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Counting Problems

Counting problems are of the following kind:
▶ “How many different 8-letter passwords are there?”
▶ “How many possible ways are there to pick 11 soccer players out of a
20-player team?”

Counting is the basis for computing probabilities of discrete events.
▶ “What is the probability of winning the lottery?”
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Generative Processes and Outcomes

I’ll use the term “generative process” (or just “process”) to cover
▶ a task that can be accomplished in multiple ways,
▶ a choice between multiple options,
▶ etc.

An outcome is the end result of a generative process.

Examples

Generative Process: Pick an 8-letter password.
Outcomes: “aaaaaaaa”, “coolmath”, “mysecret”, …

Generative Process: Pick a set of two elements from {A,B,C}.
Outcomes: {A,B}, {A,C}, {B,C}
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Decomposition of Generative Processes

Complex processes can often be decomposed into simpler processes.

Examples

Generative Process: Pick an 8-letter password.
Decomposition:
▶ Pick one letter to be the 1st letter of the password.
▶ Pick one letter to be the 2nd letter of the password.
▶ …and so on, up to the 8th letter.

Generative Process: Pick a set of two elements from {A,B,C}.
Decomposition:
▶ Pick an ordered list (or tuple) of two distinct elements from {A,B,C}.
▶ Adjust for ordering (list vs set).
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Basic Principles
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The Addition Principle

The Addition Principle, aka the Sum Rule

Suppose that a process can be done in two ways—that is, exactly one way is
chosen, either the first or the second, but not both.
If the first way has 𝑛1 outcomes, and the second way has 𝑛2 outcomes, and
the outcomes do not overlap, then there are 𝑛1 + 𝑛2 total outcomes.

Examples ••

▶ Pick either a digit (0-9) or a letter (A-Z). How many outcomes are there?

Solution: There are 10 + 26 = 36 total outcomes (choices).

▶ The dean will award a free phone to either a CS student or a math
student. There are 530 CS students and 264 math students (but there
are some double-majors). How many possible recipients are there?

Error: The addition principle does not apply, since there is overlap
between the CS students and the math students.
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The Multiplication Principle

The Multiplication Principle, aka the Product Rule

Suppose that a process can be broken down into two parts, where both
parts must be performed and their results are simply combined.
If the first part has 𝑛1 outcomes and then the second part has 𝑛2 outcomes,
then the combined process has 𝑛1𝑛2 total outcomes.

Examples ••

▶ How many codes could we form from exactly two English letters?

Solution: There are 26 outcomes for the first letter, and 26 outcomes
for the second letter. So there are 26 ⋅ 26 = 676 total outcomes.

▶ If we roll a red die and a blue die (both dice have six sides), how many
different numbers can they sum to?

Error: The multiplication principle does not apply to this problem, since
different pairs of dice results can lead to the same final outcome (sum).
That is, the results are not “simply combined”.
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The Multiplication Principle

We can still use the multiplication principle if the second task depends on
the outcome of the first, as long as the number of outcomes doesn’t vary.

Example

How many codes can we form with two distinct letters?
Decomposition:
▶ Step 1: Pick the first letter.
There are 26 choices.

▶ Step 2: Pick the second letter, excluding the letter picked in step 1.
There are 26 − 1 = 25 choices.
(The set of available letters depends on step 1, but the number does not.)

So there are 26 ⋅ 25 = 650 total outcomes.
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The Subtraction Principle

The Subtraction Principle

Suppose that a process can be described as follows: first perform a
sub-process with 𝑛1 outcomes, but then exclude every outcome that can be
produced by a second sub-process (with 𝑛2 outcomes).
If every outcome of the second sub-process is also an outcome of the first,
then there are 𝑛1 − 𝑛2 total outcomes.

Example •

▶ How many codes can be formed from two digits (0-9), if the digits
cannot both be even? (That is: 12, 63, and 55 are okay, but 24 is not.)

Solution: We use the subtraction principle:
▶ By the product rule, there are 102 two-digit codes.
▶ There are 5 even digits, so by the product rule there are 52 codes of two
even digits. Every two-even-digit code is a two-digit code.

