
Received April 23, 2021, accepted June 3, 2021, date of publication June 16, 2021, date of current version June 28, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3089907

Optimizing Internal Overlaps by Self-Adjusting
Resource Allocation in Multi-Stage
Computing Systems
ALLEN YANG1, JIAYIN WANG 1, YING MAO 2, YI YAO3, NINGFANG MI4, (Member, IEEE),
AND BO SHENG5
1Department of Computer Science, Montclair State University, Montclair, NJ 07043, USA
2Department of Computer and Information Science, Fordham University, New York City, NY 10458, USA
3Google, Mountain View, CA 94043, USA
4Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, USA
5Department of Computer Science, University of Massachusetts Boston, Boston, MA 02125, USA

Corresponding author: Jiayin Wang (jiayin.wang@montclair.edu)

This work was supported in part by the National Science Foundation under Grant CNS-2018575 and Grant CNS-1552525, in part by the
National Science Foundation Career Award under Grant CNS-1452751.

ABSTRACT With the rise of big data, more and more users will launch computing systems to process
a large volume of data in various applications. A Scheduling algorithm is crucial to the performance
of the processing platforms, especially when they are concurrently executing a batch of jobs. Such jobs
usually represent multiple stages. Each stage produces the intermediate data which will be piped to the
next stage for further processing. However, the scheduling problem in a big data computing system is
different from the traditional multi-stage job scheduling problem as for any two consecutive stages, the
later stage usually starts before the former stage is finished to ‘‘shuffle’’ the intermediate data. In this paper,
we consider MapReduce/Hadoop as a representative computing system and develop a new strategy named
OMO, Optimize MapReduce Overlap with a Good Start (Reduce) and a Good Finish (Map). A MapReduce
job contains two consecutive phases: map and reduce. Our general target is to optimize the internal overlap
between these two phases. There are two new techniques included in our solution, Lazy start of reduce tasks
and Batch finish of map tasks, which aim to approach an effective alignment of the two phases based on the
characteristics of theMapReduce process. OMOhas been implemented on the Hadoop systemwith extensive
experiments for performance evaluation. The results show that OMO’s performance is superior in terms of
total completion time (i.e., makespan) of a batch of jobs.

INDEX TERMS MapReduce jobs, Hadoop scheduling, reduced makespan, resource management.

I. INTRODUCTION
In the past few years, we have all witnessed the rise of big
data and various processing platforms such as Hadoop [1],
Mesos [2] and Spark [3], which have been widely adopted
in both academia and industry for various applications. With
more and more users launching a computing system to pro-
cess a large amount of data, the data processing performance
becomes significant for the computing systems.

The purpose of this paper aims to establish an efficient
scheduling scheme in big data computing systems to better
the resource consumption and reduce the makespan (i.e.,

The associate editor coordinating the review of this manuscript and

approving it for publication was Chi-Tsun Cheng .

the total completion length) of a set of applications. With
finite resources available in a computing system, an advanced
scheduling algorithm is imperative to the performance, espe-
cially when performing a batch of jobs in parallel. In the
absence of proper management, the resources could be used
inefficiently, which results in an extended completion time of
the applications. A general big data processing job contains
multiple processing stages, and each stage represents a gener-
ally defined data operation such asmapping, filtering, sorting,
and merging. For each stage, a typical job consists of multiple
tasks. In this case, the scheduling algorithm must consider
both job-level and task-level management of resources. Addi-
tionally, unlike the traditional two-stage job scheduling prob-
lem, that each stage is independent, dependency usually exists

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 88805

https://orcid.org/0000-0001-5103-6132
https://orcid.org/0000-0002-4484-4892
https://orcid.org/0000-0003-3306-6148

A. Yang et al.: Optimizing Internal Overlaps by Self-Adjusting Resource Allocation

between stages of every application in big data computing
systems. For any two consecutive stages of a job, the output
data of the former stages (i.e., the intermediate data) is piped
to the input of the later stage. First, the later stage cannot com-
plete before its former stage. However, the later stage can start
to ‘‘shuffle’’ the intermediate data before the completion of
the former stage. These kinds of factors cause the scheduling
design to be particularly difficult and the current approaches
have not completely discussed such matters.

In this paper, We take MapReduce [4] as a representative,
which has developed to be a prevalent programming model
for processing large data sets. Its open-source implementation
Hadoop and a serial of corresponding co-systems are well
applied in various fields. A general MapReduce job consists
of two stages: map and reduce. And a map/reduce stage is
made up of many identical map/reduce tasks. The map tasks
take the raw data as input and process them concurrently.
The intermediate data output from the map stage is in a form
of < key, value >, which is shuffled to reduce tasks for
computation. Furthermore, the final results are conducted by
the reduce stage.

This work advances a novel technique, called OMO, that
specifically targets on optimizing the overlap in between map
and reduce stages. This overlapping period plays an essential
part in MapReduce processing, particularly when the map
stage produces large quantities of information for shuffling.
An effective alignment of themap and the reduce stages could
decrease the completion time of a job. Compare to the pre-
vious work, our solution takes much more dynamic aspects
into consideration and assigns the resources according to the
prediction of the future task execution as well as resource
availability. Specifically, OMO consists of 2 new strategies,
lazy start of reduce tasks, and batch finish of map tasks. The
former strategy efforts to discover the most optimal timing to
begin the reduce tasks in order to make sure that an adequate
amount of time is allocated for reduce tasks to shuffle the
intermediate data, whilst containers can be assigned in order
to assist map tasks to the fullest. We present a new prediction
model which is made to estimate the availability of resources
in the near future which assists in making a scheduling deci-
sion. The later strategy aims to raise the trailing map tasks
execution priority, this way they could complete in waves.
Unlike the previous work that targets the wave-like execution
during the map stage, we just concentrate on the last batch of
map tasks. Both strategies capture features of the overlap in a
MapReduce execution and accomplish good alignment of the
map as well as the reduce stages.

In summary, the contributions of this paper include (1) We
first develop a new monitoring component that records the
amount of the resources released in the past. This informa-
tion serves the new techniques in our solution to predict the
resource release frequency in the future. (2) We create a
novel strategy, lazy start of reduce tasks, that estimates the
execution time of the map stage as well as the shuffling step
of the reduce stage and further derives the best timing to begin
the reduce stage so as to minimize the break from the end of

the map phase to the end of the shuffling phase. (3) A new
technique is developed, batch finish of map tasks, in order
to mitigate the extra overhead caused by the misalignment of
the tailing map tasks. (4) We present a complete implemen-
tation on a Hadoop platform. Experiment-based evaluation
validates our design and shows a significant improvement in
performance

The rest of this paper is arranged as follows. We present
the related work of this paper in Section II. Section III
presents the problem formulation demonstrated in this paper.
In Section IV, we describe the particulars of the results.
Section V illustrates the investigational results of OMO.
Lastly, the summary of our work is provided in Section VI.

II. RELATED WORK
Among various computing systems, Hadoop and its
next-generation Hadoop YARN systems have been widely
used in both academia and industry. During multiple research
fields in Hadoop and Hadoop YARN, job scheduling and
resource allocation is crucial. By default, Fair Scheduler [5],
Capacity Scheduler [6] and DRF [7] are embedded in the
native Hadoop/Hadoop YARN method to guarantee each job
can get a correct share of their available resources. To enhance
the functioning of the computing methods, many scheduling
works concentrate on unique directions. Some significant
instructions and relevant functions are introduced as follows.

Some scheduling algorithms focus on job characteristics.
To satisfy the predefined deadline, ARIA [8] and Deadline
constraint Scheduler [9] allocate suitable resources to tasks.
And Sparrow [10] concentrates on scheduling issues with a
great number of little jobs.

Another scheduling direction takes considers resource allo-
cation and aims to improve resource utilization of the clus-
ter. In this region, RAS [11] increases resource utilization
across machines and meets the job completion deadline.
Our previous work FRESH [12] has developed dynamic slot
configurations in Hadoop system based on FIFO and FAIR
SCHEDULER. And we have developed dynamic resource
management schemes in [13], [14] depending on the various
workloads of different jobs. A fine-grained resource schedul-
ing, Haste [15], concentrates on improving resource utiliza-
tion by leveraging the information of requested resources,
resource capabilities, and dependence between jobs. Simi-
larly, a work named ABS-YARN [16] uses a state-of-the-art
resource negotiator to quickly make decisions at the mod-
eling level and reduce unneeded costs. Lastly in the topic
of resource management, by harvesting run time latency,
Toposch [17] can co-locate batches and microservices.

