Russell’s paradox).
Also, “recursive set” is jargon in computability theory, where it means the
same thing as “computable” and “decidable”.

Ryan Culpepper 08 Recursion and Induction Recursive Definitions 4

Recursively-Defined Functions and Sequences

Ryan Culpepper 08 Recursion and Induction Recursively-Defined Functions and Sequences 5

Definition of Factorial

𝑛! =
⎧{
⎨{⎩

1 if 𝑛 = 0
𝑛 ⋅ (𝑛 − 1)! if 𝑛 > 0

Example

0! = 1
1! = 1 ⋅ 0! = 1 ⋅ 1 = 1
2! = 2 ⋅ 1! = 2 ⋅ 1 ⋅ 1 = 2
3! = 3 ⋅ 2! = 3 ⋅ 2 ⋅ 1 ⋅ 1 = 6
4! = 4 ⋅ 3! = 4 ⋅ 3 ⋅ 2 ⋅ 1 ⋅ 1 = 24

Ryan Culpepper 08 Recursion and Induction Recursively-Defined Functions and Sequences 6

Definition of Fibonacci Numbers
The Fibonacci sequence (0, 1, 1, 2, 3, 5, 8, 13, …) can be defined like this:

𝐹(𝑛) =
⎧{{
⎨{{⎩

0 if 𝑛 = 0
1 if 𝑛 = 1
𝐹(𝑛 − 1) + 𝐹(𝑛 − 2) if 𝑛 > 1

or like this:

𝐹(0) = 0
𝐹(1) = 1
𝐹(𝑛) = 𝐹(𝑛 − 1) + 𝐹(𝑛 − 2) if 𝑛 > 1

or like this:

𝐹0 = 0 𝐹1 = 1 𝐹𝑛+2 = 𝐹𝑛+1 + 𝐹𝑛

Structure matters more than notation: multiple cases, with at least one
base case, and recursion on smaller arguments.

Ryan Culpepper 08 Recursion and Induction Recursively-Defined Functions and Sequences 7

Another Recursive Sequence

𝑠(0) = 0 𝑠(𝑛 + 1) = 2𝑛 + 1 + 𝑠(𝑛)

Examples

𝑠(1) = 2 ⋅ 0 + 1 + 0 = 1
𝑠(2) = 2 ⋅ 1 + 1 + 1 = 4
𝑠(3) = 2 ⋅ 2 + 1 + 4 = 9
𝑠(4) = 2 ⋅ 3 + 1 + 9 = 16

Conjecture

The sequence 𝑠 also seems to have a closed form: 𝑠(𝑛) = 𝑛2.
(How could we be sure?)

Ryan Culpepper 08 Recursion and Induction Recursively-Defined Functions and Sequences 8

Another Recursive Sequence

𝑠(0) = 0 𝑠(𝑛 + 1) = 2𝑛 + 1 + 𝑠(𝑛)

Examples

𝑠(1) = 2 ⋅ 0 + 1 + 0 = 1
𝑠(2) = 2 ⋅ 1 + 1 + 1 = 4
𝑠(3) = 2 ⋅ 2 + 1 + 4 = 9
𝑠(4) = 2 ⋅ 3 + 1 + 9 = 16

Conjecture

The sequence 𝑠 also seems to have a closed form: 𝑠(𝑛) = 𝑛2.
(How could we be sure?)

Ryan Culpepper 08 Recursion and Induction Recursively-Defined Functions and Sequences 8

Another Recursive Sequence

𝑠(0) = 0 𝑠(𝑛 + 1) = 2𝑛 + 1 + 𝑠(𝑛)

Examples

𝑠(1) = 2 ⋅ 0 + 1 + 0 = 1
𝑠(2) = 2 ⋅ 1 + 1 + 1 = 4
𝑠(3) = 2 ⋅ 2 + 1 + 4 = 9
𝑠(4) = 2 ⋅ 3 + 1 + 9 = 16

Conjecture

The sequence 𝑠 also seems to have a closed form: 𝑠(𝑛) = 𝑛2.
(How could we be sure?)

Ryan Culpepper 08 Recursion and Induction Recursively-Defined Functions and Sequences 8

Definition of Exponentiation, etc
We can define exponentiation to powers in ℕ recursively:

𝑥0 = 1
𝑥𝑛 = 𝑥 ⋅ 𝑥𝑛−1 if 𝑛 > 0

In fact, we can define multiplication in ℕ recursively:

0 ⋅ 𝑛 = 0
𝑚 ⋅ 𝑛 = 𝑛 + (𝑚 − 1) ⋅ 𝑛 if 𝑚 > 0

In fact, we can define addition in ℕ recursively in terms of a simpler
successor (“1+”) function:

0 + 𝑛 = 𝑛
successor(𝑚) + 𝑛 = successor(𝑚 + 𝑛)

This view of the natural numbers is called Peano arithmetic (1889).
Lots of simple, familiar operations are “hiding” recursion and induction underneath.

Ryan Culpepper 08 Recursion and Induction Recursively-Defined Functions and Sequences 9

Definition of Exponentiation, etc
We can define exponentiation to powers in ℕ recursively:

𝑥0 = 1
𝑥𝑛 = 𝑥 ⋅ 𝑥𝑛−1 if 𝑛 > 0

In fact, we can define multiplication in ℕ recursively:

0 ⋅ 𝑛 = 0
𝑚 ⋅ 𝑛 = 𝑛 + (𝑚 − 1) ⋅ 𝑛 if 𝑚 > 0

In fact, we can define addition in ℕ recursively in terms of a simpler
successor (“1+”) function:

0 + 𝑛 = 𝑛
successor(𝑚) + 𝑛 = successor(𝑚 + 𝑛)

This view of the natural numbers is called Peano arithmetic (1889).
Lots of simple, familiar operations are “hiding” recursion and induction underneath.

Ryan Culpepper 08 Recursion and Induction Recursively-Defined Functions and Sequences 9

Definition of Exponentiation, etc
We can define exponentiation to powers in ℕ recursively:

𝑥0 = 1
𝑥𝑛 = 𝑥 ⋅ 𝑥𝑛−1 if 𝑛 > 0

In fact, we can define multiplication in ℕ recursively:

0 ⋅ 𝑛 = 0
𝑚 ⋅ 𝑛 = 𝑛 + (𝑚 − 1) ⋅ 𝑛 if 𝑚 > 0

In fact, we can define addition in ℕ recursively in terms of a simpler
successor (“1+”) function:

0 + 𝑛 = 𝑛
successor(𝑚) + 𝑛 = successor(𝑚 + 𝑛)

This view of the natural numbers is called Peano arithmetic (1889).
Lots of simple, familiar operations are “hiding” recursion and induction underneath.

Ryan Culpepper 08 Recursion and Induction Recursively-Defined Functions and Sequences 9

Other Recurrences

Recursive equations or recurrences also show up in the running-time
analysis of algorithms. For example:

𝑇(𝑛) = 𝑇(⌈𝑛
2 ⌉) + 1 if 𝑛 > 1

describes the (simplified) running time of Binary Search, and

𝑇(𝑛) = 2𝑇(⌈𝑛
2 ⌉) + 𝑛 if 𝑛 > 1

describes the (simplified) running time of MergeSort.

Ryan Culpepper 08 Recursion and Induction Recursively-Defined Functions and Sequences 10

Recursively-Defined Sets and Relations

Ryan Culpepper 08 Recursion and Induction Recursively-Defined Sets and Relations 11

Recursively-Defined Sets
Let 𝑆 ⊆ ℕ be defined recursively as follows:

𝑆 = {7} ∪ {𝑎 + 𝑏 ∣ 𝑎, 𝑏 ∈ 𝑆}

What is 𝑆?

I can actually think of three answers:
▶ 𝑆1: the positive multiples of 7 {7, 14, 21, 28, … }
▶ 𝑆2: the nonnegative multiples of 7 {0, 7, 14, 21, 28, … }
▶ ℕ: all natural numbers {0, 1, 2, 3, 4, … }

All three answers actually satisfy the equation above. (Check!)

