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Abstract—Radio Frequency IDentification (RFID) technology
has attracted much attention due to its variety of applications, e.g.,
inventory control and object tracking. One important probl em in
RFID systems is how to quickly estimate the number of distinct
tags without reading each tag individually. This problem plays a
crucial role in many real-time monitoring and privacy-preserving
applications. In this paper, we present an efficient and anonymous
scheme for tag population estimation. This scheme leverages the
position of the first reply from a group of tags in a frame. Results
from mathematical analysis and extensive simulation demonstrate
that our scheme outperforms other protocols proposed in the
previous work.

I. I NTRODUCTION

Radio Frequency IDentification (RFID) technology is widely
used in monitoring applications such as inventory control and
object tracking [1]–[7]. Small RFID tags, each with a unique
ID, are attached to items under monitoring. An RFID reader
can remotely collect these IDs later for verification. Due to
the large number of deployed RFID tags, collecting all tag
IDs for verification is inefficient. Some real-time applications,
such as counting the number of tags in a shipping portal, need
more efficient techniques to manage tag data. In this paper, we
consider the problem ofefficientlyandanonymouslyestimating
the cardinality of a large set of RFID tags with a desired
accuracy.

Efficient techniques for estimating the number of RFID
tags are important for applications when the time window for
collecting tag data is small. These applications include real-
time monitoring or managing a large quantity of products.
For example, a warehouse operator may need to perform a
quick estimation of the number of products left in stock. Such
applications demand efficient estimating schemes instead of the
slow and unnecessary process of reading every tag ID.

Anonymity is another important issue when dealing with
RFID tags attached to uniquely identifiable items such as
passports [8] or driver’s licenses [9]. Either broadcasting tag
IDs in the open, or revealing IDs to the RFID reader may leak
personal information. For instance, an adversary could capture
the communication between the reader and tags or compromise
the reader to track users’ activities. Identifying each tagID
increases individual security and privacy risks. An alternative
way of providing anonymity is to use cryptographic protocols
to mask the actual ID [10], [11]. However, the cryptographic
techniques require additional modification to the tag hardware,
as well as increase the computational complexity on both tags
and readers.

Prior work in [12] and [13] considers this problem by using
probabilistic estimation based on the framed-slotted ALOHA
model. Unfortunately, the scanning time can be considerably
long due to the large frame size required. The performance
becomes worse when the mobile tags appear dynamically so
that counting them at a fixed time instant is not possible. That
is because the tags have to be scanned independently with each
counting consuming a long time.

In this paper, we propose a novel scheme for the reader to
quickly estimate the number of distinct tags within a required
accuracy. Our scheme is based on a new distinct element
counting method [14], without reading either the actual or
pseudo IDs. The main idea of our algorithm is to utilize
the position of the first reply from a group of tags in a
frame to infer the number of tags. Theoretical analysis and
extensive simulation show that our scheme outperforms earlier
RFID tag estimation schemes. Moreover, our scheme tries to
optimize incremental counting in a mobile environment. Note
that our approach has a general purpose of counting RFID tags.
Combined with other commands, it can be flexibly adopted in
various applications.

Our contributions are summarized as follows.
• We propose a novel anonymous estimating scheme which

does not collect the ID from each RFID tag, but is still
able to estimate the number of tags accurately.

• We present estimators for both static and dynamic sets of
tags. The static set specifies a snapshot of a set of tags,
and the dynamic set considers that tags can join or leave
the set with time. Both our estimators are more efficient
than the existing protocols, even when the cardinality of
the tag set varies across many orders of magnitude.

• We propose a novel send-and-reply protocol among the
reader and tags to improve performance.

The rest of our paper is as follows. Section II contains
the related work. Section III presents our problem definition
and system model. Section IV outlines the main idea of our
schemes. Section V details the algorithms. Our schemes are
evaluated in Section VI, and Section VII concludes.

II. RELATED WORK

For a reader to successfully identify every tag in proxim-
ity, collision arbitration protocols must be considered sothat
replies from multiple tags will not be garbled due to collision.
Collision arbitration protocols are divided into two approaches:
ALOHA-based [15]–[17] and tree-based [18]–[20]. In the first



approach, the framed-slotted ALOHA (FSA) protocol, which
is an extension of the pure ALOHA protocol [21], is widely
used in RFID standards. Built on that, adaptive FSA protocols,
where frame size is adaptively adjusted, are explored in [15],
[22]–[24].