Data locality is also considered in the scheduling mech-
anisms to optimize the locality of jobs’ input data in the
distributed systems. Some task scheduling mechanisms focus
on optimizing the locality of jobs’ input data in the distributed
file system. NKS [18], [19] claims data placement in the
homogeneous environment. Some recent works [20]–[22]
distribute input information in heterogeneous clusters based
on the disk capacity of every node. However, the variety of

88806 VOLUME 9, 2021

A. Yang et al.: Optimizing Internal Overlaps by Self-Adjusting Resource Allocation

resource capabilities of every node, as well as the resource
requirements of every task aren’t considered gradually in
such approaches. In other data locality approaches, dynamic
voltage and frequency scaling (DVFS) [23] is used. Using
DVFS, the CPU frequency can be dynamically changed for
the current task based on the slack time from previously
completed tasks.

A heterogeneous environment is normally in practice
because of various hardware and software configurations in
each node of the cluster. In this way, Tetris [24] packs jobs
to machines according to their multiple resource require-
ments. Additionally, LATE [25], Hopper [26], Grass [27] and
eSplash [28] are proposed to prevent unnecessary specula-
tive executions to enhance the performance in heterogeneous
clusters.

In addition to Hadoop/Hadoop YARN, Mesos [2] and
Spark [3] are another twowidely adopted computing systems.
Mesos introduces a distributed two-level scheduling mech-
anism to share clusters and data efficiently between differ-
ent platforms such as MapReduce, Dryad [29] and others.
Spark is a computing framework that offers shared distributed
memory based on the resilient distributed dataset (RDD).
Our work can be integrated into these platforms as a single
low-level scheduler.

III. PROBLEM FORMULATION
In this paper, we consider Hadoop system as the service
platform for MapReduce. There are two main branches of
Hadoop frameworks available currently, Hadoop [30] and
Hadoop YARN [31]. We will formulate our solutions in both
systems. Our implementation is based on the first generation
of Hadoop. However, the techniques we present in Hadoop
can be easily extended to Hadoop YARN. Furthermore,
we will also compare the performance with Hadoop YARN
within our evaluation (Section V).
In our problem setting, we consider a Hadoop cluster

consisting of a head node and multiple worker nodes. Each
node contains multiple containers which indicate its capacity
of serving tasks. Each container can either be set as a map
container or reduce container to serve a map task or reduce
task, respectively. Furthermore, we assume that a batch of
n jobs are assigned to the cluster with totally S containers
for processing. In the native Hadoop system, the numbers of
map containers and reduce containers in the cluster have to
be specified by the cluster administrator. And a map/reduce
container is dedicated to serve map/reduce tasks throughout
the lifetime of the cluster. In Hadoop YARN, the numbers of
containers can be calculated based on the available resources
of the system and the resource requests of each job. We will
illustrate this equation in Section IV. In this paper, however,
we present a dynamic container configuration scheme which
has been established in our prior work [12], [32], where the
scheduler can decide to set a container as a map container
or reduce container during the job execution dynamically.
In this case, no configuration of the number of map/reduce
containers is necessary before setting up the cluster. The

TABLE 1. Notations.

allocation of containers to serve as either map or reduce tasks
will be done dynamically on the fly. The benefits of dynam-
ical container configuration have been shown in the prior
work [12], [32]. The details of its implementation are omitted
in this paper since our focus is a different scheduling strategy
based on the dynamic container configuration. Essentially,
we aim to develop a scheduling algorithm that allocates tasks
to appropriate containers to minimize the makespan of the
given set of MapReduce jobs. Table 1 displays the list of
notations that are used throughout the paper.

IV. OUR SOLUTION: OMO
We introduce our solution OMO in this section. Our target
is reducing the overall execution time of MapReduce jobs.
Two new techniques, lazy start of reduce tasks and batch
finish of map tasks are developed in OMO. In the rest of
this section, firstly, we introduce a monitor module which
serves for both techniques as a building block. Secondly,
we describe the details of the two techniques individually.
Finally, the complete algorithm integrating both of them is
introduced. The whole solution is primarily developed as a
new Hadoop scheduler. The details of the implementation are
introduced in Section V.

A. CONTAINER RELEASE FREQUENCY
Both of our new strategies depend on an essential parameter
which is the estimated frequency of container release in the
MapReduce system. This parameter represents the future
resource availability of the system, which is significant for
Hadoop scheduler to make decisions of resource allocation.
Although it is an essential factor for the system performance,
all the prior work ignored it. Before discussing the details

VOLUME 9, 2021 88807

A. Yang et al.: Optimizing Internal Overlaps by Self-Adjusting Resource Allocation

of our solution in the following subsection, we first present
the fundamental method we adopt to estimate the container
release frequency.

There are two parameters, Fo and Fe defined in OMO to
represent the observed container release frequency and esti-
mated container release frequency, i.e., Fo or Fe containers
released per time unit. Fo is a measurement value acquired by
monitoring the job execution, and Fe is the estimation of the
future release frequency that will be used by the scheduler.
Also, a new concept of available containers is introduced
to describe the containers that might be potentially released
soon. Available containers contain both the containers serving
map tasks, and the containers serving a jobs reduce tasks
if its map stage has been completed. In other words, the
available containers exclude the containers serving the reduce
tasks of a job with unfinished map tasks in which instance
the release time of the containers is undetermined. In OMO,
we suppose that for a particular circumstance, the container
release frequency is proportional to the number of available
containers.

Specifically, we keep track of a historical window to mea-
sure the number of released containers and the number of
available containers in the window indicated by Rt and at (for
the t-th window), respectively.
In the first generation of Hadoop system, since the total

number of containers is prior-set by the system administrator,
Rt can be obtained by checking the available containers of
the system. For Hadoop YARN, considering a cluster withM
worker nodes and N types of resource (e.g., number of CPU
cores and available memory), Rik represents the i-th resource
available in the worker node k . For a job j, reqi indicates
the i-th resource requirement of a single task, which is either
rmij for a map task and rrij for a reduce task. The number of
containers released in the t-window can be represented as:

Rt =
M∑
k=1

mini∈N b
Rik
reqi
c

Assuming that thewindow size is Tw seconds, the container
release frequency in this window will be ft =

Rt
Tw

and the
ratio between container release frequency and the number of
available containers is ft

at
=

Rt
at ·Tw

. In our design intuition,
this ratio is supposed to be consistent over a particular time
period. For each window t , we thus record the (ft , at) pairs
and obtain the average value of the container release fre-
quency Fo and the average number of available containers
denoted by Ao. We use the typical technique of exponential
moving average (EMA) to capture the dynamics throughout
the execution,

Fo(t) = β · f (t)+ (1− β) · Fo(t − 1),

Ao(t) = β · a(t)+ (1− β) · Ao(t − 1),

where Fo(t) or Ao(t) is the value of Fo or Ao after the t-th
window, and Fo(t − 1) or Ao(t − 1) indicates the old value of
Fo or Ao after the (t − 1)-th window.

FIGURE 1. Container allocation of one Terasort job with dynamic
container configuration.

When estimating Fe for a future scenario, we first need to
identify the number of available containers (Ae) in that sce-
nario. After that, based upon the assumption that the container
releasing frequency is proportional to the number of available
containers, we can calculate Fe as

Fe =
Fo · Ae
Ao

. (1)

This component of estimating the container release fre-
quency will be used by both of our new techniques which
will be described later in this section. We will present more
details, such as how to obtain the value of Ae, in the algorithm
descriptions.

B. LAZY START OF REDUCE TASKS
The goal of our first technique is to optimize the overlap
between the map and reduce stages of MapReduce by adjust-
ing the start time of the reduce stage of the MapReduce jobs.
Firstly, we show how a conventional Hadoop systemmanages
the overlap period. Then, we will introduce the motivation
for our design. Finally, the intuitions of our solution will be
presented with the details of the algorithm.

1) MOTIVATION
The overlap between the map and reduce stages is an essen-
tial feature of MapReduce jobs. In MapReduce process,
the reduce stage usually begins before the completion of the
map stage, i.e., some reduce tasks may be simultaneously
running with the map tasks of the same job. The advantage
of this design is to enable the reduce tasks to start shuffling
(i.e., preparing) the intermediate data (partially) generated
by map tasks before the whole map stage is done to save
the execution time of the reduce tasks. A system parameter
slowstart in Hadoop system is set to indicate when to start
the reduce stage. Specifically, slowstart is a fractional value
that represents the lower bound of the map stage’s progress.
The reduce stage is now allowed to start until the map stage’s
progress exceeds slowstart .