In practice, we usually want the smallest answer, 𝑆1:

𝑆1 ⊂ 𝑆2 𝑆1 ⊂ ℕ

That is, we don’t want anything that doesn’t have to be there.

Ryan Culpepper 08 Recursion and Induction Recursively-Defined Sets and Relations 12

Recursively-Defined Sets
Let 𝑆 ⊆ ℕ be defined recursively as follows:

𝑆 = {7} ∪ {𝑎 + 𝑏 ∣ 𝑎, 𝑏 ∈ 𝑆}

What is 𝑆?

I can actually think of three answers:
▶ 𝑆1: the positive multiples of 7 {7, 14, 21, 28, … }
▶ 𝑆2: the nonnegative multiples of 7 {0, 7, 14, 21, 28, … }
▶ ℕ: all natural numbers {0, 1, 2, 3, 4, … }

All three answers actually satisfy the equation above. (Check!)

In practice, we usually want the smallest answer, 𝑆1:

𝑆1 ⊂ 𝑆2 𝑆1 ⊂ ℕ

That is, we don’t want anything that doesn’t have to be there.

Ryan Culpepper 08 Recursion and Induction Recursively-Defined Sets and Relations 12

Recursively-Defined Sets
Let 𝑆 ⊆ ℕ be defined recursively as follows:

𝑆 = {7} ∪ {𝑎 + 𝑏 ∣ 𝑎, 𝑏 ∈ 𝑆}

What is 𝑆?

I can actually think of three answers:
▶ 𝑆1: the positive multiples of 7 {7, 14, 21, 28, … }
▶ 𝑆2: the nonnegative multiples of 7 {0, 7, 14, 21, 28, … }
▶ ℕ: all natural numbers {0, 1, 2, 3, 4, … }

All three answers actually satisfy the equation above. (Check!)

In practice, we usually want the smallest answer, 𝑆1:

𝑆1 ⊂ 𝑆2 𝑆1 ⊂ ℕ

That is, we don’t want anything that doesn’t have to be there.
Ryan Culpepper 08 Recursion and Induction Recursively-Defined Sets and Relations 12

Recursively-Defined Sets

Thus, recursive set definitions are often written as follows:

Let 𝑆 ⊆ ℕ be the least set such that 𝑆 = {7} ∪ {𝑎 + 𝑏 ∣ 𝑎, 𝑏 ∈ 𝑆}.
or

Let 𝑆 ⊆ ℕ be the smallest set such that
▶ 7 ∈ 𝑆, and
▶ for every 𝑎, 𝑏 ∈ 𝑆, 𝑎 + 𝑏 ∈ 𝑆.

Ryan Culpepper 08 Recursion and Induction Recursively-Defined Sets and Relations 13

Iterative Construction of Recursively-Defined Sets

Let 𝑆 ⊆ ℕ be the least set such that

𝑆 = {7} ∪ {𝑎 + 𝑏 ∣ 𝑎, 𝑏 ∈ 𝑆}

We can iteratively build approximations to 𝑆 as follows:
▶ In the first round (“round 0”), the approximation set is just {7}.
▶ At each subsequent round, let 𝑎 and 𝑏 both take on every value from
the previous round, and add 𝑎 + 𝑏 to the new approximation set.

That is, we define a sequence of approximation sets 𝑆𝑛 as follows:

𝑆0 = {7} 𝑆𝑛+1 = 𝑆𝑛 ∪ {𝑎 + 𝑏 ∣ 𝑎, 𝑏 ∈ 𝑆𝑛}

Then we take the limit of the approximations: 𝑆 = ⋃∞
𝑛=0 𝑆𝑛

Ryan Culpepper 08 Recursion and Induction Recursively-Defined Sets and Relations 14

Recursion and Fixed Points
Let 𝑆 ⊆ ℕ be the least set such that

𝑆 = {7} ∪ {𝑎 + 𝑏 ∣ 𝑎, 𝑏 ∈ 𝑆}

We can define a function CloserToS ∶ 𝒫(ℕ) → 𝒫(ℕ) that takes any
approximation to 𝑆 and makes a better one by one “round”:

CloserToS(𝐴) = {7} ∪ {𝑎 + 𝑏 ∣ 𝑎, 𝑏 ∈ 𝐴}

We can rewrite the original recursive equation for 𝑆 as

𝑆 = CloserToS(𝑆)

That is, a solution to the equation is a fixed point of the function.
▶ The Knaster-Tarski Theorem says that a least fixed point exists
because CloserToS is a monotonic function (with respect to ⊆).

▶ The Kleene Fixed-Point Theorem says that the least fixed point is equal
to lim𝑛→∞ CloserToS(𝑛)(∅) — that is, the limit of the approximations.

Ryan Culpepper 08 Recursion and Induction Recursively-Defined Sets and Relations 15

Example: Arithmetic Expressions

Let AE be the smallest set such that:
▶ ℤ ⊆ AE, and
▶ for every 𝑒1, 𝑒2 ∈ AE, “(𝑒1 + 𝑒2)” ∈ AE, and
▶ for every 𝑒1, 𝑒2 ∈ AE, “(𝑒1 − 𝑒2)” ∈ AE, and
▶ for every 𝑒1, 𝑒2 ∈ AE, “(𝑒1 ∗ 𝑒2)” ∈ AE

Examples

▶ Step 0: 1, 2, −7, 50, …
▶ Step 1: (1 + 2), (2 ∗ −7), (50 − 1), …
▶ Step 2: (50 − (1 + 2)), (2 ∗ (2 ∗ −7)), ((1 + 2) ∗ (50 − 1)), …
▶ and so on …

In fact, for a specific example, we can predict which step first discovers it.
(How?)

Ryan Culpepper 08 Recursion and Induction Recursively-Defined Sets and Relations 16

Example: Binary Trees

Let BT be the smallest set such that:
▶ nil ∈ BT, and

▶ for every 𝑛 ∈ ℤ and 𝑡𝑙, 𝑡𝑟 ∈ BT,
𝑛

𝑡𝑙 𝑡𝑟
∈ BT

Ryan Culpepper 08 Recursion and Induction Recursively-Defined Sets and Relations 17

Example: Recursively-Defined Relations

Suppose 𝑅 is a relation on 𝐴, and suppose 𝑇 is defined as follows:

𝑇 = 𝑅 ∪ (𝑇 ∘ 𝑇)

or equivalently:
Let 𝑇 be the smallest relation such that
▶ 𝑅 ⊆ 𝑇, and
▶ if (𝑎, 𝑏) ∈ 𝑇 and (𝑏, 𝑐) ∈ 𝑇, then (𝑎, 𝑐) ∈ 𝑇

That’s the transitive closure: 𝑇 (aka 𝑅+) is the transitive closure of 𝑅.

Ryan Culpepper 08 Recursion and Induction Recursively-Defined Sets and Relations 18

Example: Recursively-Defined Relations

Suppose 𝑅 is a relation on 𝐴, and suppose 𝑇 is defined as follows:

𝑇 = 𝑅 ∪ (𝑇 ∘ 𝑇)

or equivalently:
Let 𝑇 be the smallest relation such that
▶ 𝑅 ⊆ 𝑇, and
▶ if (𝑎, 𝑏) ∈ 𝑇 and (𝑏, 𝑐) ∈ 𝑇, then (𝑎, 𝑐) ∈ 𝑇

That’s the transitive closure: 𝑇 (aka 𝑅+) is the transitive closure of 𝑅.