Recent research work [12], [13], [17], [25] is the closest to
this paper. A probabilistic analytical model for anonymously
estimating tag population is first proposed in [12]. The main
idea is to use the framed-slotted ALOHA protocol and monitor
the number of empty and collision slots to count tags. However,
the drawbacks of the estimators in [12] are that all the tags
must be readable by the reader in a single probe and that the
reader must know approximately the magnitude of the number
of tags to be estimated. Due to these constraints, an Enhanced
Zero-Based (EZB) estimator is presented in [13]. By tuning
the parameters for multiple iterations, the number of tags can
be estimated with high accuracy, even when the tag population
varies a lot. The key improvement in our work over [12] and
[13] is that our scheme does not scan the entire frame, which
drastically reduces time cost. Finally, another novel estimator
for the same problem is proposed in [25] with more focus on
the multiple-reader scenario. However, the scheme requires a
special geometric distribution hash function, which mightnot
be available in the off-the-shelf RFID systems.

III. PROBLEM DEFINITION AND SYSTEM MODEL

A. Problem Definition

TABLE I
NOTATIONS

Symbols Descriptions
ǫ Confidence interval
δ Error probability
t Number of distinct tags

tmax Upper bound of the number of tags
t̃ Estimation of the number of tags
X Random variable for the number of continuous empty

slots before the first non-empty slot in a frame
f Frame size (the number of slots in a frame)
R Random seed
ρ Load factort/f
k Number of waiting slots
n Number of rounds (frames)

h(·) Hash function
T (·) Theoretical time cost (in number of slots) in a round
m Number of sets of tags

Given an RFID reader and a set of tags, we want to quickly
and accurately estimate the number of distinct RFID tags in
the set without identifying each tag individually. Our algorithms
allow a user to specify his desired accuracy using two variables,
a confidence intervalǫ and anerror probability δ. Lower values
of ǫ andδ result in a more accurate estimation. Our algorithms
return an estimatioñt of the actual number of tagst, such
that Pr[|t̃ − t| ≤ ǫt] ≥ 1 − δ. For example, if the set has
5000 RFID tags, and givenǫ = 5% and δ = 1%, the desired
estimator should output the number within [4750, 5250] with
probability greater than 99%. Table I summarizes the notations
used.

B. System Model

The MAC protocol for our RFID system is based on the
adaptiveframed-slotted ALOHAmodel. To read a set of tags, a
reader first powers up and transmits continuous wave (CW) to
energize tags. Each tag waits for the reader’s command before
replying. This is known as theReader Talks Firstmode.

The communication between the reader and tags is composed
of multiple frames. Each frame is partitioned into slots. Here,
we refer to an individual frame as a round. The reader will first
broadcast abegin roundcommand containing the frame sizef
in the forthcoming round, and a random seedR. The frame size
is the number of slots available for tags to choose in a round.
Each tag picks a slot, and this slot determines when a tag will
reply. An RFID tag uses a hash functionh(·), f , R, and its ID
to pick a slot in the current round, i.e.,h(f, R, id) → [0, f−1].
We assume that the outputs of the hash function have a uniform
random distribution such that the tag has the equal probability
to select any slot within the round given a seed and ID.

Each RFID tag has a slot counter which will decrease each
time the reader indicates that the current slot has ended. The tag
will only reply when its slot counter reaches zero. When all the
slots in the frame have been accounted for, the reader sends an
end roundcommand to terminate this round. We assume that
the reader can issue an end round command to terminate a
round at any time without waiting for the frame to end. The
procedure is illustrated in Fig. 1. We call this the originalsend-
and-replyprotocol.
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Fig. 1. Collection sequence of passive RFID systems using the adaptive FSA

Since every RFID tag chooses its own slot individually, there
will be instances where no tag picks a particular slot. We term
this as anempty slot. A slot that has only been chosen by
one tag is known as asingleton slot. A slot that is chosen by
more than one tag is called acollision slot. We refer to both
singleton slot and collision slot asnon-empty slotin this paper.
After collecting all replies, the reader can generate a bitstring,
such as

{ · · · | 1 | 0 | 1 | 1 | 0 | 1 | · · · },

where 0 indicates an empty slot, and 1 represents a non-empty
slot.



IV. I NTUITION

The previous research [12], [13], [17] takes advantage of
the framed-slotted ALOHA protocol to estimate the number
of tags. The basic idea is based on the probability model we
have described previously. The reader scans all the slots and
records the status of each slot: empty, singleton, or collision.
By examining the number of empty slots, collision slots, the
reader can then estimate the number of tags.

This estimation method while powerful, has some limitations.
The main limitation is the large frame size, which translates to
a long protocol running time, when there exist a huge amount
of tags. Suppose for a large tag population but the frame sizeis
considerably small. All the tags’ responses will be packed in a
small number of slots, which means that the number of empty
slots will become zero and number of collision slots will be
equal to the frame size. To make estimation accurate, the frame
size should be in proportion to the number of tags. Therefore,
scanning the whole frame is inefficient when tag population is
large. Furthermore, the performance is even worse in mobile
environment, where either RFID tag or reader can move. To
count tags over a period of time, we have to use avery large
frame size at the beginning, such that we can superimpose all
the frames and guarantee that the number of empty slots is not
zero in the end [13].