▶ So there are 102 − 52 = 75 two-digit codes not having two even digits.

Ryan Culpepper 10 Counting Basic Principles 9



The Subtraction Principle

The Subtraction Principle

Suppose that a process can be described as follows: first perform a
sub-process with 𝑛1 outcomes, but then exclude every outcome that can be
produced by a second sub-process (with 𝑛2 outcomes).
If every outcome of the second sub-process is also an outcome of the first,
then there are 𝑛1 − 𝑛2 total outcomes.

Example •

▶ How many codes can be formed from two digits (0-9), if the digits
cannot both be even? (That is: 12, 63, and 55 are okay, but 24 is not.)
Solution: We use the subtraction principle:
▶ By the product rule, there are 102 two-digit codes.
▶ There are 5 even digits, so by the product rule there are 52 codes of two
even digits. Every two-even-digit code is a two-digit code.

▶ So there are 102 − 52 = 75 two-digit codes not having two even digits.

Ryan Culpepper 10 Counting Basic Principles 9



The Quotient Principle

The Quotient Principle, aka the 𝑘-to-1 Rule
Suppose that every outcome of a process corresponds to exactly 𝑘 different
outcomes of a sub-process, and every sub-process outcome corresponds to
exactly one main outcome.
If the sub-process has 𝑛 outcomes, then the main process has 𝑛

𝑘 outcomes.

Example •

▶ How many two-digit codes are there where the digits are in ascending
order (that is, the second digit is greater than the first)?

Solution: We use the quotient principle with 𝑘 = 2:
▶ There are 10 ⋅ 9 = 90 two-digit codes where the digits are different.
▶ Every ascending-order code corresponds to exactly 2 different-digits code.
For example, 47 corresponds to 47 and 74.

▶ So there are 10⋅9
2 = 45 two-digit codes with the digits in ascending order.
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Counting Principles and Sets

Addition Principle for Sets

Let 𝐴1, 𝐴2 be finite, disjoint sets.
Then the number of ways to choose one element from either set is

∣ 𝐴1 ∪ 𝐴2 ∣ = ∣ 𝐴1 ∣ + ∣ 𝐴2 ∣

Multiplication Principle for Sets

Let 𝐴, 𝐵1, 𝐵2 be finite sets, and let 𝑓 ∶ 𝐵1 × 𝐵2 → 𝐴 be bijective.
Then the number of ways to choose an element of 𝐴 corresponds to the
number of ways to choose an ordered pair from 𝐵1 × 𝐵2:

∣ 𝐴 ∣ = ∣ 𝐵1 × 𝐵2 ∣ = ∣ 𝐵1 ∣ ⋅ ∣ 𝐵2 ∣

The bijection 𝑓 represents the “simple combination of results”.
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Counting Principles and Sets

Subtraction Principle for Sets

Let 𝐴, 𝑋 be finite sets where 𝑋 ⊆ 𝐴.
Then the number of ways to choose an element from 𝐴 − 𝑋 is

∣ 𝐴 − 𝑋 ∣ = ∣ 𝐴 ∣ − | 𝑋 |

Quotient Principle for Sets

Let 𝐴, 𝐵 be finite sets, let 𝑘 ∈ ℤ+, and let 𝑓 ∶ 𝐴 → 𝐵 have the property that
∣ 𝑓 −1({𝑏}) ∣ = 𝑘 for every 𝑏 ∈ 𝐵. Then the number of ways to select one
element from 𝐵 is

| 𝐵 | =
∣ 𝐴 ∣
𝑘

The function 𝑓 is called a 𝑘-to-1 correspondence.
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Exercise: Sums and Products ••

▶ How many different license plates are there that contain exactly three
letters followed by two digits?

▶ How many different codes are there if a code is either three digits or
two letters?

▶ How many codes are there if a code contains one or two letters
followed by between two and four digits? For example: D55, KF3930,
AA123, and CS220.
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Inclusion-Exclusion
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Inclusion-Exclusion

How many bit strings of length 8 either start with a 1 or end with 00?