Ryan Culpepper 08 Recursion and Induction Recursively-Defined Sets and Relations 18

Example: Recursively-Defined Relations

Suppose 𝑅 is a relation on 𝐴, and suppose 𝑇 is defined as follows:

𝑇 = 𝑅 ∪ (𝑇 ∘ 𝑇)

or equivalently:
Let 𝑇 be the smallest relation such that
▶ 𝑅 ⊆ 𝑇, and
▶ if (𝑎, 𝑏) ∈ 𝑇 and (𝑏, 𝑐) ∈ 𝑇, then (𝑎, 𝑐) ∈ 𝑇

That’s the transitive closure: 𝑇 (aka 𝑅+) is the transitive closure of 𝑅.

Ryan Culpepper 08 Recursion and Induction Recursively-Defined Sets and Relations 18

Example: Rotations in Binary Trees
Suppose 𝑅 is a relation on BT for “tree rotations”, defined by

⎧{{
⎨{{⎩

⎛⎜⎜⎜⎜⎜
⎝

𝑥
𝑦

𝑡1 𝑡2

𝑡3 ,

𝑦
𝑡1 𝑥

𝑡2 𝑡3

⎞⎟⎟⎟⎟⎟
⎠

∣∣∣∣∣∣
𝑥, 𝑦 ∈ ℤ, 𝑡1, 𝑡2, 𝑡3 ∈ BT

⎫}}
⎬}}⎭

Let 𝑅𝐶 be the smallest relation such that
▶ 𝑅 ⊆ 𝑅𝐶, and
▶ if 𝑥 ∈ ℤ and 𝑡2 ∈ BT and (𝑡1, 𝑡′

1) ∈ 𝑅𝐶, then
⎛⎜⎜
⎝

𝑥
𝑡1 𝑡2

,
𝑥

𝑡′
1 𝑡2

⎞⎟⎟
⎠

∈ 𝑅𝐶

▶ if 𝑥 ∈ ℤ and 𝑡1 ∈ BT and (𝑡2, 𝑡′
2) ∈ 𝑅𝐶, then

⎛⎜⎜
⎝

𝑥
𝑡1 𝑡2

,
𝑥

𝑡1 𝑡′
2

⎞⎟⎟
⎠

∈ 𝑅𝐶

𝑅𝐶 means you can rotate at the root or within any sub-tree.
Ryan Culpepper 08 Recursion and Induction Recursively-Defined Sets and Relations 19

Exercise: Recursive Functions and Sets

1. Let 𝑓 be defined as follows:

𝑓 (𝑛) =
⎧{
⎨{⎩

0 if 𝑛 = 0
⌈𝑛

2 ⌉ + 𝑓 (𝑛 − 1) if 𝑛 > 0

Calculate 𝑓 (1) up through 𝑓 (4).

2. Let 𝑋 be a set of strings defined as the smallest set such that
▶ {“a”, “bb”} ⊆ 𝑋, and
▶ if 𝑥, 𝑦 ∈ 𝑋, then concatenate(𝑥, 𝑦) ∈ 𝑋

The “zeroth” approximation is 𝑋0 = {“a”, “bb”}.
Calculate approximations (“rounds”) 𝑋1 through 𝑋3.

Ryan Culpepper 08 Recursion and Induction Recursively-Defined Sets and Relations 20

Mathematical Induction

Ryan Culpepper 08 Recursion and Induction Mathematical Induction 21

Idea of Induction

Suppose you know both of the following:

𝑃(0) ∀𝑛 ∈ ℕ, 𝑃(𝑛) ⇒ 𝑃(𝑛 + 1)

Then
▶ 𝑃(0) is true.
▶ Since 𝑃(0) is true, 𝑃(1) must be true.
▶ Since 𝑃(1) is true, 𝑃(2) must be true.
▶ Since 𝑃(2) is true, 𝑃(3) must be true.
▶ Since 𝑃(3) is true, 𝑃(4) must be true.
▶ And so on.

Mathematical induction recognizes that this pattern of reasoning eventually
covers every natural number.
That is, ∀𝑛 ∈ ℕ, 𝑃(𝑛).

Ryan Culpepper 08 Recursion and Induction Mathematical Induction 22

Proof by Induction

Definition (Induction)
Induction is a proof technique for proving universal statements about the
natural numbers (or other recursively-defined sets).

𝑃(0) ∀𝑛 ∈ ℕ, 𝑃(𝑛) ⇒ 𝑃(𝑛 + 1)
∀𝑛 ∈ ℕ, 𝑃(𝑛)

Induction

Ryan Culpepper 08 Recursion and Induction Mathematical Induction 23

My Template for a Proof by Induction
Theorem
For every 𝑛 ∈ ℕ, 𝑃(𝑛) is true.

Proof.
Proof by induction on 𝑛.
Base case: Prove 𝑃(0)

Goal: write 𝑃(0) here: just plug in 0 for 𝑛 (no simplification)

Now prove the proposition 𝑃(0).

Inductive case: Prove ∀𝑛 ∈ ℕ, 𝑃(𝑛) ⇒ 𝑃(𝑛 + 1)

Let 𝑛 ∈ ℕ. Assume (inductive hypothesis): write 𝑃(𝑛) here

Goal: write 𝑃(𝑛 + 1) here: just plug in 𝑛 + 1 for 𝑛 (no simplification)

Now prove the proposition 𝑃(𝑛 + 1).
The proposition 𝑃(𝑛) is available as an assumption. Use it!

Ryan Culpepper 08 Recursion and Induction Mathematical Induction 24

Example: 𝑠(𝑛) = 𝑛2

Theorem
Let 𝑠 ∶ ℕ → ℕ be defined by 𝑠(0) = 0 and 𝑠(𝑛 + 1) = 2𝑛 + 1 + 𝑠(𝑛). Then 𝑠(𝑛) = 𝑛2.

Proof.
By induction on 𝑛.

Base case:
Goal: 𝑠(0) = 02

By definition 𝑠(0) = 0 = 02.
Inductive case:
Let 𝑛 ∈ ℕ. Assume (inductive hypothesis): 𝑠(𝑛) = 𝑛2.
Goal: 𝑠(𝑛 + 1) = (𝑛 + 1)2.
Calculate starting with 𝑠(𝑛 + 1):

𝑠(𝑛 + 1) = 2𝑛 + 1 + 𝑠(𝑛) by definition of 𝑠
= 2𝑛 + 1 + 𝑛2 by IH

= 𝑛2 + 2𝑛 + 1 = (𝑛 + 1)2 algebra

Ryan Culpepper 08 Recursion and Induction Mathematical Induction 25

Example: 𝑠(𝑛) = 𝑛2

Theorem
Let 𝑠 ∶ ℕ → ℕ be defined by 𝑠(0) = 0 and 𝑠(𝑛 + 1) = 2𝑛 + 1 + 𝑠(𝑛). Then 𝑠(𝑛) = 𝑛2.

Proof.
By induction on 𝑛.
Base case:
Goal: 𝑠(0) = 02

By definition 𝑠(0) = 0 = 02.

Inductive case:
Let 𝑛 ∈ ℕ. Assume (inductive hypothesis): 𝑠(𝑛) = 𝑛2.
Goal: 𝑠(𝑛 + 1) = (𝑛 + 1)2.
Calculate starting with 𝑠(𝑛 + 1):

𝑠(𝑛 + 1) = 2𝑛 + 1 + 𝑠(𝑛) by definition of 𝑠
= 2𝑛 + 1 + 𝑛2 by IH

= 𝑛2 + 2𝑛 + 1 = (𝑛 + 1)2 algebra

Ryan Culpepper 08 Recursion and Induction Mathematical Induction 25

Example: 𝑠(𝑛) = 𝑛2

Theorem
Let 𝑠 ∶ ℕ → ℕ be defined by 𝑠(0) = 0 and 𝑠(𝑛 + 1) = 2𝑛 + 1 + 𝑠(𝑛). Then 𝑠(𝑛) = 𝑛2.

Proof.
By induction on 𝑛.
Base case:
Goal: 𝑠(0) = 02

By definition 𝑠(0) = 0 = 02.
Inductive case:
Let 𝑛 ∈ ℕ. Assume (inductive hypothesis): 𝑠(𝑛) = 𝑛2.
Goal: 𝑠(𝑛 + 1) = (𝑛 + 1)2.

