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Abstract—The MapReduce framework and its open source
implementation Hadoop have become the defacto platform for
scalable analysis on large data sets in recent years. One of the
primary concerns in Hadoop is how to minimize the completion
length (i.e., makespan) of a set of MapReduce jobs. The current
Hadoop only allows static slot configuration, i.e., fixed numbers
of map slots and reduce slots throughout the lifetime of a cluster.
However, we found that such a static configuration may lead to
low system resource utilizations as well as long completion length.
Motivated by this, we propose a simple yet effective scheme which
uses slot ratio between map and reduce tasks as a tunable knob
for reducing the makespan of a given set. By leveraging the
workload information of recently completed jobs, our scheme
dynamically allocates resources (or slots) to map and reduce
tasks. We implemented the presented scheme in Hadoop V0.20.2
and evaluated it with representative MapReduce benchmarks
at Amazon EC2. The experimental results demonstrate the
effectiveness and robustness of our scheme under both simple
workloads and more complex mixed workloads.

I. INTRODUCTION

In recent years, MapReduce [1] has become the leading
paradigm for parallel big data processing. Its open source
implementation Apache Hadoop [2] has also emerged as a
popular platform for daily data processing and information
analysis. With the rise of cloud computing, MapReduce is no
longer just for internal data process in big companies. It is
now convenient for a regular user to launch a MapReduce
cluster on the cloud, e.g., AWS MapReduce, for data-intensive
applications. When more and more applications are adopting
the MapReduce framework, how to improve the performance
of a MapReduce cluster becomes a focus of research and
development. Both academia and industry have put tremen-
dous efforts on job scheduling, resource management, and
Hadoop applications [3]–[11]. As a complex system, Hadoop
is configured with a large set of system parameters. While it
provides the flexibility to customize the cluster for different
applications, it is challenging for users to understand and set
the optimal values for those parameters. In this paper, we aim
to develop algorithms for adjusting a basic system parameter
to improve the performance of makespan of a batch of jobs.

A classic Hadoop cluster includes a single master node and
multiple slave nodes. The master node runs the JobTracker
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routine which is responsible for scheduling jobs and coordi-
nating the execution of tasks of each job. Each slave node
runs the TaskTracker daemon for hosting the execution of
MapReduce jobs. The concept of “slot” is used to indicate the
capacity of accommodating tasks on each node. In a Hadoop
system, a slot is assigned as a map slot or a reduce slot
serving map tasks or reduce tasks, respectively. At any given
time, only one task can be running per slot. The number
of available slots per node indeed provides the maximum
degree of parallelization in Hadoop. Our experiments have
shown that the slot configuration has a significant impact on
system performance. The Hadoop framework, however, uses
fixed numbers of map slots and reduce slots at each node
as the default setting throughout the lifetime of a cluster. The
values in this fixed configuration are usually heuristic numbers
without considering job characteristics. Therefore, this static
setting is not well optimized and may hinder the performance
improvement of the entire cluster.

In this work, we propose and implement a new mechanism
TuMM to dynamically allocate slots for map and reduce tasks.
The primary goal of the new mechanism is to improve the
completion time (i.e., makespan) of a batch of MapReduce
jobs while retain the simplicity in implementation and man-
agement of the slot-based Hadoop design. The key idea of
TuMM is to automate the slot assignment ratio between map
and reduce tasks in a cluster as a tunable knob for reducing the
makespan of MapReduce jobs. The Workload Monitor (WM)
and the Slot Assigner (SA) are the two major components
introduced by TuMM. The WM that resides in the JobTracker
periodically collects the execution time information of recently
finished tasks and estimates the present map and reduce
workloads in the cluster. The SA module takes the estimation
to decide and adjust the slot ratio between map and reduce
tasks for each slave node. With TuMM, the map and reduce
phases of jobs could be better pipelined under priority based
schedulers, and thus the makespan is reduced.

The rest of the paper is organized as follows. We explain the
motivation of our work through some experimental examples
in Section II. We formulate the problem and derive the
optimal setting for static slot configuration in Section III. The
design details of the dynamic mechanism are presented in
Section IV. Section V provides the experimental evaluation of
the proposed scheme. Section VI describes the related work



of this article. We conclude in Section VII.