▶ Process 1: Construct a bit string of length 8 that starts with a 1.
There is 1 choice for the first bit and 2 choices for each of bits 2–8.
So there are 1 ⋅ 27 = 128 outcomes.

▶ Process 2: Construct a bit string of length 8 the ends with 00.
There are 2 choices for each of bits 1–6 and 1 choice for bits 7–8.
So there are 26 ⋅ 12 = 64 outcomes.

So by the sum rule, there are 192 total possibilities. This is wrong. (Why?)
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Inclusion-Exclusion

How many bit strings of length 8 either start with a 1 or end with 00?
▶ Process 1: Construct a bit string of length 8 that starts with a 1.
There are 1 ⋅ 27 = 128 outcomes.

▶ Process 2: Construct a bit string of length 8 the ends with 00.
There are 26 ⋅ 12 = 64 outcomes.

Process 1 and 2 have overlapping outcomes! For example, 10000000.
So the sum rule would overcount the outcomes. By how much?

▶ Process 3: Construct a bit string of length 8 that starts with 1 and ends
with 00. There are 1 ⋅ 25 ⋅ 12 = 32 outcomes.

We correct for the overcount by subtracting the number of overlapping
outcomes:

128 + 64 − 32 = 160
This technique is called inclusion-exclusion.
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Inclusion-Exclusion

Inclusion-Exclusion
Let 𝐴1 and 𝐴2 be finite sets, not necessarily disjoint.
Then the number of ways to choose an element from either of the sets is

∣ 𝐴1 ∪ 𝐴2 ∣ = ∣ 𝐴1 ∣ + ∣ 𝐴2 ∣ − ∣ 𝐴1 ∩ 𝐴2 ∣

∣ 𝐴1 𝐴2 ∣ = ∣ 𝐴1 𝐴2 ∣ + ∣ 𝐴1 𝐴2 ∣ − ∣ 𝐴1 𝐴2 ∣

Example

∣ {1, 2, 3, 4} ∪ {3, 4, 5} ∣ = ∣ {1, 2, 3, 4} ∣ + ∣ {3, 4, 5} ∣ − ∣ {3, 4} ∣
∣ {1, 2, 3, 4, 5} ∣ = 4 + 3 − 2 = 5
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Permutations and Combinations
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Permutations

Example •
How many different license plates are there with 3 letters followed by 2
digits, if each letter must be distinct and each digit must be distinct?

Solution:
▶ There are 26 choices for the first letter.
▶ There are 26 − 1 = 25 choices for the second letter,
since the first letter must not be reused.

▶ There are 26 − 2 = 24 choices for the third letter,
since the first and second letters must not be reused.

▶ There are 10 choices for the first digit.
▶ There are 10 − 1 = 9 choices for the second digit,
since the first digit must not be reused.

So there are 26 ⋅ 25 ⋅ 24 ⋅ 10 ⋅ 9 = 1 404 000 total outcomes.
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Permutations

Definition (Permutation)
Given a set 𝑆, a permutation of 𝑆 is an ordered list whose elements are the
elements of 𝑆, in some order, without duplicates.
An 𝑟-permutation of 𝑆 is an ordered list of 𝑟 elements from 𝑆, in some
order, without duplicates. (Of course, 0 ≤ 𝑟 ≤ ∣ 𝑆 ∣.)

Example

Let 𝑆 = {1, 2, 3}. The permutations (ie, 3-permutations) of 𝑆 are:

(1, 2, 3) (1, 3, 2) (2, 1, 3) (2, 3, 1) (3, 1, 2) (3, 2, 1)

The 2-permutations of 𝑆 are the following:

(1, 2) (1, 3) (2, 1) (2, 3) (3, 1) (3, 2)

The 1-permutations of 𝑆 are (1), (2), and (3); and the 0-permutation is ().
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Counting Permutations

Notation (Permutations)
The number of 𝑟-permutations of a set of 𝑛 elements is written 𝑃(𝑛, 𝑟).

Suppose a set 𝑆 has 𝑛 elements.
How many 𝑟-permutations of 𝑆 are there?
How many (“full”) permutations of 𝑆 are there?