Calculate starting with 𝑠(𝑛 + 1):

𝑠(𝑛 + 1) = 2𝑛 + 1 + 𝑠(𝑛) by definition of 𝑠
= 2𝑛 + 1 + 𝑛2 by IH

= 𝑛2 + 2𝑛 + 1 = (𝑛 + 1)2 algebra

Ryan Culpepper 08 Recursion and Induction Mathematical Induction 25

Example: 𝑠(𝑛) = 𝑛2

Theorem
Let 𝑠 ∶ ℕ → ℕ be defined by 𝑠(0) = 0 and 𝑠(𝑛 + 1) = 2𝑛 + 1 + 𝑠(𝑛). Then 𝑠(𝑛) = 𝑛2.

Proof.
By induction on 𝑛.
Base case:
Goal: 𝑠(0) = 02

By definition 𝑠(0) = 0 = 02.
Inductive case:
Let 𝑛 ∈ ℕ. Assume (inductive hypothesis): 𝑠(𝑛) = 𝑛2.
Goal: 𝑠(𝑛 + 1) = (𝑛 + 1)2.
Calculate starting with 𝑠(𝑛 + 1):

𝑠(𝑛 + 1) = 2𝑛 + 1 + 𝑠(𝑛) by definition of 𝑠
= 2𝑛 + 1 + 𝑛2 by IH

= 𝑛2 + 2𝑛 + 1 = (𝑛 + 1)2 algebra

Ryan Culpepper 08 Recursion and Induction Mathematical Induction 25

Induction and Summations

The recursively-defined function 𝑠(𝑛)

𝑠(0) = 0 𝑠(𝑛 + 1) = 2𝑛 + 1 + 𝑠(𝑛)

could also be written as follows:

𝑠(𝑘) =
⎧{
⎨{⎩

0 if 𝑘 = 0
2𝑘 − 1 + 𝑠(𝑘 − 1) if 𝑘 > 0

(Note the difference in formula!)

That is, each new 𝑠(𝑘) step just adds 2𝑘 − 1 to the previous step.
So 𝑠(𝑛) could also be expressed as the following summation:

𝑠(𝑛) =
𝑛

∑
𝑘=1

(2𝑘 − 1)

Ryan Culpepper 08 Recursion and Induction Mathematical Induction 26

Induction and Summations

The recursively-defined function 𝑠(𝑛)

𝑠(0) = 0 𝑠(𝑛 + 1) = 2𝑛 + 1 + 𝑠(𝑛)

could also be written as follows:

𝑠(𝑘) =
⎧{
⎨{⎩

0 if 𝑘 = 0
2𝑘 − 1 + 𝑠(𝑘 − 1) if 𝑘 > 0

(Note the difference in formula!)

That is, each new 𝑠(𝑘) step just adds 2𝑘 − 1 to the previous step.
So 𝑠(𝑛) could also be expressed as the following summation:

𝑠(𝑛) =
𝑛

∑
𝑘=1

(2𝑘 − 1)

Ryan Culpepper 08 Recursion and Induction Mathematical Induction 26

Example: Summation ∑𝑛
𝑘=0

𝑘

Theorem (Gauss)
Let 𝑛 ∈ ℕ. Then ∑𝑛

𝑘=1
𝑘 = 𝑛(𝑛+1)

2 .

Proof.
By induction on 𝑛.

Base case: …
Inductive case:
Let 𝑛 ∈ ℕ. Assume (inductive hypothesis): ∑𝑛

𝑘=1
𝑘 = 𝑛(𝑛+1)

2 .
Goal: ∑𝑛+1

𝑘=1
𝑘 = (𝑛+1)((𝑛+1)+1)

2 .

Let’s calculate starting with the left-hand side of the goal:
𝑛+1
∑
𝑘=1

𝑘 = (𝑛 + 1) +
𝑛

∑
𝑘=1

𝑘

= (𝑛 + 1) + 𝑛(𝑛 + 1)
2 by IH

= 2𝑛 + 2 + 𝑛2 + 𝑛
2 = (𝑛 + 1)(𝑛 + 2)

2 = (𝑛 + 1)((𝑛 + 1) + 1)
2

Ryan Culpepper 08 Recursion and Induction Mathematical Induction 27

Example: Summation ∑𝑛
𝑘=0

𝑘

Theorem (Gauss)
Let 𝑛 ∈ ℕ. Then ∑𝑛

𝑘=1
𝑘 = 𝑛(𝑛+1)

2 .

Proof.
By induction on 𝑛.
Base case:
Goal: ∑0

𝑘=1
𝑘 = 0⋅(0+1)

2

Calculate left-hand side: ∑0
𝑘=1

𝑘 = 0
Calculate right-hand side: 0⋅(0+1)

2 = 0
2 = 0

Both sides of the equation are equal to 0, so the goal is satisfied.

Inductive case:
Let 𝑛 ∈ ℕ. Assume (inductive hypothesis): ∑𝑛

𝑘=1
𝑘 = 𝑛(𝑛+1)

2 .
Goal: ∑𝑛+1

𝑘=1
𝑘 = (𝑛+1)((𝑛+1)+1)

2 .

Let’s calculate starting with the left-hand side of the goal:
𝑛+1
∑
𝑘=1

𝑘 = (𝑛 + 1) +
𝑛

∑
𝑘=1

𝑘

= (𝑛 + 1) + 𝑛(𝑛 + 1)
2 by IH

= 2𝑛 + 2 + 𝑛2 + 𝑛
2 = (𝑛 + 1)(𝑛 + 2)

2 = (𝑛 + 1)((𝑛 + 1) + 1)
2

Ryan Culpepper 08 Recursion and Induction Mathematical Induction 27

Example: Summation ∑𝑛
𝑘=0

𝑘

Theorem (Gauss)
Let 𝑛 ∈ ℕ. Then ∑𝑛

𝑘=1
𝑘 = 𝑛(𝑛+1)

2 .

Proof.
By induction on 𝑛.
Base case: …
Inductive case:
Let 𝑛 ∈ ℕ. Assume (inductive hypothesis): ∑𝑛

𝑘=1
𝑘 = 𝑛(𝑛+1)

2 .
Goal: ∑𝑛+1

𝑘=1
𝑘 = (𝑛+1)((𝑛+1)+1)

2 .

Let’s calculate starting with the left-hand side of the goal:
𝑛+1
∑
𝑘=1

𝑘 = (𝑛 + 1) +
𝑛

∑
𝑘=1

𝑘

= (𝑛 + 1) + 𝑛(𝑛 + 1)
2 by IH

= 2𝑛 + 2 + 𝑛2 + 𝑛
2 = (𝑛 + 1)(𝑛 + 2)

2 = (𝑛 + 1)((𝑛 + 1) + 1)
2

Ryan Culpepper 08 Recursion and Induction Mathematical Induction 27

Example: Summation ∑𝑛
𝑘=0

𝑘

Theorem (Gauss)
Let 𝑛 ∈ ℕ. Then ∑𝑛

𝑘=1
𝑘 = 𝑛(𝑛+1)

2 .

Proof.
By induction on 𝑛.
Base case: …
Inductive case:
Let 𝑛 ∈ ℕ. Assume (inductive hypothesis): ∑𝑛

𝑘=1
𝑘 = 𝑛(𝑛+1)

2 .
Goal: ∑𝑛+1

𝑘=1
𝑘 = (𝑛+1)((𝑛+1)+1)

2 .