To overcome the large frame size problem in the previous
protocols, we propose a new idea based on a randomized
algorithm for counting. Suppose we haven random numbers
uniformly and randomly chosen from (0,1). By examining the
smallest number, sayx, we can estimaten. Intuitively, the
smaller x is, the largern would be. If all the numbers are
uniformly laid out, n should be approximated by1/x. Of
course, this estimation is very crude with a very large variance.
Fortunately, we can run the same process for a sufficiently large
number of times, the estimation will become more accurate.
More details will be described later.

Our scheme does not require the reader to scan the whole
frame. Instead, the reader only needs to identify the first non-
empty slot, and uses the number of consecutive empty slots
before that to estimate the number of tags. Again, the fewer
the empty slots appear before the first non-empty slot, the more
tags there are. In practice, certain number of iterations ofsuch
operations are performed, and the mean value is used to achieve
an accurate estimation. For example, given,

{ 0 | 0 | 1 } → X1 = 2
{ 1 } → X2 = 0
{ 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 } → X3 = 9

where Xi denotes the number of empty slots before the
first reply position in roundi. From theoretical analysis and
extensive simulation, we find even though multiple iterations
are required for accuracy, the total time is still much shorter
than the schemes in prior work.

V. A NONYMOUS ESTIMATING ALGORITHMS

In this section, we describe our novel RFID tag estimating
scheme, First Non-Empty slots Based (FNEB) estimator.

A. Basic Algorithm

Again, our algorithm is based on the idea of making obser-
vation on the first non-empty slot. However, if the number of
tags t is small, the position of the first reply may be located
at the end of the frame. Apparently, it is not efficient to use
the originalsend-and-replyprotocol described in Section III.
In that protocol, a reader broadcastsf andR at the beginning
of a round, and waits for the first reply from tags. Therefore,
when the first reply is toward the end of the round, the reader
has to wait for the period of time almost equal to the frame
size.

To resolve this issue to improve the query efficiency, we
propose a newsend-and-replycommunication protocol among
reader and tags. Compared to the original protocol, our new
protocol can identify the first non-empty slot inO(log2f) time
slots instead ofO(f).

The newsend-and-replyprotocols for reader and tags are
shown in Algorithm 1 and 2 respectively. In the protocols, the
reader sends an extra frame ranger to all tags. Initially, the
reader splits the whole frame into two, and sets the first half
frame as thecandidate range, the second half frame as the
alternative range. The reader always sends out its candidate
range to the tags. Each tag evaluatesh(f, R, id) and replies
immediately if the result is inside the ranger. Otherwise, it
keeps silent without doing anything. Then the reader checks
the forthcoming slot. If the slot is empty, which indicates
there is no tag within the candidate range, the reader splitsthe
alternative range into two and picks the first half as the new
candidate range, and the second half as the new alternative
range. If the slot is not empty, which indicates there is at
least one tag in the candidate range, the reader then splits the
candidate range into two, and sets the first half as the the new
candidate range, and the second half as the new alternative
range. The above procedure is like a binary search tree as shown
in Fig. 2. The reader keeps traversing from the root to the leaves
and records the path in each iteration. Finally, the reader can
identify the first non-empty slot using the equation in line 16
of Algorithm 1, wherezi is a0/1 bit indicating the state of the
ith iteration.

Fig. 2 illustrates a simple example with frame size of 16.
In the first iteration, the reader sends the frame size16, search
range[0, 7], and a random seed to all tags. No tag replies, so the
first slot is empty. Then the reader starts the second iteration
with a new ranger = [8, 11]. At this time, at least one tag
replies, so the slot is “1”. Repeating the same process twice,
the reader identifies the first non-empty slot to be10.

It is not difficult to find that if the number of tags is relatively
small to the frame size, our newsend-and-replyprotocol is
more efficient than the original protocol. Otherwise, the original
protocol is better. Therefore, we combine both of them to
determineX . In the combinedsend-and-replyprotocol, we
define the number of waiting slotsk. At every round, the
original protocol is tried first. Only when there is no reply
within k slots, we turn to use our new protocol. So in the
worst case, onlyk + log2 f slots are required.