88808 VOLUME 9, 2021

A. Yang et al.: Optimizing Internal Overlaps by Self-Adjusting Resource Allocation

Table 2 shows some simplified experimental results of
execution times with different values of slowstart. First,
we conduct one Terasort job in a Hadoop cluster with two
slave nodes (Amazon AWS m3.xlarge instances) and each
slave node is configured with 2 map containers and 2 reduce
containers. The input data is 8GB wiki category links data
and there are 80 map tasks and 4 reduce tasks created in the
job. Then we conduct 3 Terasort jobs with 10 slave nodes to
show the results of multiple jobs.

TABLE 2. Execution times of 1 and 3 Terasort jobs with different
slowstart values in Traditional Hadoop systems.

C. LAZY START OF REDUCE TASKS
The goal of our first technique is to optimize the overlap
between the map and reduce stages of MapReduce by adjust-
ing the start time of the reduce stage of the MapReduce jobs.
Firstly, we show how a conventional Hadoop systemmanages
the overlap period. Then, we will introduce the motivation
for our design. Finally, the intuitions of our solution will be
presented with the details of the algorithm.

1) MOTIVATION
The overlap between the map and reduce stages is an essen-
tial feature of MapReduce jobs. In MapReduce process,
the reduce stage usually begins before the completion of the
map stage, i.e., some reduce tasks may be simultaneously
running with the map tasks of the same job. The advantage
of this design is to enable the reduce tasks to start shuffling
(i.e., preparing) the intermediate data (partially) generated
by map tasks before the whole map stage is done to save
the execution time of the reduce tasks. A system parameter
slowstart in Hadoop system is set to indicate when to start
the reduce stage. Specifically, slowstart is a fractional value
that represents the lower bound of the map stage’s progress.
The reduce stage is now allowed to start until the map stage’s
progress exceeds slowstart .

Table 2 shows some simplified experimental results of
execution times with different values of slowstart. First,
we conduct one Terasort job in a Hadoop cluster with two
slave nodes (Amazon AWS m3.xlarge instances) and each
slave node is configured with 2 map containers and 2 reduce
containers. The input data is 8GB wiki category links data
and there are 80 map tasks and 4 reduce tasks created in the
job. Then we conduct 3 Terasort jobs with 10 slave nodes to
show the results of multiple jobs.

In practice, it is incredibly difficult for users to define the
value of slowstart before launching the cluster. In addition,
the pre-configured value cannot be the optimum for numerous
job workloads. In this case, we develop a new technique, lazy
start of reduce tasks, to optimize the performance. We hold
off the start of the reduce stage as much as possible until

TABLE 3. Execution times of 1 and 3 Terasort jobs with different
slowstart values and dynamic container configuration.

intermediate data shuffling will incur an extra delay in the
process. Ideally, a perfect alignment of the map stage and
reduce stage happens when the last reduce task completes the
data shuffling right after the last map task is finish. However,
simply utilizing the slowstart threshold is hard to accomplish
the best performance since it relies on not just the progress of
the map stage, but also various other factors such as the map
task execution time as well as shuffling time. In the remainder
of this subsection, we describe our solution to determine the
start time of the reduce stage during the execution of the job.
First, we present an algorithm that considers the single job
execution to illustrate our design intuition, and then extend it
for numerous job execution.

2) SINGLE JOB
The original design of the slowstart parameter in Hadoop
shows that the progress of the map stage is definitely sig-
nificant for determining when to begin the first reduce task.
However, the best start time of the reduce stage also relies on
a list of factors as follows.

(1) Shuffling time: This can be conducted by the size
of intermediate data created by map tasks and the network
bandwidth of the system. Intuitively, a job producing more
intermediate data in the map stage requires a longer shuffling
time in its reduce stage. Therefore, we need to begin the
reduce tasks earlier. Generally, the size of the intermediate
data is proportional to the map stage progress. As a result,
a respectable estimation of the overall intermediate data
can be completed by monitoring the completed map tasks.
(2) Map task execution time: The advantage of beginning
reduce tasks prior to the end of the map stage is to overlap the
shuffling in reduce stage with the execution of the remainder
of the map tasks (the last couple of waves of map tasks).
Thus, given a specific shuffling time, we prefer to begin the
reduce stage later, if each map task needs a longer time to
complete. (3) Frequency of container release: The frequency
of a container released and available in the cluster is also a
crucial factor. In bothmap and reduce stages, the trailing tasks
have an important effect on the overlapping period. Once we
specify a target begin time for the last reduce task, we can
make use of the information of container release frequency
to conduct when we should begin the reduce stage.

In our solution, we monitor the three parameters listed
above to determine the optimal start time of the reduce stage.
Before introducing the detailed algorithm, a design principle
is presented and proved.
Principle 1: Once the reduce stage of a job is started, all

reduce tasks of the job should be consecutively executed in
order to minimize the job execution time.

VOLUME 9, 2021 88809

A. Yang et al.: Optimizing Internal Overlaps by Self-Adjusting Resource Allocation

FIGURE 2. Illustration of the proof.

Proof: We can prove this principle by contradiction.
Assume that the best arrangement does not follow this prin-
ciple. In other words, there are some map tasks launched,
after the first reduce task is begun, and before the last couple
of reduce tasks are started. We identify the last such map
tasks, e.g., task B in Fig. 2, and the first reduce task, e.g.,
task A in Fig. 2. Then, we form another arrangement by
switching these two tasks and show that the performance is
no worse than the original arrangement. After the switch,
the completion time of the map stage could become earlier
because task A occupies a slot at a later time point and that
slot could serve map tasks before task A is begun.Meanwhile,
the shuffling performance maintains the same, i.e., the gap
from the end of the map stage to the end of the shuffling
has no change because the bottleneck of the shuffling is
the last reduce task, i.e., task C in Fig. 2 Consequently if
we consider the completion of the shuffling phase as the
performance indicator, the new arrangement after the switch
is no worse than the original solution. We can keep applying
the same switch on new arrangements and eventually obtain a
solution where reduce tasks are consecutively executed with
no interruption of map tasks. �

Based on the above principle, we examine the gaps from
the ends of the map stage to the shuffling phase and obtain
the optimal start time of the reduce stage to lessen this gap.
Assume the running job has m map and r reduce tasks. If a
container frees up, our scheduler needs to assign it to a new
task. When the reduce stage has not started, there are just two
options to serve a map task or to serve a reduce task which
starts the reduce stage. Let β be the time gap from the end
of the map stage to the end of the shuffling stage (see Fig. 3)
and assume that variable x represents the number of pending
map tasks. We first derive β as a function x and afterward
decide the time to start the reduce stage. Also, we use Tm
to represent the average execution time of a map task, and
Ts to indicate the estimated shuffling time of the last reduce
task.

Considering that all reduce tasks are executed consecu-
tively and reduce task containers will not be released till
the completion of a job, after the last reduce task is allo-
cated, the number of available containers becomes S − r .
Consequently, the estimated frequency of container release
is decreased to Fe =

Fo·(S−r)
S . Assuming that the containers

are released at a constant rate with an interval of 1
Fe

between

FIGURE 3. Lazy start of reduce tasks: illustrating the alignment of map
stage and shuffling phase.

any two consecutive releases, the execution time for the
remaining map tasks can be expressed as x

Fe
+Tm (see Fig. 3).

Therefore, we express β as a function of x:

β = Ts − (
x
Fe
+ Tm) = Ts − (

x · S
Fo · (S − r)

+ Tm), (2)

where Fo is a measured value as defined in Section IV-C
and Tm records the average execution of a map task. Both
Fo and Tm are updated once a task is completed. To estimate
Ts, we measure the average size of the intermediate data
generated by a map task (indicated by d) and the network
bandwidth in the cluster (indicated by B). Thus, Ts can be
expressed as:

Ts =
d · m
B · r

Throughout the execution of a job, our scheduler forms β
as the function of x and then calculates the values with various
x whenever a container is released. When the actual number
of the pending map tasks m′ satisfies the equation as shown
below, the reduce stage will begin, i.e., the first reduce task
will be allocated to the currently available container:

m′ = arg min
x∈[m′,m]

β.