Let’s calculate starting with the left-hand side of the goal:
𝑛+1
∑
𝑘=1

𝑘 = (𝑛 + 1) +
𝑛

∑
𝑘=1

𝑘

= (𝑛 + 1) + 𝑛(𝑛 + 1)
2 by IH

= 2𝑛 + 2 + 𝑛2 + 𝑛
2 = (𝑛 + 1)(𝑛 + 2)

2 = (𝑛 + 1)((𝑛 + 1) + 1)
2

Ryan Culpepper 08 Recursion and Induction Mathematical Induction 27

Example: Summation ∑𝑛
𝑘=0

𝑘

Theorem (Gauss)
Let 𝑛 ∈ ℕ. Then ∑𝑛

𝑘=1
𝑘 = 𝑛(𝑛+1)

2 .

Proof.
By induction on 𝑛.
Base case: …
Inductive case:
Let 𝑛 ∈ ℕ. Assume (inductive hypothesis): ∑𝑛

𝑘=1
𝑘 = 𝑛(𝑛+1)

2 .
Goal: ∑𝑛+1

𝑘=1
𝑘 = (𝑛+1)((𝑛+1)+1)

2 .

Let’s calculate starting with the left-hand side of the goal:
𝑛+1
∑
𝑘=1

𝑘 = (𝑛 + 1) +
𝑛

∑
𝑘=1

𝑘 = (𝑛 + 1) + 𝑛(𝑛 + 1)
2 by IH

= 2𝑛 + 2 + 𝑛2 + 𝑛
2 = (𝑛 + 1)(𝑛 + 2)

2 = (𝑛 + 1)((𝑛 + 1) + 1)
2

Ryan Culpepper 08 Recursion and Induction Mathematical Induction 27

Example: Summation ∑𝑛
𝑘=0

𝑘

Theorem (Gauss)
Let 𝑛 ∈ ℕ. Then ∑𝑛

𝑘=1
𝑘 = 𝑛(𝑛+1)

2 .

Proof.
By induction on 𝑛.
Base case: …
Inductive case:
Let 𝑛 ∈ ℕ. Assume (inductive hypothesis): ∑𝑛

𝑘=1
𝑘 = 𝑛(𝑛+1)

2 .
Goal: ∑𝑛+1

𝑘=1
𝑘 = (𝑛+1)((𝑛+1)+1)

2 .

Let’s calculate starting with the left-hand side of the goal:
𝑛+1
∑
𝑘=1

𝑘 = (𝑛 + 1) +
𝑛

∑
𝑘=1

𝑘 = (𝑛 + 1) + 𝑛(𝑛 + 1)
2 by IH

= 2𝑛 + 2 + 𝑛2 + 𝑛
2 = (𝑛 + 1)(𝑛 + 2)

2 = (𝑛 + 1)((𝑛 + 1) + 1)
2

Ryan Culpepper 08 Recursion and Induction Mathematical Induction 27

Example: 2𝑛 > 𝑛

Theorem
For all 𝑛 ∈ ℕ, 2𝑛 > 𝑛.

Proof.
By induction on 𝑛.

Base case:
Goal: 20 > 0
Inductive case:
Let 𝑛 ∈ ℕ. Assume (inductive hypothesis): 2𝑛 > 𝑛.
Goal: 2𝑛+1 > 𝑛 + 1.
Let’s calculate starting with the left-hand side of the goal:

2𝑛+1 = 2 ⋅ 2𝑛 = 2𝑛 + 2𝑛 > 𝑛 + 2𝑛⏟⏟⏟⏟⏟
by IH

≥ 𝑛 + 1

By the chain of inequalities, we get 2𝑛+1 > 𝑛 + 1.

Ryan Culpepper 08 Recursion and Induction Mathematical Induction 28

Example: 2𝑛 > 𝑛

Theorem
For all 𝑛 ∈ ℕ, 2𝑛 > 𝑛.

Proof.
By induction on 𝑛.
Base case:
Goal: 20 > 0

Inductive case:
Let 𝑛 ∈ ℕ. Assume (inductive hypothesis): 2𝑛 > 𝑛.
Goal: 2𝑛+1 > 𝑛 + 1.
Let’s calculate starting with the left-hand side of the goal:

2𝑛+1 = 2 ⋅ 2𝑛 = 2𝑛 + 2𝑛 > 𝑛 + 2𝑛⏟⏟⏟⏟⏟
by IH

≥ 𝑛 + 1

By the chain of inequalities, we get 2𝑛+1 > 𝑛 + 1.

Ryan Culpepper 08 Recursion and Induction Mathematical Induction 28

Example: 2𝑛 > 𝑛

Theorem
For all 𝑛 ∈ ℕ, 2𝑛 > 𝑛.

Proof.
By induction on 𝑛.
Base case:
Goal: 20 > 0
Inductive case:
Let 𝑛 ∈ ℕ. Assume (inductive hypothesis): 2𝑛 > 𝑛.
Goal: 2𝑛+1 > 𝑛 + 1.

Let’s calculate starting with the left-hand side of the goal:

2𝑛+1 = 2 ⋅ 2𝑛 = 2𝑛 + 2𝑛 > 𝑛 + 2𝑛⏟⏟⏟⏟⏟
by IH

≥ 𝑛 + 1

By the chain of inequalities, we get 2𝑛+1 > 𝑛 + 1.

Ryan Culpepper 08 Recursion and Induction Mathematical Induction 28

Example: 2𝑛 > 𝑛

Theorem
For all 𝑛 ∈ ℕ, 2𝑛 > 𝑛.

Proof.
By induction on 𝑛.
Base case:
Goal: 20 > 0
Inductive case:
Let 𝑛 ∈ ℕ. Assume (inductive hypothesis): 2𝑛 > 𝑛.
Goal: 2𝑛+1 > 𝑛 + 1.
Let’s calculate starting with the left-hand side of the goal:

2𝑛+1 = 2 ⋅ 2𝑛 = 2𝑛 + 2𝑛 > 𝑛 + 2𝑛⏟⏟⏟⏟⏟
by IH

≥ 𝑛 + 1

By the chain of inequalities, we get 2𝑛+1 > 𝑛 + 1.

Ryan Culpepper 08 Recursion and Induction Mathematical Induction 28

Induction with Non-Zero Base Case

Sometimes the property in question does not hold for 0.
If a property holds for all numbers starting with 𝑏, then
▶ prove 𝑃(𝑏) as the base case, and
▶ (if needed) also assume 𝑛 ≥ 𝑏 in the inductive case.

To summarize:

𝑏 ∈ ℕ 𝑃(𝑏) ∀𝑛 ∈ ℕ, 𝑛 ≥ 𝑏 ⇒ 𝑃(𝑛) ⇒ 𝑃(𝑛 + 1)
∀𝑛 ∈ ℕ, 𝑛 ≥ 𝑏 ⇒ 𝑃(𝑛)

This rule does not really add any new proof power.
You can show the same thing using ordinary induction on 𝑃′(𝑛) = (𝑛 ≥ 𝑏 ⇒ 𝑃(𝑛)).

Ryan Culpepper 08 Recursion and Induction Mathematical Induction 29

Returning to the Infinitude of Primes Lemma

Lemma
Let 𝑑, 𝑛 ∈ ℕ, and suppose 1 < 𝑑 ≤ 𝑛. Then 𝑑 |(𝑛!).
That is: Let 𝑑 ∈ ℕ, and suppose 𝑑 > 1. Then for every 𝑛 ∈ ℕ, if 𝑛 ≥ 𝑑, then 𝑑 |(𝑛!).

Proof.
Let 𝑑 ∈ ℕ with 𝑑 > 1. We must show that for every 𝑛 ∈ ℕ, if 𝑛 ≥ 𝑑 then 𝑑 |(𝑛!).
We will show that by induction on 𝑛 starting at 𝑑. 𝑃(𝑛) is 𝑑 |(𝑛!)

Base case: Prove 𝑃(𝑑)
Goal: 𝑑 |(𝑑!).
Since 𝑑 > 1, we have 𝑑! = 𝑑 ⋅ (𝑑 − 1)!, and 𝑑 | 𝑑 ⋅ (𝑑 − 1)! by definition, so 𝑑 |(𝑑!).

