
Computation
CS 220 — Applied Discrete Mathematics

April 16, 2025

Ryan Culpepper 09 Computation 1

Analogy Machines

(Inspired partly by The Most Powerful Computers You’ve Never Heard Of.)

Ryan Culpepper 09 Computation Analogy Machines 2

https://www.youtube.com/watch?v=IgF3OX8nT0w

Orrery

100-150 BC

Tide predictor

Integrator

Analogy Engineering

Data

Information

Problem

Input Output

Solution

represent

compute

interpret

Ryan Culpepper 09 Computation Analogy Machines 6

Breaking Analogies
A Riddle:

There are three people in a room.
Five people leave the room.
How many people must enter the room
for it to become empty?

A Wrong Answer:

I know algebra! 3 − 5 + 𝑥 = 0, so 𝑥 = 2.
Thus if two people enter the room it will be empty.
(Because the room currently has −2 people in it.)

Respect the analogy’s limits and tolerances

Computing with misrepresented data is dangerous.
Interpreting meaningless data is dangerous.

Ryan Culpepper 09 Computation Analogy Machines 7

Breaking Analogies
A Riddle:

There are three people in a room.
Five people leave the room.
How many people must enter the room
for it to become empty?

A Wrong Answer:

I know algebra! 3 − 5 + 𝑥 = 0, so 𝑥 = 2.
Thus if two people enter the room it will be empty.
(Because the room currently has −2 people in it.)

Respect the analogy’s limits and tolerances

Computing with misrepresented data is dangerous.
Interpreting meaningless data is dangerous.

Ryan Culpepper 09 Computation Analogy Machines 7

Towers of Analogies

real-world physics

mathematical models

numerical solvers/algos

floating-point arithmetic

Boolean logic: T, F, ∧, ∨, etc

electrical properties of silicon

Ryan Culpepper 09 Computation Analogy Machines 8

Mechanical Reasoning

Ryan Culpepper 09 Computation Mechanical Reasoning 9

Mechanical Reasoning (or, Are Mathematicians Obsolete?)

In the last few modules, we learned about proof systems that let us
mechanically (aka, formally) “reason”—that is, derive true propositions.

Is it possible that every mathematical question could automatically be
“figured out” by some effective mechanical method?

This question, called the Entscheidungsproblem (“decision problem”), was famously posed by
David Hilbert and Wilhelm Ackermann in 1928, after advances by George Boole (1847), Gottlob
Frege (1879), and Giuseppe Peano (1888) distilled logic to a symbolic language governed by
deterministic rules.

Ryan Culpepper 09 Computation Mechanical Reasoning 10

What is an Effective Mechanical Method?

What criteria do we need for an effective mechanical method?
▶ Each method is concerned only with a single kind of problem.
The set of problem inputs and outputs should be well understood.

▶ It must consist of a finite arrangement of instructions.
▶ Each instruction must have a definite interpretation.
That is, it must work without the aid of luck or human ingenuity.

▶ When applied to any problem in its domain, it must terminate in a
finite number of steps with the correct answer.

This is what we now call an algorithm.
A problem with a yes/no answer is called a decision problem,
and an algorithm that solves it is called a decision procedure.

Ryan Culpepper 09 Computation Mechanical Reasoning 11

What is an Effective Mechanical Method?

What criteria do we need for an effective mechanical method?
▶ Each method is concerned only with a single kind of problem.
The set of problem inputs and outputs should be well understood.

▶ It must consist of a finite arrangement of instructions.
▶ Each instruction must have a definite interpretation.
That is, it must work without the aid of luck or human ingenuity.

▶ When applied to any problem in its domain, it must terminate in a
finite number of steps with the correct answer.

This is what we now call an algorithm.
A problem with a yes/no answer is called a decision problem,
and an algorithm that solves it is called a decision procedure.