Algorithm 1 New send-and-replyprotocol for the reader
1: if f is not a power of 2then
2: f = 2⌈log2 f⌉

3: end if
4: a = 0, b = f/2 − 1
5: Set the search ranger = [a, b] and random seedR
6: for i = 1 to log2 f do
7: Reader broadcastsr, f , andR, and listens in the forth-

coming slot for reply (only one slot)
8: if the slot is EMPTYthen
9: zi = 0

10: a = b + 1, b = b + |r|/2, and updatesr
11: else
12: zi = 1
13: b = (b − 1)/2, and updatesr
14: end if
15: end for
16: ReturnX =

∑log2 f
i=1 (1 − zi) · 2log2 f−i

Algorithm 2 New send-and-replyprotocol for each tag
1: Receive ranger, f , andR from reader
2: Compute slot numbersn = h(f, R, id)
3: if sn is insider then
4: Reply immediately
5: else
6: Keep silent
7: end if
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Fig. 2. Illustration of our new send-and-reply protocol

Our combinedsend-and-replyprotocol requires a slight mod-
ification to existing RFID tags. We add an optional bit mask
to indicate the search ranger in eachend slotcommand sent
by the reader. If the parameter is set to a valid range, those
tags who pick a response slot inside the range will reply in
the forthcoming slot, no matter what value their slot counters
are. If the parameter is set to null, the originalsend-and-reply
protocol is then used.

With the basic idea described above, the complete algorithm

of the FNEB estimator is shown in Algorithm 3. The algorithm
takestmax, δ and ǫ as inputs, wheretmax denotes the upper
bound of tag populationt. Initially, the reader computes pa-
rametersf , k, andn by inputs, and then applies the combined
send-and-reply protocoln rounds to obtain the average value of
X , denoted byY . At last, the estimatioñt is calculated below:

t̃ = f · ln 1 + Y

Y
(1)

Algorithm 3 FNEB estimator for static tag set
INPUT: tmax, δ, andǫ
OUTPUT: t̃

1: Compute the frame sizef and waiting slotsk
2: Compute the number of roundsn
3: for i = 1 to n do
4: Generate a new random seedRi

5: Broadcast(f, Ri) to all tags and wait their replies
6: Run the originalsend-and-replyprotocol
7: if receive reply beforekth slot then
8: Xi = slot number of first reply - 1
9: else

10: Run the newsend-and-replyprotocol
11: Xi = value returned by Algorithm 1
12: end if
13: end for
14: Add all Xi and get the averageY =

∑n
i=1 Xi/n

15: Return t̃ = f ln 1+Y
Y

In the next two subsections, we will explain why this algo-
rithm can achieve the desired accurate estimation and how to
compute parametersf , k, andn (lines 1 and 2 in Algorithm 3).
To ease understanding, we first present the mathematics behind
the algorithm and how to pick parametern. We then describe
how to determinef andk.

B. Pick n

The value ofn directly determines the performance of our
scheme. Ifn is too small, the estimated̃t cannot meet the de-
sired accuracy. However, a largen will increase the estimation
time. Next, we first present the theoretical underpinnings for
the FNEB algorithm, followed by the bounds for n that can
satisfy the accuracy requirement.

Given the frame sizef , each tag has the probability1f to
select a specific slot in the frame. Fort tags in total, the
probability of a certain slot to be empty (denoted asP0) is
P0 = (1− 1

f )t. Sincef is normally large,P0 can be simplified
to P0 ≈ e−ρ, whereρ = t

f . We call ρ the load factor. Let
the random variableX be the number of consecutive empty
slots before the first non-empty slot in a frame. We then have



Pr[X = u] = Pu
0 (1 − P0). The expectation ofX is

E(X) =

f−1
∑

u=0

uPr(X = u) =

f−1
∑

u=0

uPu
0 (1 − P0)

=
(f − 1)P f+1

0 − fP f
0 + P0

1 − P0

=
P0

1 − P0
(1 − P f

0 ) − fP f
0 .

Since that0 < P0 < 1, thenP f
0 → 0 andfP f

0 → 0 whenf is
large. SoE(X) can be further simplified to

E(X) ≈ P0

1 − P0
=

1

eρ − 1
. (2)

Correspondingly, the variance ofX is

V ar(X) =

f−1
∑

u=0

(u − E(X))2Pr(X = u)

≈ P0

(1 − P0)2
. (3)

According to the intuitive relation betweenE(X) andt, the
observation ofX can be used to estimatet. However, there
exists variance between the observed value ofX and E(X).
By the law of large number [26], the estimation becomes more
accurate when the number of observations gets larger. We define
a random processY =

∑n
i=1

Xi

n as the mean ofn observations,
where Xi is the random variableX for the ith observation.
Note thatE(Xi) = E(X) and V ar(Xi) = V ar(X). Since
the reader gives a different random seed in each broadcast,Xi

(1 ≤ i ≤ n) is independent with each other. Therefore, we have

E(Y ) =

∑n
i=1 E(Xi)

n
=

nE(X)

n
= E(X)

and

V ar(Y ) =
V ar(

∑n
i=1 Xi)

n2
=

nV ar(X)

n2
=

V ar(X)

n
.

Since thatE(Y ) = E(X), by solving Eq. 2 fort, we get

t = f · ln1 + E(Y )

E(Y )
. (4)

Then, according to Eq. 1, by substitutingY for E(Y ), we have

t̃ = f · ln1 + Y

Y
.