Inductive case: Prove ∀𝑛 ∈ ℕ, 𝑛 ≥ 𝑑 ⇒ 𝑃(𝑛) ⇒ 𝑃(𝑛 + 1)
Let 𝑛 ∈ ℕ. Assume 𝑛 ≥ 𝑑, and assume (inductive hypothesis): 𝑑 |(𝑛!)
Goal: 𝑑 |((𝑛 + 1)!).
Since 𝑑 |(𝑛!), we know 𝑑 also divides any integer multiple of 𝑛!. So we multiply the
right-hand side by 𝑛 + 1 to get 𝑑 |(𝑛 + 1)(𝑛!). Then 𝑑 |((𝑛 + 1)!) by the definition
of factorial.

Ryan Culpepper 08 Recursion and Induction Mathematical Induction 30

Strong Induction

Sometimes each step does not rely on the number immediately before it.
Strong induction uses a “stronger” inductive hypothesis that knows that
every previous number has the property.

Strong Induction
𝑃(0) ∀𝑛 ∈ ℕ, (∀𝑘 ∈ ℕ, 𝑘 ≤ 𝑛 ⇒ 𝑃(𝑛)) ⇒ 𝑃(𝑛 + 1)

∀𝑛 ∈ ℕ, 𝑃(𝑛)

This rule also does not really add any new proof power.
You can show the same thing using ordinary induction on
𝑃′(𝑛) = (∀𝑘 ∈ ℕ, 𝑘 ≤ 𝑛 ⇒ 𝑃(𝑛)) and then instantiating 𝑘 with 𝑛.

Ryan Culpepper 08 Recursion and Induction Mathematical Induction 31

Example: Almost the Fundamental Theorem of Arithmetic
Theorem
Every 𝑛 ∈ ℕ greater than 1 can be written as a product of (one or more) primes.

Proof.
By strong induction on 𝑛 starting at 2.

Base case:
Goal: 2 is a product of primes.
2 is prime, so the product of primes is just 2.
Inductive case:
Let 𝑛 ∈ ℕ. Assume (inductive hypothesis): for every 𝑘 ≤ 𝑛, 𝑘 is a product of primes
Goal: 𝑛 + 1 is a product of primes
By case analysis on whether 𝑛 + 1 is prime or composite:
▶ If 𝑛 + 1 is prime, then the product of primes is just 𝑛 + 1.
▶ If 𝑛 + 1 is composite, then there are 𝑎, 𝑏 ∈ ℕ such that 𝑛 + 1 = 𝑎𝑏 and 1 < 𝑎 < 𝑛 + 1
and 1 < 𝑏 < 𝑛 + 1. From these inequalities we can get 𝑎 ≤ 𝑛 and 𝑏 ≤ 𝑛, so we can apply
the induction hypothesis to get a product of primes for 𝑎 and a product of primes for 𝑏.
Multiplying them together gives a product of primes for 𝑛 + 1, as required.

Ryan Culpepper 08 Recursion and Induction Mathematical Induction 32

Example: Almost the Fundamental Theorem of Arithmetic
Theorem
Every 𝑛 ∈ ℕ greater than 1 can be written as a product of (one or more) primes.

Proof.
By strong induction on 𝑛 starting at 2.
Base case:
Goal: 2 is a product of primes.

2 is prime, so the product of primes is just 2.
Inductive case:
Let 𝑛 ∈ ℕ. Assume (inductive hypothesis): for every 𝑘 ≤ 𝑛, 𝑘 is a product of primes
Goal: 𝑛 + 1 is a product of primes
By case analysis on whether 𝑛 + 1 is prime or composite:
▶ If 𝑛 + 1 is prime, then the product of primes is just 𝑛 + 1.
▶ If 𝑛 + 1 is composite, then there are 𝑎, 𝑏 ∈ ℕ such that 𝑛 + 1 = 𝑎𝑏 and 1 < 𝑎 < 𝑛 + 1
and 1 < 𝑏 < 𝑛 + 1. From these inequalities we can get 𝑎 ≤ 𝑛 and 𝑏 ≤ 𝑛, so we can apply
the induction hypothesis to get a product of primes for 𝑎 and a product of primes for 𝑏.
Multiplying them together gives a product of primes for 𝑛 + 1, as required.

Ryan Culpepper 08 Recursion and Induction Mathematical Induction 32

Example: Almost the Fundamental Theorem of Arithmetic
Theorem
Every 𝑛 ∈ ℕ greater than 1 can be written as a product of (one or more) primes.

Proof.
By strong induction on 𝑛 starting at 2.
Base case:
Goal: 2 is a product of primes.
2 is prime, so the product of primes is just 2.

Inductive case:
Let 𝑛 ∈ ℕ. Assume (inductive hypothesis): for every 𝑘 ≤ 𝑛, 𝑘 is a product of primes
Goal: 𝑛 + 1 is a product of primes
By case analysis on whether 𝑛 + 1 is prime or composite:
▶ If 𝑛 + 1 is prime, then the product of primes is just 𝑛 + 1.
▶ If 𝑛 + 1 is composite, then there are 𝑎, 𝑏 ∈ ℕ such that 𝑛 + 1 = 𝑎𝑏 and 1 < 𝑎 < 𝑛 + 1
and 1 < 𝑏 < 𝑛 + 1. From these inequalities we can get 𝑎 ≤ 𝑛 and 𝑏 ≤ 𝑛, so we can apply
the induction hypothesis to get a product of primes for 𝑎 and a product of primes for 𝑏.
Multiplying them together gives a product of primes for 𝑛 + 1, as required.

Ryan Culpepper 08 Recursion and Induction Mathematical Induction 32

Example: Almost the Fundamental Theorem of Arithmetic
Theorem
Every 𝑛 ∈ ℕ greater than 1 can be written as a product of (one or more) primes.

Proof.
By strong induction on 𝑛 starting at 2.
Base case:
Goal: 2 is a product of primes.
2 is prime, so the product of primes is just 2.
Inductive case:
Let 𝑛 ∈ ℕ. Assume (inductive hypothesis): for every 𝑘 ≤ 𝑛, 𝑘 is a product of primes
Goal: 𝑛 + 1 is a product of primes

By case analysis on whether 𝑛 + 1 is prime or composite:
▶ If 𝑛 + 1 is prime, then the product of primes is just 𝑛 + 1.
▶ If 𝑛 + 1 is composite, then there are 𝑎, 𝑏 ∈ ℕ such that 𝑛 + 1 = 𝑎𝑏 and 1 < 𝑎 < 𝑛 + 1
and 1 < 𝑏 < 𝑛 + 1. From these inequalities we can get 𝑎 ≤ 𝑛 and 𝑏 ≤ 𝑛, so we can apply
the induction hypothesis to get a product of primes for 𝑎 and a product of primes for 𝑏.
Multiplying them together gives a product of primes for 𝑛 + 1, as required.

Ryan Culpepper 08 Recursion and Induction Mathematical Induction 32

Example: Almost the Fundamental Theorem of Arithmetic
Theorem
Every 𝑛 ∈ ℕ greater than 1 can be written as a product of (one or more) primes.

Proof.
By strong induction on 𝑛 starting at 2.
Base case:
Goal: 2 is a product of primes.
2 is prime, so the product of primes is just 2.
Inductive case:
Let 𝑛 ∈ ℕ. Assume (inductive hypothesis): for every 𝑘 ≤ 𝑛, 𝑘 is a product of primes
Goal: 𝑛 + 1 is a product of primes
By case analysis on whether 𝑛 + 1 is prime or composite:
▶ If 𝑛 + 1 is prime, then the product of primes is just 𝑛 + 1.
▶ If 𝑛 + 1 is composite, then there are 𝑎, 𝑏 ∈ ℕ such that 𝑛 + 1 = 𝑎𝑏 and 1 < 𝑎 < 𝑛 + 1
and 1 < 𝑏 < 𝑛 + 1. From these inequalities we can get 𝑎 ≤ 𝑛 and 𝑏 ≤ 𝑛, so we can apply
the induction hypothesis to get a product of primes for 𝑎 and a product of primes for 𝑏.
Multiplying them together gives a product of primes for 𝑛 + 1, as required.