Ryan Culpepper 09 Computation Mechanical Reasoning 11

Forms of Instructions

What does an “arrangement of instructions” look like?
▶ Kurt Gödel and Jacques Herbrand (1933): general recursive functions
▶ Alonzo Church (1936): 𝜆-calculus terms (CS450)
▶ Alan Turing (1936): machines consisting of a finite state automaton
paired with an unbounded read-write “tape” (CS420)

Each model provides an encoding of ℕ, and each model defines its own
notion of whether a ℕ → ℕ function is computable.

By 1937, Church, Kleene, and Turing proved that all three models define the
same set of computable functions.

The Church-Turing Thesis: That’s what “effectively calculable” means, then.

Ryan Culpepper 09 Computation Mechanical Reasoning 12

Forms of Instructions

What does an “arrangement of instructions” look like?
▶ Kurt Gödel and Jacques Herbrand (1933): general recursive functions
▶ Alonzo Church (1936): 𝜆-calculus terms (CS450)
▶ Alan Turing (1936): machines consisting of a finite state automaton
paired with an unbounded read-write “tape” (CS420)

Each model provides an encoding of ℕ, and each model defines its own
notion of whether a ℕ → ℕ function is computable.

By 1937, Church, Kleene, and Turing proved that all three models define the
same set of computable functions.

The Church-Turing Thesis: That’s what “effectively calculable” means, then.

Ryan Culpepper 09 Computation Mechanical Reasoning 12

The Entscheidungsproblem

Is there an algorithm that can decide every statement in mathematics?

Kurt Gödel: No. (Gödel’s Incompleteness Theorem)

This is a big, awesome topic. I recommend Gödel, Escher, Bach by Douglas Hofstadter.

Ryan Culpepper 09 Computation Mechanical Reasoning 13

https://en.wikipedia.org/wiki/G%C3%B6del,_Escher,_Bach

The Entscheidungsproblem

Is there an algorithm that can decide every statement in mathematics?

Kurt Gödel: No. (Gödel’s Incompleteness Theorem)

This is a big, awesome topic. I recommend Gödel, Escher, Bach by Douglas Hofstadter.

Ryan Culpepper 09 Computation Mechanical Reasoning 13

https://en.wikipedia.org/wiki/G%C3%B6del,_Escher,_Bach

Algorithms

Ryan Culpepper 09 Computation Algorithms 14

Algorithms

Definition (Algorithm)

An algorithm is a finite arrangement of precise instructions for performing
a computation or for deciding a question.
An algorithm must have a definite interpretation, and it must terminate in a
finite number of steps with a correct answer.

Ryan Culpepper 09 Computation Algorithms 15

Analysis of Algorithms

Given a procedure:
▶ Is it an algorithm?

▶ Does it always terminate?
Show loop termination using a termination measure, usually a
non-negative integer value that decreases each iteration.

▶ Does it produce the correct answer?
Often, loop correctness can be shown by a loop invariant, a proposition
that is true on each iteration of the loop (and also when the loop exits).

▶ How efficient is it?
▶ (Running time) How long does it take to run?
▶ (Space) How much memory does it require?

Ryan Culpepper 09 Computation Algorithms 16

Example: Find-Max

Algorithm 1 find-max(𝐴[1 . .𝑛])
Ensure: Returns max {𝐴[1], … , 𝐴[𝑛]}.
1: 𝑚 ← 𝐴[1]
2: 𝑖 ← 2
3: while 𝑖 ≤ 𝑛 do
4: if 𝑚 < 𝐴[𝑖] then
5: 𝑚 ← 𝐴[𝑖]
6: end if
7: 𝑖 ← 𝑖 + 1
8: end while
9: return 𝑚

Termination
▶ termination measure: 𝑛 − 𝑖 + 1

Correctness
▶ Loop Invariant:

𝑚 = max {𝐴[1], … , 𝐴[𝑖 − 1]}
▶ Before loop starts (with 𝑖 = 2):