Next, we will show how to useV ar(Y ) to compute the tight
bound of parametern.

Theorem 1. Given δ, ǫ, and ρ, if the number of roundsn is
not less thanc2e−ρ(eρ−e−ǫρ)2

(1−e−ǫρ)2 , the algorithm described above
can guarantee the accuracy requirement, that is,Pr[|t̃ − t| ≤
ǫt] ≥ 1 − δ.

Proof: We useµ and σ to denote the expectation and
standard variance ofY , i.e., µ = E(Y ) andσ =

√

V ar(Y ) =
√

V ar(X)/n. By the central limit theorem, we know

Z =
Y − µ

σ

is asymptotically normal with mean 0 and variance 1; that is,
Z satisfies the standard normal distribution and its cumulative
distribution function is

Φ(x) =
1√
2π

∫ x

−∞

e−
u2

2 du.

We can find a constantc which makes

Pr[−c 6 Z 6 c] = Φ(c) − Φ(−c)

= erf(c/
√

2) = 1 − δ,

whereerf is the error function [27]. By solving the formulation
above, we get the value ofc. For example, ifδ = 1%, then
c = 2.576. Thus, the desired accuracy can be rewritten as

Pr[|t̃ − t| 6 ǫt] = Pr[(1 − ǫ)t 6 t̃ 6 (1 + ǫ)t]

= Pr[(1 − ǫ)t 6 f ln
1 + Y

Y
6 (1 + ǫ)t]

= Pr[
e−(1+ǫ)ρ

1 − e−(1+ǫ)ρ
6 Y 6

e−(1−ǫ)ρ

1 − e−(1−ǫ)ρ
].

Therefore, if we have

e−(1+ǫ)ρ

1−e−(1+ǫ)ρ − µ

σ
6 −c and

e−(1−ǫ)ρ

1−e−(1−ǫ)ρ − µ

σ
> c,

then we can guaranteePr[|t̃ − t| 6 ǫt] > 1 − δ. Combiningσ
and Eq. 3 to solve the inequalities, we get

n >
c2e−ρ(eρ − e−ǫρ)2

(1 − e−ǫρ)2
.

In practice, the number of tagst is not known a priori,
making it difficult to predict the exact number of rounds.
However, the minimum number of roundsn is a monotonically
increasing function against the load factorρ; that is, the number
of rounds calculated byt = tmax is large enough for the actual
t. Therefore,n in line 2 of Algorithm 3 is computed by

n =
c2 · e−tmax/f · (etmax/f − e−ǫtmax/f )2

(1 − e−ǫtmax/f )2

C. Determine Optimal Parametersf and k

The estimating time of our algorithms is affected by two
factors: the number of rounds and the time cost in each round.
Here, the time cost is measured by the number of slots. From
the discussion above, we find that the number of roundsn is
dependent on the frame sizef . The time cost in a round is either
x + 1∗ (if the number of empty slots observed in that round
is smaller thank) or k + log2f . That relies on bothf andk.
Hence, if we select inappropriatef andk, the performance of
our scheme will be adversely affected. Our remaining problem
is to determine the “best” value for parameterf and k on a
given upper boundtmax.

Remember that the probability of the random variableX
equals tou is Pu

0 (1 − P0), whereP0 = e−t/f . We use the

∗Note that one additional slot is needed for the first non-empty slot



function T (·) to denote the time cost in each round. Givenk,
t, andf , T (·) can be expressed as

T (k, t, f)

=
Pk−1

u=0(u+1)Pr(X=u)+
Pf−1

u=k
(k+log2 f)Pr(X=u)

=
Pk−1

u=0 P u
0 +log2 f ·P k

0

= 1−P k
0

1−P0
+log2 fP k

0 ,

where the first term describes the cost of using the original
send-and-replyprotocol, if there is a reply withink slots. The
second term, indicating the cost of using our newsend-and-
reply protocol, is a constantk + log2 f . Both of them are
multiplied by their probabilities.

Therefore,n · T (k, t, f) is the estimating time of our algo-
rithm for a specifiedt. Our goal is to find parametersf andk
to minimize the time cost averaging over all possible valuesof
t from 1 to tmax. Then, the problem is to minimize

1

tmax

tmax
∑

t=1

n · T (k, t, f)

subject tok, f ∈ N, and0 6 k 6 f , where

n =
c2e−tmax/f (etmax/f − e−ǫtmax/f )2

(1 − e−ǫtmax/f )2

T (k, t, f) =
1 − P k

0

1 − P0
+ log2 fP k

0 .

This is a nonlinear programming problem with two unknown
integer variables. Although it is difficult to find an expression
of f andk, the problem is solvable by enumerating all possible
parameters to find the optimal values. Given parameters:tmax,
ǫ andδ, we first fix f and enumerate all values ofk from 1 to
f to find the best value ofk which can minimize the objective
function. Then, we repeat the process to search for the optimal
f . Note that these procedures are all computed by the reader
offline.