3) MULTIPLE JOBS
Furthermore, we extend our design to serve multiple MapRe-
duce jobs. Our scheduler is built on Fair scheduler which
equally allocates containers to all the active jobs. Specifically,
if there are S containers in the cluster andD jobs running con-
currently, each job can occupy S

D containers and the effective
container release frequency for each job is Fo

D .
Following Eq. (2), we calculate the gap β for each job Ji,

β = Ts(i)− (
xi
Fe
+ Tm(i)),

where xi represents the number of the pending map tasks
of Ji, and parameters Ts(i) and Tm(i) are particular to Ji. The
estimated container release frequency Fe can be estimated as

Fo · Ae
Ao · D

,

88810 VOLUME 9, 2021

A. Yang et al.: Optimizing Internal Overlaps by Self-Adjusting Resource Allocation

whereFo andAo are common parameters for all the jobs.With
multiple jobs executing, Ao may not be the same as S as in
the case of single job execution. When calculating β for Ji,
we will use the measured value of Ao. However, the following
equation still holds Ae = Ao − ri, where ri is the number of
the reduce tasks in Ji. Therefore,

β = Ts(i)− (
xi · Ao · D

Fo · (Ao − ri)
+ Tm(i)). (3)

Finally, the reduce stage should be startedwhen the number
of pending map tasks m′i satisfies the following equation:

m′i = arg min
x∈[m′i,mi]

β.

Multiple jobsmay satisfy the above equation, in which case
our scheduler will allocate the container to the job that has
occupied the fewest containers among all the candidates.

The details of our algorithm are indicated in Algorithm 1.
Function LazyStartReduce() is intended to return the index
of the job that should begin its reduce stage. If there is no
candidate, the function will return ‘‘−1’’. The variable res
records a list of candidate job indexes. Specifically, lines
1–6 sets the number of active jobs (D). Lines 7–21 enumerate
all the running jobs that have not begun their reduce stages,
and use Eq. (3) to decide whether there are candidate jobs
to begin the reduce stage. Eventually, if there are multiple
candidates in res, the algorithm returns the index of the job
with the minimum occupation on containers (lines 22–27).

D. BATCH FINISH OF MAP TASKS
Our second technique is called batch finish of map tasks,
which is designed to improve the performance of the map
stage by assigning the trailing map tasks to be completed
in one batch. In this subsection, we first indicate how the
alignment of map tasks impacts the execution time of a
MapReduce job. Then we introduce our algorithm to improve
the performance.

1) MOTIVATIONS
In the design of a Hadoop system, the map tasks are expected
to be complete in waves to accomplish good performance.
In the case of unaligned map tasks, specifically the trailing
map tasks, a delay may occur which significantly affects
the overall job execution time. With a misalignment, the last
couple of pending map tasks will cause an additional round of
execution in the map stage causing the initiated reduce tasks
to wait for the completion of these map tasks. As a result,
the occupied slots will be used less efficiently.

However, in practice, map tasks are hardly aligned as
waves because the number of map tasks may not be a mul-
tiple of the number of the allocated slots. In a conventional
Hadoop system, the number of map slots in the cluster can be
configured as a parameter, which is unknown to the user who
submits the job. In our dynamic slot configuration solution,
the same problem still exists and the number of slots allocated
to map tasks is even more uncertain as there are no reserved

Algorithm 1 Function LazyStartReduce()
1: D = 0, res = {}
2: for i = 1 to n do
3: if Ji is running then
4: D← D+ 1
5: end if
6: end for
7: for i = 1 to n do
8: if Ji is executing and has not begun its reduce stage

then
9: βOPT = Ts(i)− (

m′i·Ao·K
Fo·(Ao−ri)

+ Tm(i))
10: selected = true
11: for x = m′i + 1 to mi do
12: β = Ts(i)− (xi·Ao·K

Fo·(Ao−ri)
+ Tm(i))

13: if β < βOPT then
14: selected=false; break;
15: end if
16: end for
17: if selected == true then
18: res = res+ {i}
19: end if
20: end if
21: end for
22: if res is empty then
23: return −1
24: else
25: sort all job indexes in res in the ascending order of the

number of occupied containers
26: return the first index in the sorted list
27: end if

slots for map or reduce tasks. Additionally, when multiple
jobs are running concurrently, the misalignment of map tasks
is more severe because of the heterogeneous execution times
of map and reduce tasks, as well as different scheduling
policies. Fig. 4 shows a simplified example of running one
MapReduce job. Assume that eachmap task can be completed
in a time unit and each reduce task also requires a one-time
unit to complete after its shuffling stage. Fig. 4a illustrates the
execution process with 12 map tasks where the map stage is
finished with 4 rounds and the total execution time is 5-time
units. In Fig. 4b, however, there is an additional map task
causing an extra round in the map stage. The total execution
time becomes 6-time units, which is a 20% increase compared
to Fig. 4a.

Fig. 5 shows an experiment with three jobs: terasort, word-
count, and k-means in a Hadoop cluster with 4 slave nodes.
Each node has 3 map containers and 1 reduce container. The
input data of each job is 8GB. There are 32 map tasks in the
k-means and wordcount, and 50map tasks for the terasort job.
The number of reduce tasks for each job is 1. These three jobs
are running with Fair scheduler and the slowstart is set to 0.6.
The X-axis is execution time and the Y-axis shows the task
containers in the cluster. container 1 to 12 are map containers

VOLUME 9, 2021 88811

A. Yang et al.: Optimizing Internal Overlaps by Self-Adjusting Resource Allocation

FIGURE 4. Example: one additional map task increases the execution
time of the given job by 20%.

FIGURE 5. Experiment with 3 jobs in a Hadoop cluster with Fair scheduler:
Solid lines represent map tasks and dashed lines represent reduce tasks.

and 13 to 16 are reduce containers. Apparently, the map tasks
of all three jobs are not well aligned after the first wave.

Therefore, in our solution, we aim to allocate the trailing
map tasks in a batch to solve this problem. Our intuition
is to adjust the Hadoop scheduler to increase the priority
of the trailing map tasks when allocating tasks to available
containers, even though it may violate its original policy. The
decision relies on the number of pending map tasks and an
estimate of the future container release frequency. Essentially,
given the number of the pending map tasks of a job, if the
scheduler predicts that the cluster will release a sufficient
number of containers in a short time window, it will preserve
those future containers to serve the pending map tasks. The
benefit is that the target job’s map stage can be finished faster
and the containers occupied by its reduce tasks will become
available more quickly. The drawback is that a possible delay
may happen to other active jobs because those reserved future
containers could otherwise serve them.

2) ALGORITHM DESIGN
In this subsection, we will introduce the algorithm design
of OMO. First, the candidate jobs for batch finish of map
tasks must have started their reduce stage. Otherwise, if we
apply this strategy to the jobs which have not begun their
reduce stage, the result is equivalent to beginning their reduce
stages after the map stages with no overlap. Second, for each
candidate job, our scheduler evaluates both the benefit and
drawback of finishing the pending map tasks in a batch. After
that, we choose the job that can generate the most reward to
apply this strategy.

Specifically, we analyze each job that has started its reduce
stage and decide whether the batch finish of its map tasks is
appropriate. We first examine the performance under regular
Fair scheduler and then compare to the case, if we complete

all the pendingmap tasks in a batch. For each job Ji, recall that
m′i be the number of its pending map tasks and ri be the num-
ber of reduce tasks. Given the container release frequency Fo,
a container will be assigned to job Ji every K

Fo
, whereD is the

number of active jobs in the cluster. Under Fair scheduler, Ji
will finish its map phase in tfair time units,

tfair =
K · m′i
Fo
+ Tm(i). (4)

Meanwhile, other jobs get Fo·(K−1)
K containers per time

unit, thus the total number of containers that other jobs
obtain is

s =
Fo · (K − 1)

K
· tfair

= (K − 1) · m′i+
Fo · (K − 1) · Tm(i)

K
.

Now if we decide to increase the priority of Ji’s pending
map tasks and finish them in batch, then the map phase
will be finished in m′i ·

1
Fo
+ Tm time unites. After that, Ji’s

reduce containers become available and the container release
frequency will be increased to Fe =

Fo·(Ao+ri)
Ao

. To contribute
s containers to other jobs, the time required is

tbatch =
s
Fe
=

s · Ao
Fo · (Ao + ri)

. (5)

If tbatch < tfair , the batch finish of map tasks becomes
superior since it accomplishes the same scenario, i.e., Ji’smap
stage is completed and all the other jobs get s containers, in a
shorter time period. The details are indicated in Algorithm 2.
Function BatchFinishMap returns the index of the job that
needs to apply the batch finish to its pending map tasks. Vari-
able c represents the index of the candidate job. The function
will return ‘‘−1’’ if there is no such candidate. Generally,
the algorithm consists of a loop (lines 7–14) that enumerates
every active job and calculates tfair and tbatch to further decide
whether it is worthy to apply the strategy. Variable max is
defined to temporarily record the current maximum differ-
ence between tfair and tbatch. Ultimately, the index of the job
with the maximum benefit will be returned.