By the product rule:

𝑃(𝑛, 𝑟) = 𝑛 ⋅ (𝑛 − 1) ⋯ (𝑛 − 𝑟 + 1)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑟 terms

= 𝑛!
(𝑛 − 𝑟)!

𝑃(𝑛, 𝑛) = 𝑛!
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Counting Permutations

𝑃(𝑛, 𝑟) = 𝑛 ⋅ (𝑛 − 1) ⋯ (𝑛 − 𝑟 + 1)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑟 terms

= 𝑛!
(𝑛 − 𝑟)!

Examples

▶ 𝑃(3, 2) = 3!/1! = (3 ⋅ 2 ⋅ 1)/(1) = 3 ⋅ 2 = 3
▶ 𝑃(5, 3)

= 5!/2! = 5 ⋅ 4 ⋅ 3 = 60

▶ 𝑃(8, 5)

= 8!/3! = 8 ⋅ 7 ⋅ 6 ⋅ 5 ⋅ 4 = 6720

▶ 𝑃(10, 3)

= 10!/7! = 10 ⋅ 9 ⋅ 8 = 720

▶ 𝑃(7, 0)

= 7!/7! = 1
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Counting Permutations
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Permutations and Combinations
▶ How many different lists of 3 people can we pick from a set of 8?
Solution: The outcomes are the 3-permutations of a set of 8.
So there are 𝑃(8, 3) = 8 ⋅ 7 ⋅ 6 = 336 outcomes.

▶ How many different sets of 3 people can we pick from a set of 8?
Let’s start with the solution to the previous problem.
There are several lists that correspond to each set:

(1, 2, 3) (2, 1, 3) (3, 1, 2)
(1, 3, 2) (2, 3, 1) (3, 2, 1) } {1, 2, 3}

(1, 3, 5) (3, 1, 5) (5, 1, 3)
(1, 5, 3) (3, 5, 1) (5, 3, 1) } {1, 3, 5}

… …

Specifically, there are 6 lists per set, because there are 𝑃(3, 3) = 6 ways of
ordering 3 elements. By the quotient principle, we must divide by 6.
So the answer is 𝑃(8, 3)/𝑃(3, 3) = 336/6 = 56.
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Combinations

Definition (Combination)
Given a set 𝑆, an 𝑟-combination of 𝑆 is an unordered selection of 𝑟
elements of 𝑆. That is, it is a subset of 𝑆 with 𝑟 elements.

Notation (Combinations)
The number of 𝑟-combinations of a set with 𝑛 elements is written
𝐶(𝑛, 𝑟) or (𝑛

𝑟), pronounced “𝑛 choose 𝑟”.

Example

Let 𝑆 = {1, 2, 3, 4}. The 2-combinations of 𝑆 are the following:

{1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}

There are 6 of them, so 𝐶(4, 2) = 6.
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Counting Combinations

𝐶(𝑛, 𝑟) = 𝑃(𝑛, 𝑟)
𝑃(𝑟, 𝑟) = 𝑛!

(𝑛 − 𝑟)! 𝑟!

We can think of the process of generating 𝑟-combinations of 𝑆 as follows:
▶ First, generate all of the 𝑟-permutations of 𝑆.
There are 𝑃(𝑛, 𝑟) of them, where 𝑛 = ∣ 𝑆 ∣.

▶ Group the lists with the same set of elements together.
Each set of 𝑟 elements will appear as 𝑃(𝑟, 𝑟) different ordered lists.
That is, we must divide out the artificial ordering.
So the number of distinct sets is 𝑃(𝑛,𝑟)

𝑃(𝑟,𝑟) .
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Counting Combinations

Corollary

Let 𝑛, 𝑟 ∈ ℕ with 𝑟 ≤ 𝑛. Then 𝐶(𝑛, 𝑟) = 𝐶(𝑛, 𝑛 − 𝑟).
Choosing 𝑟 elements to “take” is the same as choosing 𝑛 − 𝑟 elements to “leave”.

Proof.

𝐶(𝑛, 𝑟) = 𝑛!
(𝑛−𝑟)! 𝑟! = 𝑛!