Table II shows the optimal parameters for some specified
tmax under thatǫ = 5% and δ = 1%. In the table,nop, fop,
andkop indicate the optimal number of rounds, frame size, and
number of waiting slots for eachtmax respectively. The ratio
in the last column is computed bytmax over fop.

TABLE II
OPTIMAL PARAMETERS FOR DIFFERENTtmax WITH δ = 0.01, ǫ = 0.05

tmax nop fop kop Ratio (= tmax/fop)
100 3927 55 6 1.818
500 4024 264 8 1.894
1000 4058 521 9 1.919
5000 4014 2651 12 1.886
10000 4024 5279 13 1.894
50000 4042 26205 15 1.908

From the table, we have the following observations.

• The ratio oftmax to fop is close to1.9, andk is close to
log2 f . Based on this observation, we can either directly
use the quasi-optimal parameters:f ≈ 1.9 andk ≈ log2 f
for our estimating algorithm without solving the non-linear

programming problem, or bound a small search range to
exhaustively find the optimal values off and k. Both
methods can reduce the computation cost in practice.

• Since the ratio is relatively stable, the optimal number
of roundsn will not get obvious increase, whentmax

becomes large. Therefore, as shown in the evaluation
section, our algorithm performs well even if we count a
huge amount of tags.

D. Enhancement: Adjusting Skewedtmax

In practice, users may overestimate the upper boundtmax.
The actualt may be much smaller than the bound. Thus, the
optimal parametersf andk computed bytmax may be too large
for estimation, since it causes many empty slots before the first
reply in each round. We call this the skewedtmax problem.
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Fig. 3. Time cost versus the normalized number of tags for different tmax:
(a) comparison undert/tmax 6 0.1; (b) comparison undert/tmax > 0.1

To show the effect of differenttmax on the performance of
our FNEB estimator, we plot the estimating time in number of
slots againstt under three differenttmax (see Fig. 3). To ease
comparison, we normalizet by tmax and separate the figure into
two parts. As we see, when the value oft/tmax approaches 1,
the time cost decreases significantly. Also, for the same value
of t/tmax, the smallertmax will spend less time, whent is
absolutely close totmax.

Based on these observations, we propose an enhanced ap-
proach to solve the skewedtmax problem. As mentioned before,
a largertmax usually causes more empty slots. Therefore, we
can use the position of first reply to decide whethertmax is too
large for t. If it is, we will adaptively shrinktmax in the next
round. The main algorithm is shown in Algorithm 4, which
should be appended at the end of each iteration (between lines
12 and 13) in Algorithm 3.

Recall thatX is the random variable indicating the number
of empty slots before the first reply from tags, andXi is the
observed value ofX in theith round. Let variableN enumerate
all possible numbers of tags, decreasing fromtmax to 1. Then,
Pr[X = Xi|t = N ] is the probability of observingXi empty
slots on the condition thatt = N . According to Bayes’ theorem,
we have

Pr[t = N |X = Xi] =
Pr[X = Xi|t = N ]

Pr[X = Xi]
, (5)



Algorithm 4 Adaptively shrink skewedtmax

/* After getting Xi, we test whether to shrinktmax */

1: p = 0
2: for N = tmax to 1 do
3: p = p + Pr[X=Xi|t=N ]

Ptmax
i=1 Pr[X=Xi|t=i]

4: if 1 − p < 0.1% and N < tmax then
5: tmax = N
6: Recomputef , k, andn, and restart new rounds
7: break
8: end if
9: end for

where Pr[X = Xi] =
∑tmax

i=1 Pr[X = Xi|t = i]. In the
algorithm, Eq. 5 is added to variablep asN decreases in each
iteration (line 3). Sop presents the probabilityPr[N ≤ t ≤
tmax] on condition thatXi empty slots have been observed,
and 1 − p is the probabilityPr[1 ≤ t < N ] correspondingly.
Once1− p is smaller than a very small probability (like0.1%
in our algorithm), it means thatt can not be larger thanN with
high possibility. Therefore, we can shrinktmax to the value of
N . Recall the analysis in Section V-B,Pr[X = Xi|t = N ] can
be computed by(e−N/f)Xi · (1 − e−N/f).

However, when the shrinking occurs in the latter rounds,
restarting new rounds may incur a large overhead. Therefore,
we constrain the number of rounds for shrinking. Iftmax

remains unchanged in certain consecutive rounds, the current
tmax is deemed stable enough. We will not run Algorithm 4
after those rounds. In the simulation, we set a heuristic value
of 30 rounds which is large enough for adjustment.