E. COMBINATION OF THE TWO TECHNIQUES
Finally, our scheduler integrates our two strategies indicated
above into the baseline Fair scheduler for the execution of
all jobs. The possible conflict between these two techniques
is another challenge in the design. For instance, if there is
a container released, the first technique may determine to
assign this container to begin a jobs reduce phase, i.e., allocat-
ing a reduce task to it, but the second technique may prefer
to reserve this container and also the following consecutive
containers to finish another job’s pending map tasks in a
batch. In our solution, a simple strategy is used to address
this issue: if there is a conflict, we provide a higher priority
to the technique of lazy start of reduce tasks. The intuition is
that when a new job begins its reduce stage, the decision of
batch finish of map tasks could be affected because there is a
new candidate for applying the technique.

88812 VOLUME 9, 2021

A. Yang et al.: Optimizing Internal Overlaps by Self-Adjusting Resource Allocation

Algorithm 2 Function BatchFinishMap ()
1: D = 0,max = 0, c = −1
2: for i = 1 to n do
3: if Ji is running then
4: D← D+ 1
5: end if
6: end for
7: for i = 1 to n do
8: if Ji is executing and has begun its reduce stage then
9: Calculate tfair and tbatch as in Eq. (4) and Eq. (5)
10: if tbatch < tfair and tfair − tbatch > max then
11: max = tfair − tbatch, c = i
12: end if
13: end if
14: end for
15: return c

Specifically, we integrate Algorithm 1, Algorithm 2, and
the Fair scheduler in Algorithm 3. When a container is
released, the algorithm first calls the function LazyStartRe-
duce(). If it selects a job that should start its reduce phase,
the released container will be assigned to the job’s first
reduce task. If the function LazyStartReduce() does not find
a candidate, then the algorithm considers the batch finish of
map tasks. Similarly, if the function BatchFinishMap returns
a candidate job, the released container will be assigned to
serve a pending map task of the job. Finally, if neither of our
new techniques finds a candidate job, our algorithm invokes
the default policy in Fair scheduler.

Algorithm 3 Container Allocation
1: i = LazyStartReduce()
2: if i ≥ 0 then
3: Allocate the released container to Ji’s reduce task
4: else
5: i = BatchFinishMap();
6: if i ≥ 0 then
7: Allocate the released container to Ji’s map task
8: else
9: i = FairScheduler();
10: Allocate the released container to Ji
11: end if
12: end if

V. PERFORMANCE EVALUATION
In this section, we evaluate the performance of OMO and
compare it with other alternative schemes.

A. SYSTEM IMPLEMENTATION
We implemented our new scheduler OMOonHadoop version
0.20.2 by adding a set of new components to support our
solution. Fig 6 shows the details of the system implementa-
tion. The shadow parts are new modules created and other
parts are existing modules in the native Hadoop system and

FIGURE 6. System implementation.

recalled by OMO. First, four new modules are developed
into JobTracker: the Task Monitor (TM), the Cluster Mon-
itor (CM), the Execution Predictor (EP) and the container
Assigner (SA). TM records (1) the size of the intermediate
data generated by each map task, (2) the running progress of
each map/reduce task, (3) the completion time of each fin-
ished map/reduce task and (4) the numbers of the completed
and pending map/reduce tasks of every job. Based on the
statistics from TM and the number of concurrent jobs in the
cluster from JobInProgress, CM is responsible for gathering
the number of released containers in the cluster in real-time
and updates the container release frequency dynamically. In
addition, CM also collects the total size of intermediate data
output by the map stage of every job.

According to the data listed above, EP predicts (1) the
overall container frequency of the cluster, (2) the optimal
point to execute the algorithm of the batch finish, (3) the time
remaining of the map stage, and (4) the shuffling time of each
job. In addition, SA is responsible for allocating amap/reduce
task to every released container in the cluster by applying
Algorithm 3 introduced in Section IV with the information
obtained from EP.

Also, it should be noted that we have modified the fairness
calculation in the traditional Fair scheduler, where the fair-
ness of map containers and reduce containers are separately
considered. Since we use dynamical container configuration,
a container does not exclusively belong to either map or
reduce container category. Therefore, we consider the total
number of the containers assigned to each job and use it to
calculate the deficiency for the Fair scheduler to make the
scheduling decision.

B. TESTBED SETUP AND WORKLOADS
First, the cluster setting, and the workloads for the evaluation
are presented.

1) HADOOP CLUSTER
The experiments were conducted on the NSF CloubLab plat-
form at the University of Utah [33].he hardware specifics of
each server are as follows. 8 ARMv8 cores at 2.4GHz, 64GB
ECC memory, and 120GB storage. Two Hadoop clusters are
created, a small one with 20 slave nodes and one large one
with 40 slave nodes. There are 4 containers configured in each
slave node.

VOLUME 9, 2021 88813

A. Yang et al.: Optimizing Internal Overlaps by Self-Adjusting Resource Allocation

OMO is compared to other scheduling algorithms on
the 20-slave node system. The other clusters are launched
to assess the expandability of OMO. In addition, another
Hadoop YARN cluster with 20 slave nodes is set up as a
control group. Rather than setting up specifics, each node
claims 8 CPU cores along with 40 GB of memory as the
resource volume.

2) WORKLOADS
We consider typical Hadoop benchmarks as the workload for
evaluation with large data sets. Specifically, we choose six
data sets in the experiments. The data sets are as follows:
10/20GB Wikipedia category links data, as well as 10/20GB
movie score data from Netflix, and lastly 10/20 GB synthetic
data. TheWikipedia data contains page category information.
The Netflix data contains user ratings. Finally, the synthetic
data was generated using TeraGen within Hadoop. Using
the following Hadoop benchmarks from Purdue MapReduce
Benchmarks [34] OMO is evaluated.
· Terasort:Sorts (key,value) pairs of data by the key with
the synthetic data as input.
· Sequence Count:Counts all distinct sets of three succes-
sive words of each document with multiple Wikipedia
files as input.
· Word Count: Counts the number of each word with
multiple Wikipedia files as input.
· Inverted Index:Creates word to document indexing
with multiple Wikipedia files as input.
· Classification:Classifies movies according to their rat-
ings with the Netflix movie ranking data as input.
· Histogram Movies:Produces a histogram of the number
of movies in each user ranking with the Netflix movie
ranking data as input.

Table 4 illustrates the details of all six benchmarks in our
experiments, consisting of the benchmark’s name, input data
type/size, intermediate data size, as well as the number ofmap
and reduce tasks.

TABLE 4. Benchmark characteristics.

C. VALIDATION OF OMO DESIGN
The design of OMO mainly relies on two new techniques:
container release rate prediction, and batch finish of the
tailing map tasks. In this subsection, the experimental results
that validate our design intuition are presented.

Fig. 7 shows the container release rate derived from an
experiment with 12 mixed MapReduce jobs on a cluster
of 20 nodes using Fair scheduler. A time window of 10 sec-
onds is considered to receive the histograms of the container
releases. In addition, we apply the container release rate
estimation algorithm used in OMO and present the estimated
value as the curve Estimation in the following Fig. 7. Overall,
we observed that our estimation of the container release rate is
close to the real value in the experiment. From the experimen-
tal trace, we find that the container release rate shows a high
variance as we can see spikes in the curve. The estimation of
OMO may not accurately predict the change when there is
a big gap between two consecutive time windows. However,
our algorithm usually catches up with the trend quickly in
the next time window mitigating the negative impact on the
performance. Above all, we believe that predicting resource
availability in a large-scale cluster with a complex workload
is a valid and feasible mechanism in practice. Later in this
section, we will show the performance benefit gained from
this technique.

FIGURE 7. Container release prediction.