𝑚 = max {𝐴[1]}
▶ When the loop exits (with 𝑖 = 𝑛 + 1):

𝑚 = max {𝐴[1], … , 𝐴[𝑛]}
Running time
▶ 𝑛 − 1 loop iterations

Ryan Culpepper 09 Computation Algorithms 17

Example: Linear Search

Algorithm 2 linear-search(𝑥, 𝐴[1 … 𝑛])
1: 𝑖 ← 1
2: while (𝑖 ≤ 𝑛 and 𝑥 ≠ 𝐴[𝑖]) do
3: 𝑖 ← 𝑖 + 1
4: end while
5: if 𝑖 ≤ 𝑛 then
6: location ← 𝑖
7: else
8: location ← 0
9: end if
10: return location

Returns 𝑖 such that 𝐴[𝑖] = 𝑥,
or 0 if 𝐴 does not contain 𝑥.

Termination
▶ termination measure: 𝑛 − 𝑖 + 1

Correctness
▶ Loop Invariant:

𝑥 is not in 𝐴[1 . .(𝑖 − 1)]
▶ When the loop exits, either

▶ 𝑖 > 𝑛:
Then by LI, 𝑥 is not in 𝐴[1 . .𝑛].
So return 0.

▶ 𝑥 = 𝐴[𝑖].
So return 𝑖.

Running time
▶ up to 𝑛 loop iterations

Ryan Culpepper 09 Computation Algorithms 18

Example: Binary Search
▶ If the terms in a sequence are ordered, a binary search algorithm is
more efficient than linear search.

▶ The binary search algorithm iteratively restricts the relevant search
interval until it closes in on the position of the element to be located.

▶ Example: Binary search for the number 8.
Key Array

8 1 2 3 4 5 6 7 8 9 10
𝑖 𝑗𝑚

8 > 5

8 1 2 3 4 5 6 7 8 9 10
𝑖 𝑗𝑚

8 ≯ 8

8 1 2 3 4 5 6 7 8 9 10
𝑖 𝑗𝑚

8 > 7

8 1 2 3 4 5 6 7 8 9 10
𝑖, 𝑗

Ryan Culpepper 09 Computation Algorithms 19

Example: Binary Search

Algorithm 3 binary-search(𝑥, 𝐴[1 . .𝑛])
Require: 𝐴 is sorted in ascending order
1: 𝑖 ← 1, 𝑗 ← 𝑛 search 𝐴[1 . .𝑛]
2: while (𝑖 < 𝑗) do
3: 𝑚 ← ⌊(𝑖 + 𝑗)/2⌋
4: if 𝑥 > 𝐴[𝑚] then
5: 𝑖 ← 𝑚 + 1 search 𝐴[(𝑚 + 1) . . 𝑗]
6: else
7: 𝑗 ← 𝑚 search 𝐴[𝑖 . .𝑚]
8: end if
9: end while
10: if (𝑥 = 𝐴[𝑖]) then
11: location ← 𝑖
12: else
13: location ← 0
14: end if
15: return location

Returns 𝑖 such that 𝐴[𝑖] = 𝑥,
or 0 if 𝐴 does not contain 𝑥.

Termination
▶ termination measure: 𝑗 − 𝑖

Correctness
▶ 𝐴[𝑖] ≤ 𝑥 ≤ 𝐴[𝑗]
▶ Loop Invariant: if 𝑥 is in 𝐴,
then 𝑥 is in 𝐴[𝑖 . . 𝑗].

▶ When the loop exits, 𝑖 = 𝑗, and
either 𝐴[𝑖] = 𝑥 or 𝑥 is not in 𝐴.

▶ Relies on precondition: sorted.
Running time
▶ up to ⌈log2(𝑛)⌉ loop iterations

Ryan Culpepper 09 Computation Algorithms 20

Measuring Computational Complexity

How much time will an algorithm take?
On what hardware? What language and compiler?
Is the VM “hot”? Are there other threads running? …

We want* to abstract these details away.