TABLE III
RESULTS FROM THE ADAPTIVE SHRINK ALGORITHM FOR SINGLE SET OF

RFID TAGS WITH tmax = 10000, δ = 0.01, AND ǫ = 0.05

No. of No. of Final value Shrinking Total time
tags shrinks of tmax overhead (slots)
10 5.6 14.4 350.7 5525.9
50 5.5 69.9 365.1 5738.0
100 5.4 135.7 418.8 5732.4
500 5.2 667.6 444.9 5758.8
1000 4.9 1307.3 441.3 5683.2
5000 1.9 6467.5 371.3 5660.8

Table III shows the performance of our enhanced FNEB
estimator. From that, we find that the final value oftmax can be
adjusted close tot within several shrinks. As a result, different
numbers of tags can lead to almost the same total time.

E. Extension: Estimating Multiple Tag Sets

Previously, we only considered a static tag set. However, for
certain applications, we may need to count multiple tag setsin a
dynamic environment where either the tags or reader is mobile.
For example, a single reader cannot cover all the tags in a large
warehouse. Instead, we have to either deploy multiple readers
or dispatch a mobile reader moving through the warehouse
to cover all tags. In that case, different tag sets queried by
readers at different places could have overlapping tags. Ifwe

directly apply our previous algorithms on each tag set, these
overlapping tags will be counted multiple times, resultingin
erroneous overall estimations.

We have extended our FNEB algorithms to estimate multiple
tag sets. Due to page limit, we cannot include the details in this
paper. The intuition of the protocol is as follows. Suppose we
havem tag setsS1, S2, ..., Sm, and for each set the number of
empty slots before the first non-empty slot isX1, X2, ..., Xm.
In a global view,min(X1, X2, ..., Xm) infers the total tag size
|S1 ∪ S2 ∪ ... ∪ Sm|. However, each seti (i ∈ [1, m]) does not
know whetherXi is minimal. Therefore, we need to track all
sets to record the minimal number. In practice, the optimization
is used to speed up the above process. If no tag replied before
the minimal number of empty slots that we already know, we
just terminate reading such a set, because it does not change
the minimal value.

The reason why we can minimize slot count from different
sets is that the reply slot by each tag is only dependent on
the frame sizef and random seedR. So long as the same
parameters are used, a tag will always pick the same slot in
the frame. Based on this property, any reply that occurs before
the first reply in other sets must belong to a new tag. In other
words, even if the same tags have responded in multiple sets,
the first non-empty slot will remain the same. The final resultis
equivalent to having all distinct tags belong to one large single
set. Therefore, our extended approach remains accurate while
significantly reducing time cost.

VI. PERFORMANCEEVALUATION

The goal of this paper is to design an estimator to count
tags efficiently and anonymously in both static and dynamic
environments. Here, we evaluate the performance of our FNEB
estimator, the enhanced FNEB estimator for single set of
tags, and the extended FNEB estimator for multiple sets of
tags. Through extensive simulation, we compare our estimators
against several well-known estimators mentioned in the related
work. They are the Combined Simple Estimator (CSE) [12], the
Unified Probabilistic Estimator (UPE) [12], and the Enhanced
Zero-Based (EZB) estimator [13]. These estimators are selected
for two reasons. First, they can all provide the desired estimat-
ing accuracy (say,Pr[|t̃ − t| ≤ ǫt] ≥ 1 − δ). Second, they are
more efficient than other estimators we do not list here.

All estimators were implemented in Java. We first investigate
the estimators for static set, then the estimators for multiple
sets. Unless otherwise specified, we set the maximum number
of RFID tagstmax to 10000, the confidence levelǫ to 0.05,
and the error probabilityδ to 0.01. Each result is the average of
100 iterations. These experiments test the hypothesis that our
estimators can be more efficient than other estimators.

A. Time Efficiency

Prior work in [12] and [13] uses the number of slots that
a reader has to scan as an indicator of time efficiency. The
reader that scans a few slots will perform faster than the reader
that needs to scan many slots. However, the number of slots
used is misleading, since different types of slots have variant



durations in practice. According to the current standards (EPC
global Class-1 Gen-2 [28]), we assume a reader needs almost
300 µs to detect an empty slot, 1500µs to detect a collision
slot, and 3000µs to detect a collision slot. Therefore, estimators
(like CSE and UPE) that must identify the type of each slot
will spend long time on every slot. However, for EZB and our
FNEB that only distinguish an empty slot from a non-empty
slot, the duration of every slot is equivalent to that of an empty
slot.

1) Single set of RFID tags:In Table IV, we show the number
of slots scanned by every estimator. As we see, if we only
compare the number appeared, it seems that CSE and UPE
perform well since the sum of slots is small.