The other main technique in our solution is the batch finish
of map tasks. The design of OMO primarily emphasizes the
last batch of map tasks. 8 compares OMO to Fair scheduler
with a set of 12 mixedMapReduce jobs running on a 20-node
cluster. We define the last batch in a job as the last set of
map tasks whose finish times are within 10 seconds. In 8,
we observe that with Fair scheduler, the last batch of all the
jobs contains no more than 10 tasks and half of the jobs that
have less than 5map tasks in the last batch.With OMO, on the
other hand, the last batch of map tasks is usually much bigger.
Especially for short map tasks, e.g., job 2 and job 3, OMO
gives the map tasks higher priority and purges them quickly.
In addition, there are cases where OMO yields an even fewer
number of map tasks in the last batch than Fair scheduler.
This is caused by the complicity and dynamics during the
execution of the set of mixed jobs. Other factors may conflict
with this technique when the scheduler makes the decision,
e.g., starting a reduce task due to the lazy start algorithm,
and starting a duplicate task for a failed or stale execution.
Overall, the batch finish of map tasks in OMO is effective

88814 VOLUME 9, 2021

A. Yang et al.: Optimizing Internal Overlaps by Self-Adjusting Resource Allocation

FIGURE 8. Last batch of map tasks.

from the experimental results. In the next section, we will
show how it helps improve the overall performance.

D. EVALUATION
In this subsection, the performance of OMO is shown and it is
compared to preexisting solutions.Mainly, OMO is compared
to the following alternate scheduling algorithms listed in
previous work
· Fair scheduler: Using the Hadoop’s default container
configuration, i.e, each slave has 2 map containers and
2 reduce containers per slave. The slowstart is set from
the default value 0.05 to 1, represented as Fair-0.05, Fair-
0.2, Fair-0.4, Fair-0.6, Fair-0.8 and Fair-1.
· FRESH [12]: One of the previous works, FRESH (Fair
and efficient container configuration and scheduling for
Hadoop Clusters) also implements dynamic container
configuration. The slowstart is set to 1.

In Summary, our results include the following aspects:
• Container Allocation: We illustrate the detailed con-
tainer allocation of OMO and other alternative schemes
in Hadoop.

• Performance: We show the performance of the lazy
start of reduce tasks, batch finish of map tasks, and
the combination of such two techniques, represented
as Lazy Start, Batch Finish and OMO. Given a batch
of MapReduce jobs, our performance metrics are the
makespan (the finish time of the last job) and the break-
down execution times of both the map phase and the
shuffling phase. All experiments are conducted with
simple workloads and mixed workloads.

• Comparison to YARN: We also compare some tests
with the Fair scheduler in Hadoop YARN.

• Scalability: Finally, we show the scalability of OMO by
experiments with different settings of input data sizes,
job numbers, and cluster sizes.

1) CONTAINER ALLOCATION
First, we use TeraSort as an example to illustrate the con-
tainer allocation of OMO and other alternative schedulers in
Hadoop (Fig. 9). In each test, we use 8 jobs with the Terasort
benchmark. The input data size is 20 GB for each job. There

FIGURE 9. Container allocation in the execution of 8 Terasort jobs.

are of 160 GB data totally in each experiment. The X-axis is
the execution time and the Y-axis shows all the containers in
the cluster. The red lines show the execution of all map tasks,
and the green and blue lines indicate the shuffling phase and
the reduce phase in reduce tasks, respectively. For Fair-1,
the shuffling phase lasts 293 seconds after the map phase
is finished and this time is decreased to 36 seconds in Fair-
0.05. But Fair-0.05 spends an additional 75 seconds in the
map phase compared to Fair-1. Our solution OMO achieves
34.9% shorter execution time in the map phase than Fair-1
and takes only 43 seconds in the shuffling phase after the
map phase is finished. For FRESH, since all the containers
are assigned to themap tasks before themap phase is finished,
the time cost in the map phase is 17.8% shorter than Fair-1.
Our solution OMO yields 20.8% shorter execution time in the
map phase than FRESH. Such improvement is achieved by
Batch Finish.

2) PERFORMANCE
Our solutions are compared with other schedulers in a
Hadoop Cluster with 20 slave nodes. First, we demonstrate
the makespan of Lazy Start and Batch Finish separately.
Afterward, we demonstrate the performance with the com-
bination of both techniques.

Both simple and mixed workloads are taken into consid-
eration in each set of tests. For each experiment of simple

VOLUME 9, 2021 88815

A. Yang et al.: Optimizing Internal Overlaps by Self-Adjusting Resource Allocation

FIGURE 10. Execution time under FAIR SCHEDULER, FRESH and Lazy Start
(with 20 slave nodes).

workloads, 8 jobs with uniform benchmarks are created with
matching identical input data. Each data set is 20 GB making
the total data processed in each test 160 GB. Each job has
80 map tasks along with 2 reduce tasks. All jobs are sub-
mitted sequentially to the Hadoop system with an interval
of 2 seconds.

In addition to simple workloads, to further authenticate the
efficiency of our solution, we assess the system performance
with varying workloads which includes various benchmarks.
8 Job sets (Set A to H) are then created with mixed jobs which
are introduced in Table 5. Specifically, Set A is combined
with a mixture of job types consisting of both heavy and
light-shuffling ones. A recent suggestion from Cloudera has
suggested that 34% of jobs have at least the same amount
of output data as their inputs [35] Therefore, the 12 jobs
consist of 8 light-shuffling and 4 heavy-shuffling jobs. Each
benchmark has two jobs, one with 20 GB input data and the
other with 10 GB. Set B is a combined job set consisting of
only heaving-shuffling benchmarks: Terasort and Sequence
Count. Every benchmark consists of 8 jobs, 4 with 20 GB of
input data and the remaining with 10 GB. Sets C through H
is designed for scalability experiments of OMO.

TABLE 5. Sets of mixed jobs.

a: MAKESPAN PERFORMANCE OF LAZY START
First, the Batch Finish algorithm in the Execution Predictor
(EP) Module is disabled. From this, we can indicate the
performance of Lazy Start. The makespan performance of
FRESH, Fair scheduler and Lazy Start with simple andmixed
benchmarks are illustrated in Fig. 10. Considering the page
limit for the simple workloads, we present the evaluation
results with 3 benchmarks.

In testing cases of Fair scheduler, it had the best makespan
performance with simple workloads and heavy shuffling
(i.e. Terasort and Sequence Count) when the slowstart was
set at 0.05 or 0.2. Lazy Start improves the makespan time by

FIGURE 11. Execution time under FAIR SCHEDULER, FRESH and Batch Finish
(with 20 slave nodes).

FIGURE 12. Execution time under FAIR SCHEDULER, FRESH, Lazy Start, Batch
Finish and OMO (with 20 slave nodes).

11.6% and 15.9% compared to Fair schedule and 24.5% and
23.8% when compared to FRESH. Fair scheduler however
has similar performance when testing with different values
of slowstart when using light-shuffling benchmarks such as
word count. FRESH also performs well since the shuffling
time is short. The mean makespan in Lazy Start is 27.8% less
than Fair scheduler and 15.8% less than FRESH.

When considering mixed workload testing, Fair-1 proved
to be the least efficient with various sets of jobs within
Fair scheduler. In job Set A, the Lazy Start performance is
improved by 18.1% when compared to Fair schedulerr and
by 20.2% when compared to FRESH. In job Set B Lazy Start
decreases 15.6% and 20.7% of makespan when compared to
the best scenario in Fair scheduler and FRESH

b: MAKESPAN PERFORMANCE OF BATCH FINISH
Furthermore, we disable Lazy Start in OMO to display
the evaluation results of Batch Finish. The makespan per-
formance of Batch Finish, FRESH and Fair-1 in simple
and mixed workloads are illustrated in Fig. 11. In these
cases, the slowstart value is set to 1 for all three sched-
ulers. In terms of performance, FRESH demonstrates more
desirable results over Fair-1 due to the dynamic con-
tainer configuration. In simple and mixed workload testing,
on Average, the makespan of FRESH is 7.26% AND 12.3%
shorter than Fair-1. And compared to FRESH, Batch Finish
cuts the makespan by 7.1% and 11%

c: PERFORMANCE OF OMO
Lastly, we demonstrate the results of OMO a combination
of the techniques listed above. First using simple and mixed
workloads, we illustrate the makespan performance com-
pared to other schedulers. We then break down the execution
in bothmap and shuffling stage of each trial and then illustrate
the completion time of each stage.

Fig. 12 illustrates the results collected from testing of
two sets of mixed workloads and three simple workloads.

88816 VOLUME 9, 2021

A. Yang et al.: Optimizing Internal Overlaps by Self-Adjusting Resource Allocation

FIGURE 13. Execution time in map + shuffling phase of simple workloads.