Furthermore, we disregard the time usage for small inputs.
Instead, we care how the time grows as a function of input size.

(We can also ask the same question about space usage.)

Ryan Culpepper 09 Computation Algorithms 21

Computational Complexity

Input Alg. A Alg. B
𝑛 5000𝑛 ⌈1.1𝑛⌉
10 50,000 3
100 5 × 105 13,781
1000 5 × 106 2.5 × 1041

106 5 × 109 4.8 × 1041392

This means that algorithm B cannot be used for large inputs,
while running algorithm A is still feasible.

The growth class of the time (or space) usage as a function of input size is
▶ a mathematically stable basis for comparing algorithms, and
▶ often a useful approximation to an algorithm’s performance in practice.

Counterpoint: Designing a Fast, Efficient, Cache-friendly Hash Table, Step by Step

Ryan Culpepper 09 Computation Algorithms 22

https://www.youtube.com/watch?v=ncHmEUmJZf4

Big-O Notation

Definition (Big-O)

Suppose 𝑡, 𝑓 ∶ ℝ+ → ℝ+.
Then 𝑡 is 𝑂(𝑓) if there are constants 𝑐 > 0
and 𝑛0 > 0 such that for all 𝑛 ≥ 𝑛0:

𝑡(𝑛) ≤ 𝑐 ⋅ 𝑓 (𝑛)

That is, there is some multiple of 𝑓 (𝑛)
that eventually bounds 𝑡(𝑛) from above.

Example

▶ 2𝑛 + 4 is 𝑂(𝑛)
▶ 𝑛2 + 2𝑛 + 1 is 𝑂(𝑛2) 𝑁0

𝑓 (𝑛)

𝑡(𝑛)

Ryan Culpepper 09 Computation Algorithms 23

Useful Nomenclature

Function Name
𝑐 Constant
log 𝑛 Logarithmic
log2 𝑛 Log-squared
𝑛 Linear
𝑛 log 𝑛 𝑛 log 𝑛
𝑛2 Quadratic
𝑛3 Cubic
2𝑛 Exponential

10𝑛𝑛4𝑛3 𝑛2 𝑛 log 𝑛 𝑛

√𝑛
3√𝑛
4√𝑛
log 𝑛

Ryan Culpepper 09 Computation Algorithms 24

Euclid’s Algorithm

Ryan Culpepper 09 Computation Euclid’s Algorithm 25

Greatest Common Divisor and Least Common Multiple

Recall:

Definition
The greatest common divisor (GCD) of 𝑎 and 𝑏, where 𝑎, 𝑏 ∈ ℤ+, written
gcd(𝑎, 𝑏), is the greatest 𝑑 ∈ ℤ+ such that 𝑑 | 𝑎 and 𝑑 | 𝑏.

Update: We can also allow one of the arguments to be zero:

gcd(𝑎, 0) = gcd(0, 𝑎) = 𝑎 if 𝑎 > 0

But gcd(0, 0) is undefined.

Ryan Culpepper 09 Computation Euclid’s Algorithm 26

Euclid’s Algorithm
There is a better algorithm for finding the GCD of two integers that dates
back to Euclid’s Elements, from around 300 BC.

Euclid’s Algorithm

gcd(𝑎, 𝑏) =
⎧{
⎨{⎩

gcd(𝑏, 𝑎 mod 𝑏) if 𝑏 > 0
𝑎 if 𝑏 = 0 and 𝑎 > 0

Example
Suppose we want to find gcd(287, 91).

gcd(287, 91) = gcd(91, 14) because 287 = 3 ⋅ 91 + 14
= gcd(14, 7) because 91 = 6 ⋅ 14 + 7
= gcd(7, 0) because 14 = 2 ⋅ 7 + 0
= 7