Ryan Culpepper 08 Recursion and Induction Mathematical Induction 32

Recursive Types, Recursive Functions

Ryan Culpepper 08 Recursion and Induction Recursive Types, Recursive Functions 33

Recursive Type: Binary Trees

Let’s revisit binary trees with a more text-friendly notation:

Let BT be the smallest set such that
▶ nil ∈ BT, and
▶ node(𝑛, 𝑡𝑙, 𝑡𝑟) ∈ 𝐵𝑇 for every 𝑛 ∈ ℤ and 𝑡𝑙, 𝑡𝑟 ∈ BT

The node function is called a constructor.
A constructor function is not defined by a computation rule.
Instead, it acts like a data structure.

Ryan Culpepper 08 Recursion and Induction Recursive Types, Recursive Functions 34

Functions on Recursive Types

Let count ∶ BT → ℕ be the function that takes a binary tree and returns the
number of nodes it contains. (Note: nil is not a node.)

nil
2

nil nil

4

2

nil nil

nil

3

7

nil nil

5

nil nil

6

4

2

nil nil

nil

5

9

nil nil

nil

0 nodes 1 node 2 nodes 3 nodes 5 nodes

How do we define count?

count(nil) =

0

count(node(𝑛, 𝑡𝑙, 𝑡𝑟)) =

1 + count(𝑡𝑙) + count(𝑡𝑟)

Ryan Culpepper 08 Recursion and Induction Recursive Types, Recursive Functions 35

Functions on Recursive Types

Let count ∶ BT → ℕ be the function that takes a binary tree and returns the
number of nodes it contains. (Note: nil is not a node.)

nil
2

nil nil

4

2

nil nil

nil

3

7

nil nil

5

nil nil

6

4

2

nil nil

nil

5

9

nil nil

nil

0 nodes 1 node 2 nodes 3 nodes 5 nodes

How do we define count?

count(nil) =

0

count(node(𝑛, 𝑡𝑙, 𝑡𝑟)) =

1 + count(𝑡𝑙) + count(𝑡𝑟)

Ryan Culpepper 08 Recursion and Induction Recursive Types, Recursive Functions 35

Functions on Recursive Types

Let count ∶ BT → ℕ be the function that takes a binary tree and returns the
number of nodes it contains. (Note: nil is not a node.)

nil
2

nil nil

4

2

nil nil

nil

3

7

nil nil

5

nil nil

6

4

2

nil nil

nil

5

9

nil nil

nil

0 nodes 1 node 2 nodes 3 nodes 5 nodes

How do we define count?

count(nil) =

0

count(node(𝑛, 𝑡𝑙, 𝑡𝑟)) =

1 + count(𝑡𝑙) + count(𝑡𝑟)

Ryan Culpepper 08 Recursion and Induction Recursive Types, Recursive Functions 35

Functions on Recursive Types

Let count ∶ BT → ℕ be the function that takes a binary tree and returns the
number of nodes it contains. (Note: nil is not a node.)

nil
2

nil nil

4

2

nil nil

nil

3

7

nil nil

5

nil nil

6

4

2

nil nil

nil

5

9

nil nil

nil

0 nodes 1 node 2 nodes 3 nodes 5 nodes

How do we define count?

count(nil) = 0
count(node(𝑛, 𝑡𝑙, 𝑡𝑟)) =

1 + count(𝑡𝑙) + count(𝑡𝑟)

Ryan Culpepper 08 Recursion and Induction Recursive Types, Recursive Functions 35

Functions on Recursive Types

Let count ∶ BT → ℕ be the function that takes a binary tree and returns the
number of nodes it contains. (Note: nil is not a node.)

nil
2

nil nil

4

2

nil nil

nil

3

7

nil nil

5

nil nil

6

4

2

nil nil

nil

5

9

nil nil

nil

0 nodes 1 node 2 nodes 3 nodes 5 nodes

How do we define count?

count(nil) = 0
count(node(𝑛, 𝑡𝑙, 𝑡𝑟)) = 1 + count(𝑡𝑙) + count(𝑡𝑟)

Ryan Culpepper 08 Recursion and Induction Recursive Types, Recursive Functions 35

Functions on Recursive Types

Let height ∶ BT → ℕ be the function that takes a binary tree and returns
the maximum number of edges from the root down to a nil.

nil
2

nil nil

4

2

nil nil

nil

3

7

nil nil

5

nil nil

6

4

2

nil nil

nil

5

9

nil nil

nil

0 height 1 height 2 height 2 height 3 height

How do we define height?

height(nil) =

0

height(node(𝑛, 𝑡𝑙, 𝑡𝑟)) =

1 + max(height(𝑡𝑙), height(𝑡𝑟))

Ryan Culpepper 08 Recursion and Induction Recursive Types, Recursive Functions 36

Functions on Recursive Types

Let height ∶ BT → ℕ be the function that takes a binary tree and returns
the maximum number of edges from the root down to a nil.

nil
2

nil nil

4

2

nil nil

nil

3

7

nil nil

5

nil nil

6

4

2

nil nil

nil

5

9

nil nil

nil

0 height 1 height 2 height 2 height 3 height

How do we define height?

height(nil) =

0

height(node(𝑛, 𝑡𝑙, 𝑡𝑟)) =

1 + max(height(𝑡𝑙), height(𝑡𝑟))

Ryan Culpepper 08 Recursion and Induction Recursive Types, Recursive Functions 36

Functions on Recursive Types

Let height ∶ BT → ℕ be the function that takes a binary tree and returns
the maximum number of edges from the root down to a nil.

nil
2

nil nil

4

2

nil nil

nil

3

7

nil nil

5

nil nil

6

4

2

nil nil

nil

5

9

nil nil

nil

0 height 1 height 2 height 2 height 3 height

How do we define height?

height(nil) =

0

height(node(𝑛, 𝑡𝑙, 𝑡𝑟)) =

1 + max(height(𝑡𝑙), height(𝑡𝑟))

Ryan Culpepper 08 Recursion and Induction Recursive Types, Recursive Functions 36

Functions on Recursive Types

Let height ∶ BT → ℕ be the function that takes a binary tree and returns
the maximum number of edges from the root down to a nil.

nil
2

nil nil

4

2

nil nil

nil

3

7

nil nil

5

nil nil

6

4

2

nil nil

nil

5

9

nil nil

nil

0 height 1 height 2 height 2 height 3 height

How do we define height?

height(nil) = 0
height(node(𝑛, 𝑡𝑙, 𝑡𝑟)) =

1 + max(height(𝑡𝑙), height(𝑡𝑟))

Ryan Culpepper 08 Recursion and Induction Recursive Types, Recursive Functions 36

Functions on Recursive Types

Let height ∶ BT → ℕ be the function that takes a binary tree and returns
the maximum number of edges from the root down to a nil.

nil
2

nil nil

4

2

nil nil

nil

3

7

nil nil

5

nil nil

6

4

2

nil nil

nil

5

9

nil nil

nil

0 height 1 height 2 height 2 height 3 height

How do we define height?

height(nil) = 0
height(node(𝑛, 𝑡𝑙, 𝑡𝑟)) = 1 + max(height(𝑡𝑙), height(𝑡𝑟))

Ryan Culpepper 08 Recursion and Induction Recursive Types, Recursive Functions 36

Observations about count(𝑡) and height(𝑡)

nil
2

nil nil

4

2

nil nil

nil

3

7

nil nil

5

nil nil

6

4

2

nil nil

nil

5

9

nil nil

nil

0 nodes 1 node 2 nodes 3 nodes 5 nodes
0 height 1 height 2 height 2 height 3 height

Conjecture

For every 𝑡 ∈ BT, count(𝑡) ≥ height(𝑡).