Fair:best represents the best makespan performance in
Fair scheduler with varying values of slowstart. Lazy
Start decreases the heavy-shuffling benchmarks even more
while Batch Finishh performs better when working in
light-shuffling benchmarks. OMO benefits from both
techniques and achieves the best performance when com-
pared to either Lazy Start or Batch Finish. On average, OMO
reduced the makespan by 26% and 29.3% when compared to
Fair:best and FRESH.

Fig. 13 shows the details of the breakdown execution time
in three steps of each experiment with simple workloads:
Map Only represents the time span that only map tasks are
executed, but no reduce tasks, Overlap represents the time
span that both the map and the shuffling phase are running
concurrently. Shuffle Only represents the time span that the
shuffling phase continues after the map phase has finished.
By increasing map task containers in the cluster, FRESH
reduces 15.51 of the time span in the map phase compared to
Fair scheduler. However, it takes more time in Shuffle Only
than Fair:0.05. Overall, OMO decreases the execution time
in Shuffle Only significantly with the help of Lazy Start and
still optimize the time span of the map phase by the technique
of Batch Finish.

3) COMPARISON WITH HADOOP YARN
Furthermore, as shown in Table 6 is the comparison with
Hadoop YARN. Since not all benchmarks are available for
Hadoop YARN distribution, only Terasort is used in the
experiments. In each test, 8 Terasort jobs with 20 GB of input
data is used. The CPU demand is set to 2 cores, this way at any
one time only 4 tasks are running concurrently at each node.
In Hadoop YARN, a novel mechanism is developed for the
allocation of reduce tasks. Generally, for each job in YARN,
when reduce tasks can be assigned for execution is based on
the progress of the map stage and a memory threshold for
reduce tasks in the cluster (maxReduceRampupLimit). For
the experiments, the default configurations are used. We set,
thememory requirement of map/reduce tasks of each jobwith
different values in the experiment, including 2, 4, 6, and 8GB,
represented by YARN:2, YARN:4, YARN:6 and YARN:8 in
Table 6. Within the Hadoop YARN cluster, the makespan of
YARN:2 displays approximately 6.6% more than the ones
with different memory demands. OMO reduces the makespan
by 17.3% when compared to YARN2: and 11.6% when
compared to the others. It should be noted that Hadoop
YARN takes a fine-grained resource management which

TABLE 6. Execution time of Terasort benchmark under YARN and OMO
(with 20 slave nodes).

indicates inherited advantages over the traditional Hadoop
system which OMO is built upon. However, it is shown that
OMO still outclasses the Hadoop YARN system. Our OMO
design can easily be extended and ported to the Hadoop
YARN system which is a part of our future work.

4) SCALABILITY
Finally, we show the scalability of OMOwith the experiments
of different input data sizes job numbers and cluster sizes.

First, we test the input data scalability. We run the exper-
iments of 12 mixed jobs with the input data size: 20 GB
(Set C), 30 GB (Set D), and 40 GB (Set E). Fig. 14 (a) shows
the evaluation results. The execution times with 30 GB and
40 GB inputs are 1.6 and 2.1 times of the one with 20 GB
inputs. The growth of the execution time in OMO is propor-
tional to the rise of the input data size.

FIGURE 14. Execution time under OMO with: (a) different sizes of the
input data and (b) different number of jobs.

Then, we test the number of jobs scalability, we run the
experiments with the same set of mixed benchmarks. The
input data of each job is 20 GB. Set C has 12 jobs, Set F has
18 jobs, and Set G has 24 jobs. Fig. 14 (b) shows the exper-
iments results. The execution time in OMO grows linearly
according to the number of jobs.

Finally, we evaluate the scalability of OMO by executing
Set H on a large cluster with 40 slave nodes. The experiment
results are shown in Table 7. We can observe a consistent
performance gain fromOMO�. The small cluster of 20 slave
nodes with Set A. OMO reduces the makespan by 37%
compared to Fair scheduler and FRESH, which is consistent
with the tests using Set A on the 20-node cluster.

VOLUME 9, 2021 88817

A. Yang et al.: Optimizing Internal Overlaps by Self-Adjusting Resource Allocation

TABLE 7. Makespan of set H with 40 slave nodes.

Above all, OMO accomplishes an exceptional and stable
makespan performance with both simple and mixed work-
loads of various sets of jobs.

VI. CONCLUSION
This paper studies the scheduling problem in a big data com-
puting system with multiple internal stages, especially in a
Hadoop cluster serving a batch of MapReduce jobs. Our goal
is to reduce the overall makespan of multiple applications
by appropriate resource allocation. A new scheme OMO
is developed to optimize the overlap between the map and
reduce phases. There are two new techniques introduced in
OMO: lazy start of reduce tasks and batch finish of map tasks.
Compared to previous work, our solution takes more dynamic
factors and predicts resource availability into consideration
when assigning the containers to jobs.We implementedOMO
on the Hadoop cluster and evaluated all the techniques in
multiple clusters of Cloud Lab by running representative
MapReduce benchmarks with various workloads and set-
tings. The evaluation results show a significant improvement
in the makespan compared to both conventional Hadoop and
Hadoop YARN systems, especially for heavy-shuffling jobs.

REFERENCES
[1] Apache Hadoop. Accessed: Apr. 19, 2021. [Online]. Available:

http://hadoop.apache.org/
[2] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. Katz,

S. Shenker, and I. Stoica, ‘‘Mesos: A platform for fine-grained resource
sharing in the data center,’’ in Proc. NSDI USENIX, 2011, p. 22.

[3] Apache Spark. Accessed: Apr. 19, 2021. [Online]. Available:
https://databricks.com/spark/

[4] J. Dean and S. Ghemawat, ‘‘MapReduce: Simplified data processing on
large clusters,’’ Commun. ACM, vol. 51, no. 1, pp. 107–113, 2008.

[5] Fair Scheduler. Accessed: Apr. 19, 2021. [Online]. Available:
https://hadoop.apache.org/docs/r2.7.4/hadoop-yarn/hadoop-yarn-site/
FairScheduler.html

[6] Capacity Scheduler. Accessed: Apr. 19, 2021. [Online]. Available:
https://hadoop.apache.org/docs/r2.7.2/hadoop-yarn/hadoop-yarn-site/
CapacityScheduler.html

[7] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and
I. Stoica, ‘‘Dominant resource fairness: Fair allocation of multiple resource
types,’’ in Proc. 8th USENIX Conf. Netw. Syst. Design Implement. (NSDI).
Berkeley, CA, USA: USENIX Association, 2011, pp. 323–336. [Online].
Available: http://dl.acm.org/citation.cfm?id=1972457.1972490

[8] A. Verma, L. Cherkasova, and R. H. Campbell, ‘‘ARIA: Automatic
resource inference and allocation for mapreduce environments,’’ in Proc.
8th ACM Int. Conf. Autonomic Comput. (ICAC), 2011, pp. 235–244.

[9] K. Kc and K. Anyanwu, ‘‘Scheduling Hadoop jobs to meet deadlines,’’
in Proc. IEEE 2nd Int. Conf. Cloud Comput. Technol. Sci., Nov. 2010,
pp. 388–392.

[10] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica, ‘‘Sparrow: Dis-
tributed, low latency scheduling,’’ in Proc. 24th ACM Symp. Operat-
ing Syst. Princ. (SOSP), New York, NY, USA: ACM, 2013, pp. 69–84.
[Online]. Available: http://doi.acm.org/10.1145/2517349.2522716

[11] J. Polo, C. Castillo, D. Carrera, Y. Becerra, I. Whalley, M. Steinder, J. Tor-
res, and E. Ayguadé, ‘‘Resource-aware adaptive scheduling for mapreduce
clusters,’’ in Proc. Middleware, 2011.

[12] J. Wang, Y. Yao, Y. Mao, B. Sheng, and N. Mi, ‘‘FRESH: Fair and efficient
slot configuration and scheduling for Hadoop clusters,’’ in Proc. CLOUD,
Jun. 2014, pp. 761–768.

[13] J. Wang, Y. Yao, Y. Mao, B. Sheng, and N. Mi, ‘‘OMO: Optimize MapRe-
duce overlap with a good start (reduce) and a good finish (map),’’ in Proc.
IPCCC, Dec. 2015, pp. 1–8.