Ryan Culpepper 09 Computation Euclid’s Algorithm 27

Euclid’s Algorithm

Algorithm 4 euclid-gcd(𝑎, 𝑏)
Require: 𝑎, 𝑏 ∈ ℤ+

Ensure: Returns gcd(𝑎, 𝑏).
1: 𝑥 ← 𝑎
2: 𝑦 ← 𝑏
3: while 𝑦 ≠ 0 do
4: 𝑟 ← 𝑥 mod 𝑦
5: 𝑥 ← 𝑦
6: 𝑦 ← 𝑟
7: end while
8: return 𝑥

Termination
▶ while loop: 𝑦 decreases

Correctness
▶ Loop Invariant:

gcd(𝑥, 𝑦) = gcd(𝑎, 𝑏)
▶ After each loop iteration:
see lemma

▶ When the loop exits (with 𝑦 = 0):
gcd(𝑥, 0) = gcd(𝑎, 𝑏)

Running time
▶ 𝑂(log(max(𝑎, 𝑏))) iterations

Ryan Culpepper 09 Computation Euclid’s Algorithm 28

Correctness of Euclid’s Algorithm

Lemma
Let 𝑎, 𝑏 ∈ ℕ with 𝑏 ≠ 0. Then gcd(𝑎, 𝑏) = gcd(𝑏, 𝑎 mod 𝑏).

Proof.
First we show that 𝑎, 𝑏 have the same common divisors as 𝑎, 𝑎 mod 𝑏.
Recall this property: for all 𝑥, 𝑦, 𝑧 ∈ ℤ, if 𝑥 | 𝑦 and 𝑥 | 𝑧, then 𝑥 |(𝑦 + 𝑧).
By division, there are 𝑞, 𝑟 such that 𝑎 = 𝑞𝑏 + 𝑟, where 𝑟 = 𝑎 mod 𝑏.
▶ By applying the divisibility property above to the equation for 𝑎, we see
that any common divisor of 𝑏 and 𝑎 mod 𝑏 must also be a divisor of 𝑎.

▶ By rewriting the equation to 𝑎 mod 𝑏 = 𝑎 + (−𝑞)𝑏 and applying the
divisibility property again, we see that any common divisor of 𝑎 and 𝑏
is also a divisor of 𝑎 mod 𝑏.

Since 𝑎, 𝑏 have exactly the same common divisors as 𝑏, 𝑎 mod 𝑏, they have
the same greatest common divisor. That is, gcd(𝑎, 𝑏) = gcd(𝑏, 𝑎 mod 𝑏).

Ryan Culpepper 09 Computation Euclid’s Algorithm 29

The Extended Euclidean Algorithm

The GCD of 𝑎 and 𝑏 can be expressed as a linear combination of 𝑎 and 𝑏.
That is, gcd(𝑎, 𝑏) = 𝑠𝑎 + 𝑡𝑏 for some 𝑠, 𝑡 ∈ ℤ.

Example
Previously: gcd(287, 91) = gcd(91, 14) = gcd(14, 7) = gcd(7, 0) = 7.

287 = 3 ⋅ 91 + 14 → 14 = 287 − 3 ⋅ 91
91 = 6 ⋅ 14 + 7 → 7 = 91 − 6 ⋅ 14
14 = 2 ⋅ 7 + 0

If we substitute backwards using the equations on the right:

7 = 91 − 6 ⋅ 14 by 2nd equation
= 91 − 6 ⋅ (287 − 3 ⋅ 91) by 1st equation
= −6 ⋅ 287 + 19 ⋅ 91 by algebra

(In fact, every intermediate remainder can be expressed as some 𝑠𝑎 + 𝑡𝑏 …)

