These notes contain an outline of what I said in lecture (but only an outline), and they also contain interactive questions and exercises. The corresponding slides are in slides03.pdf.

1 Administrative

- Homework questions on Piazza

2 From last time

We introduced asymptotic efficiency:

- $O(f)$ means eventually bounded above by cf
- $\Omega(f)$ means eventually bounded below by cf
- $\Theta(f)$ means eventually bounded above and below by $c_1 f$ and $c_2 f$

The run time of an algorithm can often be specified by a recurrence (a recursive equation). We generally want to solve such recurrences, or at least find asymptotic bounds on the solution.

One method is to guess a bound and then use the recurrence equation (and induction) to prove it. Now we’ll discuss other techniques.

3 Calculating asymptotic bounds (continued)

3.1 Slide 21: Recursion Trees

3.2 Slide 24: The Master Method

Given a recurrence of the form

$$T(n) = aT(n/b) + f(n) \quad \text{where } a \geq 1, \ b > 1, \ f \text{ ultimately positive}$$

Let $p = \log_b a$.
1. If \(f(n) = O(n^{p-\epsilon}) \) for some \(\epsilon > 0 \), then \(T(n) = \Theta(n^p) \).

2. If \(f(n) = \Theta(n^p) \), then \(T(n) = \Theta(n^p \log n) \).

3. If \(f(n) = \Omega(n^{p+\epsilon}) \) and if \(f \) “is not too wiggly”, then \(T(n) = \Theta(f(n)) \).

Case 2 has two more specific sub-cases:

2a. If \(f(n) = O(n^p) \) then \(T(n) = O(n^p \log n) \).

2b. If \(f(n) = \Omega(n^p) \) then \(T(n) = \Omega(n^p \log n) \).

Slide 30: Why doesn’t case 2 imply these two sub-cases?

Case 2 requires a tight bound on \(f \). Cases 2a and 2b give us some information for (loose) upper or lower bounds.

3.2.1 Examples

Example 1: \(T(n) = 4 \times T(n/2) + n \)

\[p = \log_2 4 = 2 \]

Which case? Case 1: because \(n = O(n^{2-\epsilon}) \), \(\epsilon = 1 \)

\(T(n) = \Theta(n^2) \)

Example 2: \(T(n) = 4 \times T(n/2) + n^2 \)

\[p = 2 \]

Which case? Case 2, because \(n^2 = \Theta(n^2) \)

\(T(n) = \Theta(n^2 \log n) \)

Example 3: \(T(n) = 4 \times T(n/2) + n^3 \)

\[p = 2 \]

Which case? Case 3, because \(n^3 = \Omega(n^{2+1}) \)

... and \(n^3 \) is not “too wiggly”

\(T(n) = \Theta(n^3) \)

Example 4: \(T(n) = 4 \times T(n/2) + n^2 / (\log n) \)

\[p = 2 \]

Which case?

Does case 1 apply? Is \(n^2 / (\log n) = O(n^{p-\epsilon}) = O(n^p / n^\epsilon) \)?

No, because \(\log n \) grows more slowly than \(n^\epsilon \) for any \(\epsilon > 0 \).

None of the main three cases applies.

Case 2a, because \(n^2 / (\log n) = O(n^2) \).

\(T(n) = O(n^2 \log n) \)

What about a lower bound?

\(T(n) \geq 4 \times T(n/2) + n \)

so \(T(n) = \Omega(n^2) \)

But we have no \(\Theta \) bound.
4 Generating functions (briefly)

Every sequence $a_n \{a_n\} = \langle a_0, a_1, a_2, ... \rangle$

has an associated “generating function” defined by

$$F(x) = \sum_{n=1}^{\infty} a_n x^n$$

In some cases, the series corresponds to a well-known function (because it is the Maclaurin series for that function, for example).

For example, the generating function for the sequence defined by

$$a_n = \frac{1}{n!}$$

is the exponential function

$$F(x) = e^x$$

Now we have (potentially) three different views of the same information:

- the sequence
- the series (an infinite polynomial)
- (maybe) the function

By switching back and forth between these views, we can apply the tools associated with all three.

(slides 36-47)

5 Introduction to Heaps

(switch to slides03)

5.1 Slide 4: Pre-Heap

5.2 Slide 12: Heap

A heap is a pre-heap with the additional property:

- the key at each node is greater than or equal to the keys of that node’s descendents

(stopped slide 14)