[14] J. Wang, ‘‘Building efficient large-scale big data processing plat-
forms,’’ Ph.D. dissertation, Dept. Comput. Sci., Univ. Massachusetts
Boston, Boston, MA, USA, 2017, vol. 348. [Online]. Available:
https://scholarworks.umb.edu/doctoral_dissertations/348

[15] Y. Yao, J. Wang, B. Sheng, J. Lin, and N. Mi, ‘‘HaSTE: Hadoop YARN
scheduling based on task-dependency and resource-demand,’’ in Proc.
IEEE 7th Int. Conf. Cloud Comput., Washington, DC, USA: IEEE Com-
puter Society, Jun. 2014, pp. 184–191, doi: 10.1109/CLOUD.2014.34.

[16] J.-C. Lin, I. C. Yu, E. B. Johnsen, and M.-C. Lee, ‘‘ABS-YARN:
A formal framework for modeling Hadoop YARN clusters,’’ in Fundamen-
tal Approaches to Software Engineering, P. Stevens and A.Wąsowski, Eds.
Berlin, Germany: Springer, 2016, pp. 49–65.

[17] C. Hu, J. Zhu, R. Yang, H. Peng, T.Wo, S. Xue, X. Yu, J. Xu, and R. Ranjan,
‘‘TOPOSCH: Latency-aware scheduling based on critical path analysis
on shared YARN clusters,’’ in Proc. IEEE 13th Int. Conf. Cloud Comput.
(CLOUD), Oct. 2020, pp. 619–627.

[18] X. Zhang, Z. Zhong, S. Feng, B. Tu, and J. Fan, ‘‘Improving data locality
of MapReduce by scheduling in homogeneous computing environments,’’
in Proc. IEEE 9th Int. Symp. Parallel Distrib. Process. Appl., May 2011,
pp. 120–126.

[19] Z. Guo, G. Fox, and M. Zhou, ‘‘Investigation of data locality in MapRe-
duce,’’ in Proc. 12th IEEE/ACM Int. Symp. Cluster, Cloud Grid Comput.
(CCGRID), May 2012, pp. 419–426.

[20] J. Jin, J. Luo, A. Song, F. Dong, and R. Xiong, ‘‘BAR: An efficient data
locality driven task scheduling algorithm for cloud computing,’’ in Proc.
11th IEEE/ACM Int. Symp. Cluster, Cloud Grid Comput., IEEE Computer
Society, May 2011, pp. 295–304.

[21] X. Zhang, Y. Feng, S. Feng, J. Fan, and Z. Ming, ‘‘An effective data
locality aware task scheduling method for MapReduce framework in het-
erogeneous environments,’’ in Proc. Int. Conf. Cloud Service Comput.,
Dec. 2011, pp. 235–242.

[22] J. Xie, S. Yin, X. Ruan, Z. Ding, Y. Tian, J. Majors, A. Manzanares,
and X. Qin, ‘‘Improving MapReduce performance through data place-
ment in heterogeneous Hadoop clusters,’’ in Proc. IEEE Int. Symp. Par-
allel Distrib. Process., Workshops Phd Forum (IPDPSW), Apr. 2010,
pp. 1–9.

[23] P. Li, L. Ju, Z. Jia, and Z. Sun, ‘‘SLA-aware energy-efficient scheduling
scheme for Hadoop YARN,’’ in Proc. IEEE IEEE 17th Int. Conf. High
Perform. Comput. Commun. 7th Int. Symp. Cyberspace Saf. Secur., IEEE
12th Int. Conf. Embedded Softw. Syst., Aug. 2015, pp. 623–628.

[24] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and A. Akella,
‘‘Multi-resource packing for cluster schedulers,’’ ACM SIGCOMM Com-
put. Commun. Rev., vol. 44, no. 4, pp. 455–466, Feb. 2015, doi:
10.1145/2740070.2626334.

[25] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica, ‘‘Improv-
ing mapreduce performance in heterogeneous environments,’’ in Proc.
8th USENIX Conf. Operating Syst. Design Implement. (OSDI). Berkeley,
CA, USA: USENIX Association, 2008, pp. 29–42. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1855741.1855744

[26] X. Ren, G. Ananthanarayanan, A. Wierman, and M. Yu, ‘‘Hopper: Decen-
tralized speculation-aware cluster scheduling at scale,’’ ACM SIGCOMM
Comput. Commun. Rev., vol. 45, no. 4, pp. 379–392, Sep. 2015, doi:
10.1145/2829988.2787481.

[27] G. Ananthanarayanan, M. C.-C. Hung, X. Ren, I. Stoica,
A. Wierman, and M. Yu, ‘‘Grass: Trimming stragglers in approximation
analytics,’’ in Proc. 11th USENIX Symp. Netw. Syst. Design Implement.
(NSDI). Seattle, WA, USA: USENIX Association, 2014, pp. 289–302.
[Online]. Available: https://www.usenix.org/conference/nsdi14/technical-
sessions/presentation/ananthanarayanan

[28] J. Wang, T. Wang, Z. Yang, N. Mi, and B. Sheng, ‘‘ESplash: Efficient
speculation in large scale heterogeneous computing systems,’’ in Proc.
IEEE 35th Int. Perform. Comput. Commun. Conf. (IPCCC), Dec. 2016,
pp. 1–8.

[29] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, ‘‘Dryad: Distributed
data-parallel programs from sequential building blocks,’’ in Proc. EuroSys,
2007, pp. 59–72.

[30] O’Reilly Media, Hadoop: The Definitive Guide: Storage and Analysis at
Internet Scale, 4th ed. Sebastopol, CA, USA: O’Reilly Media, 2015.

[31] Apach Hadoop YARN. Accessed: Apr. 19, 2021. [Online]. Available:
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/
YARN.html

88818 VOLUME 9, 2021

http://dx.doi.org/10.1109/CLOUD.2014.34
http://dx.doi.org/10.1145/2740070.2626334
http://dx.doi.org/10.1145/2829988.2787481

A. Yang et al.: Optimizing Internal Overlaps by Self-Adjusting Resource Allocation

[32] Y. Yao, J. Wang, B. Sheng, and N. Mi, ‘‘Using a tunable knob for reducing
makespan of mapreduce jobs in a Hadoop cluster,’’ in Proc. CLOUD,
Jun. 2013, pp. 1–8.

[33] NSF Cloudlab. Accessed: Apr. 19, 2021. [Online]. Available:
https://www.cloudlab.us/

[34] Purdue Mapreduce Benchmarks Suite. Accessed: Apr. 19, 2021. [Online].
Available: https://engineering.purdue.edu/ puma/pumabenchmarks.htm

[35] S. A. Y. Chen and R. Katz, ‘‘Interactive analytical processing in big data
systems: A cross-industry study of mapreduce workloads,’’ in Proc. VLDB,
2012, pp. 1802–1813.

ALLEN YANG received the degree in com-
puter science from Montclair State University,
in May 2021. His research interests include deep
learning, machine learning, data science, big data,
and cloud computing.

JIAYIN WANG received the bachelor’s degree
in electrical engineering from Xidian University,
China, in 2005, and the Ph.D. degree from the
University of Massachusetts Boston, in 2017.
She is currently an Assistant Professor with the
Computer Science Department, Montclair State
University. Her research interests include big
data analytics, cloud computing, and wireless
networks.

YING MAO received the B.S. degree from
the Commanding Communication Academy
(currently, the National University of Defense
Technology, Wuhan, China), the M.S. degree from
University at Buffalo, and the Ph.D. degree from
the University of Massachusetts Boston. He is cur-
rently an Assistant Professor with the Department
of Computer and Information Science, Fordham
University. His research interests include cloud
computing, virtualization, resource management,

and data-intensive platforms.

YI YAO received the Ph.D. degree in computer
science from the Department of Electrical and
Computer Engineering, Northeastern University,
Boston, MA, USA. He is currently a Software
Engineer with Google. His current research inter-
ests include resource management, scheduling,
and cloud computing.

NINGFANG MI (Member, IEEE) received the
B.S. degree in computer science from Nanjing
University, China, in 2000, the M.S. degree in
computer science from the University of Texas
at Dallas, TX, USA, in 2004, and the Ph.D.
degree in computer science from the College of
William and Mary, VA, USA, in 2009. She is
currently an Associate Professor with the Depart-
ment of Electrical and Computer Engineering,
Northeastern University, Boston, MA, USA. Her

current research interests include performance evaluation, capacity planning,
resource management, simulation, data center, and cloud computing.

BO SHENG received the Ph.D. degree in com-
puter science from the College of William and
Mary, in 2010. He is currently an Associate Pro-
fessor with the Department of Computer Science,
University of Massachusetts Boston. His research
interests include mobile computing, wireless net-
works, security, and cloud computing.

VOLUME 9, 2021 88819