Ryan Culpepper 09 Computation Euclid’s Algorithm 30

The Extended Euclidean Algorithm

Algorithm5 extended-euclid-gcd(𝑎, 𝑏)
Require: 𝑎, 𝑏 ∈ ℤ+

1: 𝑥 ← 𝑎
2: 𝑦 ← 𝑏
3: 𝑠𝑥 ← 1; 𝑡𝑥 ← 0
4: 𝑠𝑦 ← 0; 𝑡𝑦 ← 1
5: while 𝑦 ≠ 0 do
6: 𝑞 ← ⌊𝑥/𝑦⌋
7: 𝑟 ← 𝑥 mod 𝑦
8: 𝑥 ← 𝑦
9: 𝑦 ← 𝑟
10: 𝑠𝑥, 𝑠𝑦 ← 𝑠𝑦, 𝑠𝑥 − 𝑞𝑠𝑦
11: 𝑡𝑥, 𝑡𝑦 ← 𝑡𝑦, 𝑡𝑥 − 𝑞𝑡𝑦
12: end while
13: return 𝑥, 𝑠𝑥, 𝑡𝑥

Termination
▶ while loop: 𝑦 decreases

Correctness
▶ Loop Invariants:

▶ gcd(𝑥, 𝑦) = gcd(𝑎, 𝑏)
▶ 𝑥 = 𝑠𝑥𝑎 + 𝑡𝑥𝑏
▶ 𝑦 = 𝑠𝑦𝑎 + 𝑡𝑦𝑏

▶ After each loop iteration:
see lemma; algebra

▶ When the loop exits (with 𝑦 = 0):
▶ gcd(𝑥, 0) = gcd(𝑎, 𝑏)
▶ 𝑥 = 𝑠𝑥𝑎 + 𝑡𝑥𝑏

Running time
▶ 𝑂(log(max(𝑎, 𝑏))) iterations

Ryan Culpepper 09 Computation Euclid’s Algorithm 31

The Multiplicative Inverse in Modular Arithmetic

Definition (Multiplicative Inverse)

Let 𝑚 ∈ ℤ+, and let 𝑥 ∈ ℕ. The multiplicative inverse (mod 𝑚) of 𝑥 is a
number 𝑦 ∈ {0, … , 𝑚 − 1} such that 𝑥𝑦 ≡ 1 (mod 𝑚).
The multiplicative inverse does not always exist.
It exists if and only if 𝑥 and 𝑚 are relatively prime.

Examples

▶ the multiplicative inverse (mod 10) of 7 is 3
because 3 ⋅ 7 = 21 ≡ 1 (mod 10)

▶ the multiplicative inverse (mod 8) of 7 is 7
because 7 ⋅ 7 = 49 ≡ 1 (mod 8)

▶ the multiplicative inverse (mod 6) of 4 does not exist
because 4 times anything is even, and no even number is ≡ 1 (mod 6)

Ryan Culpepper 09 Computation Euclid’s Algorithm 32

Calculating the Multiplicative Inverse
We can use the extended Euclidean Algorithm to find the multiplicative
inverse of 𝑥 (mod 𝑚):
▶ If gcd(𝑥, 𝑚) ≠ 1 then the multiplicative inverse does not exist.
▶ Otherwise (if 𝑥 and 𝑚 are relatively prime), the algorithm computes 𝑠
and 𝑡 such that 𝑠𝑥 + 𝑡𝑚 = 1.
Thus 𝑠𝑥 − 1 = −𝑡𝑚, and thus 𝑠𝑥 ≡ 1 (mod 𝑚) (by definition).

Example

We could use the extended Euclidean algorithm to calculate

gcd(31, 43) = 1 = −18 ⋅ 31 + 13 ⋅ 43

If we take −18 and normalize it to the proper range: (−18) mod 43 = 25.
So the multiplicative inverse (mod 43) of 31 is 25.
Check: 31 ⋅ 25 = 775 = 18 ⋅ 43 + 1 ≡ 1 (mod 43).

Ryan Culpepper 09 Computation Euclid’s Algorithm 33

	Analogy Machines
	Mechanical Reasoning
	Algorithms
	Euclid's Algorithm