(𝑛−𝑟)!(𝑛−(𝑛−𝑟))! = 𝐶(𝑛, 𝑛 − 𝑟)

Example

Suppose we have a set 𝑆 of 6 elements (that is, 𝑛 = 6).
Picking 2 to “take” is essentially the same as picking 4 elements to “leave”.
In either case, our number of choices is the number of possibilities to
divide the set into one set containing 2 elements and another set
containing 4 elements.

Ryan Culpepper 10 Counting Permutations and Combinations 26



Exercise: Permutations or Combinations

Do the following problems involve “permutations” or “combinations”?
▶ Twelve athletes compete in a footrace. Medals are awarded for first, second,
and third place; there are no ties. How many different ways can medals be
awarded?

▶ A soccer club has 8 women and 7 men. For today’s match, the coach wants to
field 6 women and 5 men. How many possible teams are there?

▶ How many sequences of 8 distinct digits are there in which the digits strictly
alternate between even and odd?

▶ How many binary strings of length 7 are there with an even number of ones?
▶ A license plate consists of 3 distinct letters and 4 distinct numbers, but any
position can be occupied by either a letter or a number. How many possible
license plates are there?
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Exercise: Permutations and Combinations

▶ A restaurant has an Express Buffet deal. There are 6 dishes offered.
You can either choose 3 distinct small servings or 2 distinct medium
servings. How many different meals are possible?

▶ How many sequences of 8 distinct digits (0–9) are there in which the
digits strictly alternate between even and odd?

▶ A concert hall employs 10 ushers. It needs a team of 2 to work the
gallery, a team of 4 to work the balcony, and the rest will work the floor.
How many different work assignments are there?
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Binomial Coefficients

The values of 𝐶(𝑛, 𝑘) are also called binomial coefficients. Why?
▶ A binomial expression is the sum of two terms, such as (𝑎 + 𝑏).
▶ Now consider (𝑎 + 𝑏)𝑘 = (𝑎 + 𝑏)(𝑎 + 𝑏) ⋯ (𝑎 + 𝑏)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑘 terms
.

▶ When expanding such expressions, we have to form all possible
products of a term in the first factor and a term in the second factor,
then we can sum identical terms:

(𝑎 + 𝑏)2 = 𝑎𝑎 + 𝑎𝑏 + 𝑏𝑎 + 𝑏𝑏
= 1𝑎2 + 2𝑎𝑏 + 1𝑏2

(𝑎 + 𝑏)3 = 𝑎𝑎𝑎 + 𝑎𝑎𝑏 + 𝑎𝑏𝑎 + 𝑎𝑏𝑏 + 𝑏𝑎𝑎 + 𝑏𝑎𝑏 + 𝑏𝑏𝑎 + 𝑏𝑏𝑏
= 1𝑎3 + 3𝑎2𝑏 + 3𝑎𝑏2 + 1𝑏3

There are 𝐶(𝑛, 𝑘) ways to form a list of 𝑘 𝑎s and (𝑛 − 𝑘) 𝑏s.

Ryan Culpepper 10 Counting Permutations and Combinations 29



Binomial Coefficients

Theorem (The Binomial Theorem)

(𝑎 + 𝑏)𝑛 =
𝑛

∑
𝑗=0

𝐶(𝑛, 𝑗) 𝑎 𝑗 𝑏𝑛−𝑗

With the help of Pascal’s triangle (next section), this formula can
considerably simplify the process of expanding powers of binomial
expressions.
For example, the fifth row of Pascal’s triangle (1, 4, 6, 4, 1) helps us to
compute (𝑎 + 𝑏)4:

(𝑎 + 𝑏)4 = 𝑎4 + 4𝑎3𝑏 + 6𝑎2𝑏2 + 4𝑎𝑏3 + 𝑏4
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Recurrences
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Pascal’s Formula

Pascal’s Formula
Let 𝑛, 𝑘 ∈ ℕ with 𝑘 ≤ 𝑛. Then 𝐶(𝑛 + 1, 𝑘) = 𝐶(𝑛, 𝑘 − 1) + 𝐶(𝑛, 𝑘).