Conjecture

For every 𝑡 ∈ BT, count(𝑡) ≤ 2height(𝑡) − 1.

Ryan Culpepper 08 Recursion and Induction Recursive Types, Recursive Functions 37

Structural Induction

Ryan Culpepper 08 Recursion and Induction Structural Induction 38

Induction Proofs for Recursively-Defined Sets

Suppose you want to prove ∀𝑥 ∈ 𝑆, 𝑃(𝑥),
where 𝑆 is a recursively-defined set.

There are two main options:
▶ Use strong induction on the “size” of the objects in the set.
You actually prove ∀𝑛 ∈ ℕ, ∀𝑥 ∈ 𝑆, (size(𝑥) = 𝑛) ⇒ 𝑃(𝑥).
A good candidate for “size” is the number of the “round”
in which the object is added when iteratively building the set.
(For example, for BT, that is the same as a tree’s height.)

▶ Use structural induction based on the set definition.
The proof has a base case for each base case in the definition.
The proof has an inductive case for each recursive case in the definition.
In the inductive cases, you have an induction hypothesis for each “ingredient”
from 𝑆 used by the recursive rule. (For example, the left and right sub-trees.)

Ryan Culpepper 08 Recursion and Induction Structural Induction 39

Structural Induction for Binary Trees

Recall BT is the smallest set such that
▶ nil ∈ BT, and
▶ node(𝑛, 𝑡𝑙, 𝑡𝑟) ∈ 𝐵𝑇 for every 𝑛 ∈ ℤ and 𝑡𝑙, 𝑡𝑟 ∈ BT
That is, ∀𝑛 ∈ ℤ, ∀𝑡𝑙, 𝑡𝑟 ∈ BT, node(𝑛, 𝑡𝑙, 𝑡𝑟) ∈ BT.

The structural induction rule for BT is

𝑃(nil) ∀𝑛 ∈ ℤ, ∀𝑡𝑙, 𝑡𝑟 ∈ BT, (𝑃(𝑡𝑙) ∧ 𝑃(𝑡𝑟)) ⇒ 𝑃(node(𝑛, 𝑡𝑙, 𝑡𝑟))
∀𝑡 ∈ BT, 𝑃(𝑡)

Every recursive set definition generates its own structural induction rule.
The structure of the definition determines the premises of the rule.

Ryan Culpepper 08 Recursion and Induction Structural Induction 40

Example: count(𝑡) ≥ height(𝑡) by Structural Induction

Theorem
For every 𝑡 ∈ BT, count(𝑡) ≥ height(𝑡).

Proof.
By structural induction on 𝑡.
Base case: 𝑃(nil)
Goal: count(nil) ≥ height(nil).
Both sides evaluate to 0.
Inductive case: ∀𝑥 ∈ ℤ, ∀𝑡𝑙, 𝑡𝑟 ∈ BT, (𝑃(𝑡𝑙) ∧ 𝑃(𝑡𝑟)) ⇒ 𝑃(node(𝑥, 𝑡𝑙, 𝑡𝑟))
Let 𝑥 ∈ ℤ, and let 𝑡𝑙, 𝑡𝑟 ∈ BT.
Assume (inductive hypotheses): count(𝑡𝑙) ≥ height(𝑡𝑙) and count(𝑡𝑟) ≥ height(𝑡𝑟).
Goal: count(node(𝑥, 𝑡𝑙, 𝑡𝑟)) ≥ height(node(𝑥, 𝑡𝑙, 𝑡𝑟)).
Calculate starting with the left-hand side:

count(node(𝑥, 𝑡𝑙, 𝑡𝑟)) = 1 + count(𝑡𝑙) + count(𝑡𝑟) ≥ 1 + height(𝑡𝑙) + height(𝑡𝑟)
≥ 1 + max(height(𝑡𝑙), height(𝑡𝑟)) = height(node(𝑥, 𝑡𝑙, 𝑡𝑟))

So the desired inequality is shown.

Ryan Culpepper 08 Recursion and Induction Structural Induction 41

Example: More Structural Induction (1)
Let 𝐸 ⊆ ℤ be the smallest set such that
▶ 2 ∈ 𝐸
▶ if 𝑚, 𝑛 ∈ 𝐸, then 𝑚 − 𝑛 ∈ 𝐸

Theorem
Every 𝑛 ∈ 𝐸 is even.

Proof.
By structural induction on 𝑛.
Base case: 𝑃(2)
Goal: 2 is even
By definition of even, since 2 = 2 ⋅ 1.
Inductive case: ∀𝑚, 𝑛 ∈ 𝐸, (𝑃(𝑚) ∧ 𝑃(𝑛)) ⇒ 𝑃(𝑚 − 𝑛)
Let 𝑚, 𝑛 ∈ 𝐸.
Assume (inductive hypotheses): 𝑚 is even and 𝑛 is even
Goal: 𝑚 − 𝑛 is even
Since 𝑚 is even, 𝑚 = 2𝑎 for some 𝑎 ∈ ℤ.
Since 𝑛 is even, 𝑛 = 2𝑏 for some 𝑏 ∈ ℤ.
Then 𝑚 − 𝑛 = 2𝑎 − 2𝑏 = 2(𝑎 − 𝑏), so 𝑚 − 𝑛 is even.

Ryan Culpepper 08 Recursion and Induction Structural Induction 42

𝐸 = {2} ∪ {0} ∪ {−2} ∪ {−4, 4}
∪ {−8, −6, 6, 8} ∪ …

In “ordinary” induction (on ℕ), the in-
ductive case relies on having already
shown the property for numerically
smaller elements of ℕ.
That won’t work here, because 𝐸 is
constructed “out of order”.
In structural induction, the inductive
cases rely on having shown the prop-
erty for elements added to the set in
previous “rounds”.

Example: More Structural Induction (2)
Let 𝑋 ⊆ ℝ be the smallest set such that
▶ 1 ∈ 𝑋
▶ if 𝑥, 𝑦 ∈ 𝑋, then 𝑥 + 𝑦 ∈ 𝑋
▶ if 𝑥 ∈ 𝑋 and 𝑥 ≠ 0, then 1/𝑥 ∈ 𝑋

Theorem
Every 𝑧 ∈ 𝑋 is positive.

Proof.
By structural induction on 𝑧.
Base case: 𝑃(1)
Goal: 1 is positive
Yes, 1 is positive.
Inductive case 1: ∀𝑥, 𝑦 ∈ 𝑋, (𝑃(𝑋) ∧ 𝑃(𝑦)) ⇒ 𝑃(𝑥 + 𝑦)
Let 𝑥, 𝑦 ∈ 𝑋. Assume (inductive hypotheses): 𝑥 is positive, 𝑦 is positive.
Goal: 𝑥 + 𝑦 is positive.
If 𝑥 and 𝑦 are both positive, then 𝑥 + 𝑦 is also positive.
Inductive case 2: ∀𝑥 ∈ 𝑋, 𝑥 ≠ 0 ⇒ 𝑃(𝑋) ⇒ 𝑃(1/𝑥)
Let 𝑥 ∈ 𝑋. Assume (inductive hypothesis): 𝑥 is positive
Goal: 1/𝑥 is positive
If 𝑥 is positive, then 1/𝑥 is also positive.

Ryan Culpepper 08 Recursion and Induction Structural Induction 43

𝑋 = {1} ∪ {2} ∪ { 1
2 , 3, 4}

∪ { 1
3 , 1

4 , 3
2 , 5

2 , 7
2 , 9

2 , 5, 6, 7, 8} ∪ …

The definition of 𝑋 has two recursive
cases, so the proof has two separate
inductive cases.

	Recursive Definitions
	Recursively-Defined Functions and Sequences
	Recursively-Defined Sets and Relations
	Mathematical Induction
	Recursive Types, Recursive Functions
	Structural Induction

