1 Administrative

- Course web page updated
- Lecture 01 video on Blackboard
- Register for gradescope with umb.edu address
 Automatically added to CS 624 page
- Register for Piazza
 Add yourself to the course piazza page
- Zoom: make sure to use a umb.edu account!
- Homework 01 will go out this evening
 covers material through Wednesday (9/14)
 due week from Wednesday (9/21)

2 Continuing from Lecture 01

In Lecture 01, we saw the InsertionSort algorithm and started reasoning about its correctness.

2.1 Reminder: Slide 11: Insertion Sort

\[
\text{InsertionSort}(A) := \\
\text{for } j \leftarrow 2 \text{ to } \text{length}[A] \text{ do} \\
\quad \text{key } \leftarrow A[j] \\
\quad i \leftarrow j - 1 \\
\quad // \text{ Insert } A[j] \text{ into sorted sequence } A[1..j-1] \\
\quad \text{while } i > 0 \text{ and } A[i] > \text{key} \text{ do} \\
\]
A[i+1] ← A[i]
i ← i - 1
end while
A[i + 1] ← key
end for

2.2 Reminder: Slide 14: Loop Invariant
Loop invariant:
The numbers in A[1 . . (j-1)] are in sorted order, and they are
a permutation of the original A[1 . . (j-1)].

3 Slide 15
Parts to proof by loop invariant:
- Initialization
- Maintenance
- Termination
Similar to induction.
(skip to slide 18)

4 Slide 20
Example:

(2, 4, 5, 6, 7, 9)

Discuss:
Best-case analysis is good!
Best-case analysis is bad!

5 Slide 22
What is t_j?
6 Slide 25

Discuss:

Average-case analysis is good!

- best case might be misleading

Average-case analysis is bad!

- your inputs might not be "average"

Average vs worst:

If you always plan for the worst, then all of your surprises will be happy ones.

vs

If you are too pessimistic, you might give up, over-budget, etc.

We solve “intractably hard” problems all the time! Examples:

- scheduling, solving constraints
- NP-complete problems like SAT-solvers
- type inference (polymorphic) like ML, Haskell, etc

Precision:

What does “average-case” mean?

Average over what distribution of inputs?

In slides 25–34, uniform distribution over permutations (assuming all elements in sequence are distinct).

7 Slide 26

An inversion is when a little number follows a big number in the array.

An element may participate in multiple inversions.

\[(5, 1, 6, 4, 7, 2)\]

How many inversions does 4 participate in?

3 (2 on the left, 1 on the right)

If we shuffle the numbers before 4, does it change the answer?

no
8 Slide 27: What do inversions have to do with the run time?

If the array has \(N \) inversions of the form \((i, a_j) \), then the inner loop will execute \(N \) times for that value of \(j \).

9 Slide 29: What is the average number of inversions?

The average number of inversions (over a uniform distribution of permutations of distinct elements of an array) is

\[
\frac{\text{total inversions over all permutations}}{\text{number of permutations}}
\]

How can we count the total number of inversions?

Related: What is the sum of the numbers 1 .. 100?

9.1 Summation solution

First we calculate twice the sum, by pairing off elements with elements in the reversed sequence.

\[
\begin{align*}
1 & + 2 + 3 + \ldots + 100 + \\
100 & + 99 + 98 + \ldots + 1 \\
= & \\
101 & + 101 + 101 + \ldots + 101 \quad \text{<-- 100 elements} \\
= & \\
101 & \times 100 \\
= & \\
10100
\end{align*}
\]

Then divide by 2:

\[5050\]

9.2 Counting inversions

How can we count the total number of inversions?

First we count them twice!

What is the number of inversions in a permutation plus the number of inversions in the reverse permutation? (Assuming all elements are distinct.)

For each pair of indexes \(i < j \), either
• $A_p[i] > A_p[j] — an inversion i, j in the forward permutation, or
• $A_p[i] < A_p[j] — there is an inversion in the reverse permutation; not at (i, j), but at $(L + 1 - j, L + 1 - i)$

10 Slide 35: Merge Sort

11 Slide 37: Merge

$\text{Merge}(A, p, q, r)$

Preconditions:
• $1 \leq p \leq q \leq r \leq \text{length}[A]$, and
• the array sections $A[p..q]$ and $A[q+1..r]$ are sorted

Postconditions:
• $A[p..r]$ is sorted, and
• $A[p..r]$ is a permutation of the original contents of $A[p..r]$

12 Slide 38: Loop Invariant for Merge

At the start of each iteration of the for loop on k, the subarray $A[p..k-1]$ contains the $k - p$ smallest elements of $L[1..n_1+1]$ and $R[1..n_2+1]$, in sorted order.

Moreover, $L[i]$ and $R[j]$ are the smallest elements of their arrays that have not been copied back into A. (Or ∞.)

13 Slide 41

Typo in slide, should be

$$T(n) = \begin{cases} d & \text{if } n = 1 \\ 2T(n/2) + cn & \text{otherwise} \end{cases}$$

14 Slide 42

(See Figure 2.5 in the textbook.)

What is $T(n)$?

We don’t know, but (if $n \neq 1$), we can unfold it one level:
but what is \(T(n/2) \)? We don’t know, but (if \(n/2 \neq 1 \)), we can unfold another level:

\[
c*n +
T(n/2) + \quad T(n/2)
\]

\[
c*n +
c*n/2 + \quad c*n/2 +
c*T(n/4) + c*T(n/4) + \quad c*T(n/4) + c*T(n/4)
\]

How many levels can we unfold it?

\[\log_2 n \]

What happens when we get to the bottom?

\[d*n \quad (more \ or \ less) \]

What is the sum of all costs in the tree?

\[cn \log_2 n + d*n \]

Note the imprecision! In fact, different branches are likely to reach the base case at slightly different times. Why is that okay?

15 Next: Asymptotic Analysis

In the next lecture, we’ll talk about about how to be rigorously imprecise!