Why is this true?

Suppose 𝑆 = {1, … , 𝑛 + 1}. How many ways can we choose 𝑘 elements?
We can focus on the decision whether to include 𝑛 + 1:
▶ If we include 𝑛 + 1 in the result,
we still have to choose 𝑘 − 1 elements from {1, … , 𝑛}.
That process has 𝐶(𝑛, 𝑘 − 1) outcomes.

▶ If we do not include 𝑛 + 1 in the result,
we still have to choose 𝑘 elements from {1, … , 𝑛}.
That process has 𝐶(𝑛, 𝑘) outcomes.

These are the only two cases, and they do not overlap.
So by the sum rule, 𝐶(𝑛 + 1, 𝑘) = 𝐶(𝑛, 𝑘 − 1) + 𝐶(𝑛, 𝑘).
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Pascal’s Formula
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Pascal’s Triangle

𝐶(𝑛 + 1, 𝑘) = 𝐶(𝑛, 𝑘 − 1) + 𝐶(𝑛, 𝑘)
Let’s write a “matrix” of the 𝐶(𝑛, 𝑘) values, where 𝑛 is the row and 𝑘 is the
column (both indexed starting with 0):

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
⋮

Each number is the sum of the numbers immediately above and above-left.
This is called Pascal’s triangle.
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Recurrences for Counting

Let 𝑆(𝑛) be the number of bit strings of
length 𝑛 that do not have two consecutive 1s.
What is 𝑆(𝑛)?

We can make such a bit string of length 𝑛 in
two different ways:
▶ “0” followed by a no-double-one bit
string of length 𝑛 − 1

▶ “10” followed by a no-double-one bit
string of length 𝑛 − 2

Let’s also think about the base cases...

Then:

𝑆(𝑛) =
⎧{{
⎨{{⎩

1 if 𝑛 = 0
2 if 𝑛 = 1
𝑆(𝑛 − 1) + 𝑆(𝑛 − 2) if 𝑛 ≥ 2

1

0

0

0 1

1

0

0

0

0

0 1

1

0

1

0

0 1

𝑆(4) = 8
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Pigeonhole Principle
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The Pigeonhole Principle

The Pigeonhole Principle

If 𝑘 + 1 or more objects are placed into 𝑘 boxes, then there is at least one
box containing 2 or more of the objects.

Examples

▶ If there are 11 players on a soccer team that wins 12–0, there must be at
least one player in the team who scored at least twice (assuming there
are no own-goals!).

▶ If you have 6 classes schedules Monday to Friday, there must be at
least one day on which you have at least two classes.
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The Pigeonhole Principle

Example

Assume you have a drawer containing 12 brown socks and 12 black socks
all mixed together.
It is dark, so how many socks do you have to pick to be sure that among
them there is a matching pair?

Solution: There are 2 types of socks, so if you pick at least 3 socks, there
must be either at least 2 brown socks or at least 2 black socks.
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The Generalized Pigeonhole Principle

The Generalized Pigeonhole Principle

In general, if 𝑁 objects are placed into 𝑘 boxes, then there is at least one
box containing at least ⌈𝑁

𝑘 ⌉ objects.

Converse of the Generalized Pigeonhole Principle

If there are 𝑘 boxes, then in order to guarantee that at least one box
contains 𝑏 items, (𝑏 − 1)𝑘 + 1 items must be distributed among the boxes.
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Summary
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Summary of Counting Techniques

▶ addition (sum rule) — for counting “either-or” situations, where an
outcome is produced by either one task or another
▶ subtraction — for excluding elements
▶ inclusion-exclusion — for correcting overcounts of overlapping sets

▶ multiplication (product rule) — for counting “both-and” situations,
where an outcome is created by joining multiple task outputs
▶ quotient — correct for overcounting by a factor
▶ permutations — for counting ordered lists without duplicates of elements
from some set

▶ combinations — for counting (unordered) sets (without duplicates) of
elements from some set

▶ recursive equations — (like Pascal’s formula)
▶ enumeration — “just count”, “tree diagram”, etc
▶ pigeonhole principle — for minimum size of largest group
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