However, despite a little more slots needed for estimation,
our proposed algorithms donot have poor performance (effi-
ciency) relative to CSE and UPE, since the duration of each
slot in FNEB and enhanced FNEB is much smaller than that
in CSE and UPE. As described above, CSE and UPE have
to identify whether a slot is empty, singleton or collision,so
additional time is spent to check the CRC (Cyclic Redundancy
Check) checksum. Our algorithms otherwise only determine
whether a slot is empty or non-empty. Therefore, each slot
in our algorithms costs much small time than CSE and UPE.
Fig. 4 shows the amount of time required by all estimators
with respect to variant slot durations. We see that our enhanced
FNEB outperforms any other schemes, especially in large-scale
RFID systems. In addition, we understand that the skewedtmax

is really a serious problem. Without dynamically shrinking
tmax, the FNEB spends much longer time than others, when
the number of tags is smaller than 2000.

0 2000 4000 6000 8000 10000
0

5

10

15

20

Num of tags (t)

A
bs

ol
ut

e 
tim

e 
(s

ec
on

d)

 

 
CSE
UPE
EZB
FNEB
Enhanced FNEB

Fig. 4. Time-efficiency comparison of single set estimators

2) Multiple sets of RFID tags:Considering multiple sets of
tags, only two estimators, EZB and our extended FNEB, can
be used to estimate the number of tags among all estimators
mentioned early. So we only compare our extended FNEB
against EZB here. For simplicity, “FNEB” in Fig. 5 and 6
is refer to the “extended FNEB”. Also, since both estimators
distinguish between empty slot and non-empty slot, we use the
number of slots instead of the absolute time for evaluation.

In the simulation, we setm = 100, and use the same model
described at the beginning of Section VI to generate multiple
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Fig. 5. Cumulative number of slots for estimation versus thenumber of sets,
while increasingα and holdingβ
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Fig. 6. Cumulative number of slots for estimation versus thenumber of sets,
while increasingβ and holdingα

data sets. Letα denote the percentage of the size of each set
to tmax, andβ denote the percentage of the overlapped tags
between two tag sets. In Fig. 5, we hold parameterα and change
β to conduct the comparison, and vice versa in Fig. 6. From
the results, we see that our scheme is more efficient than EZB
in all tests.

B. Additional Discussions

This subsection covers some other issues whose details are
omitted due to the page limit.

1) Accuracy requirements: In our simulation, we randomly
select 1000 possible values fort, ranging from 1 totmax.
The results show that the estimation falling out of the
range[t− ǫt, t + ǫt] only twice. The estimating accuracy
holds with more than1 − δ probability.

2) Scalability: The tag population may vary across many
orders of magnitude, ranging from tens to thousands of
tags. In our simulation, we consider the tag population
varies in four scales oftmax: 100, 1000, 10000, and
100000. The results show the estimating time does not
increase obviously. Our estimator scales well.

3) Signal loss: Our scheme leverages the first non-empty
slot in a frame for estimation. In practice, when the link



TABLE IV
TOTAL TIME (IN NUMBER OF SLOTS) FOR FIVE SINGLE SET ESTIMATORS. SINCE CSEAND UPENEED TO IDENTIFY THE TYPE OF A SLOT, WE LIST THE

DETAIL : EMPTY SLOTS, SINGLETON SLOTS, AND COLLISION SLOTS. FOR OTHERS, WE SIMPLY SHOW THE SUM.

Number Total time (in number of slots)
of tags CSE UPE EZB FNEB Enhanced FNEB

empty singleton collision sum empty singleton collision sum sum sum sum
10 2220 530 305 3055 1135 384 71 1590 21,052 98,132 5526
50 2264 534 345 3143 155 269 416 840 21,052 91,808 5738
100 2277 642 328 3247 91 239 1050 1380 21,052 84,559 5732
500 1974 972 450 3396 151 380 1509 2040 21,052 46,525 5758
1000 1926 1375 704 4005 150 388 1592 2130 21,052 26,010 5683
5000 971 1822 4358 7151 147 406 1697 2250 21,052 6510 5661

quality is poor, the reader may not be able to detect
the signal sent by RFID tags, resulting in the reader
possibly observing more empty slots. We can compensate
by averaging the results over multiple rounds. In addition,
a learning phase can be adopted to characterize the link
quality before estimation.

4) Active attacks: If an attacker can intentionally generate
a reply in an arbitrary slot, there is no feasible solution
to solve this problem till now, since all replies from
the legitimate tags may be corrupted by the attacker.
Therefore, active attacks are excluded in this paper.

VII. C ONCLUSIONS

In this paper, we consider the problem of estimating the num-
ber of distinct tags without identifying each tag in a large scale
RFID system. We present a new scheme and its variations based
on the probability of the position of the first reply from a group
of tags. These schemes can be used to estimate tag populationin
both static and dynamic environments. Theoretical analysis and
extensive simulation show our approach drastically improves
the time efficiency over prior schemes.
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