II. MOTIVATION

Currently, the Hadoop framework uses fixed numbers of
map slots and reduce slots on each node throughout the
lifetime of a cluster. However, such a fixed slot configuration
may lead to low resource utilizations and poor performance
especially when the system is processing varying workloads.
We here use two simple cases to exemplify this deficiency. In
each case, three jobs are submitted to a Hadoop cluster with 4
slave nodes and each slave node has 4 available slots. Details
of the experimental setup are introduced in Section V. To
illustrate the impact of resource assignments, we also consider
different static settings for map and reduce slots on a slave
node. For example, when the slot ratio is equal to 1:3, we
have 1 map slot and 3 reduce slots available per node. We then
measure the overall lengths (i.e., makespans) for processing a
batch of jobs, which are shown in Fig. 1.
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Fig. 1. The makespans of jobs under case 1 (i.e., Classification) and
case 2 (i.e., Grep). The map and reduce slot ratios on each slave node
are set to 1:3, 2:2, and 3:1.

Case 1: We first submit three Classification jobs to process a
10 GB movie rating data set. We observe that the makespan of
these jobs is varying under different slot ratio settings and the
best performance (i.e., shortest makespan) is achieved when
each slave node has three map slots and one reduce slot, see
the left column of Fig. 1.

To interpret this effect, we further plot the execution times
of each task in Fig. 2. Clearly, Classification is a map-intensive
application; for example, when we equally distribute resources
(or slots) between map and reduce tasks, i.e., with the slot ratio
of 2:2, the length of a map phase is longer than that of a reduce
phase, see Fig. 2(a). It follows that each job’s reduce phase
(including shuffle operations and reduce operations) overlaps
with its map phase for a long period. However, as the reduce
operations can only start after the end of the map phase, the
occupied reduce slots stay in shuffle for a long period, mainly
waiting for the outputs from the map tasks. Consequently,
system resources are underutilized.

For example, we tracked the CPU utilizations of each task
in a slave node every 5 seconds and Table I shows part
of the records in one of such overlapping periods. At each
moment, the overall CPU utilization (i.e., the summation of
CPU utilizations of the four tasks) is much less than 400%,
for a node with 4 cores. We then notice that when we assign
more slots to map tasks, e.g., with the slot ratio of 3:1,
each job experiences a shorter map phase and most of its
reduce phase overlaps with the following job’s map phase,
see Fig. 2(b). The average CPU utilization is also increased
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Fig. 2. Task execution times of three Classification jobs under
different static slot configurations, where each node has (a) 2 map
slots and 2 reduce slots, and (b) 3 map slots and 1 reduce slot. Each
arrowed line represents the execution of one task, and the solid (resp.
dashed) ones represent map (resp. reduce) tasks. The first wave in
each job’s reduce phase represents the shuffle operations. In addition,
we use three different colors to discriminate the three jobs.

by 20% compare to those under the the slot ratio of 2:2. It
implies that for map-intensive jobs like Classification, one
should assign more resources (slots) to map tasks in order
to improve the performance in terms of makespan.

TABLE I
REAL TIME CPU UTILIZATIONS OF EACH TASK ON A SLAVE NODE
IN THE OVERLAPPING TIME PERIOD OF A JOB’S MAP AND REDUCE

PHASES. THE SLOT RATIO PER NODE IS 2:2.
ProcessId / TaskType

Time(sec) 3522 / map 3564 / map 3438 / reduce 3397 / reduce
1 147% 109% 26% 0%
6 103% 93% 0% 4%
11 93% 99% 8% 0%
16 100% 100% 0% 0%
21 97% 103% 0% 0%

Case 2: In this case, we turn to consider reduce-intensive
applications by submitting three Grep jobs to scan the 10 GB
movie rating data. Similar to case 1, we also investigate three
static slot configurations.

First, we observe that each job takes longer time to process
its reduce phase than its map phase when we have 2 map and 2
reduce slots per node, see Fig. 3(a). Based on the observation
in case 1, we expect a reduced makespan when assigning more
slots to reduce tasks, e.g., with the slot ratio of 1:3. However,
the experimental results show that the makespan under this
slot ratio setting (1:3) becomes even longer than that under
the setting of 2:2, see the right column of Fig. 1. We then
look closely at the corresponding task execution times, see
Fig. 3(b). We find that the reduce tasks indeed have excess
slots such that the reduce phase of each job starts too early
and wastes time waiting for the output from its map phase.
In fact, a good slot ratio should be set between 2:2 and 1:3
to enable each job’s reduce phase to fully overlap with the
following job’s map phase rather than its own map phase.

In summary, in order to reduce the makespan of a batch
of jobs, more resources (or slots) should be assigned to map
(resp. reduce) tasks if we have map (resp. reduce) intensive



(a) 2 map slots : 2 reduce slots
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(b) 1 map slot : 3 reduce slots
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Fig. 3. Task execution times of a batch of Grep jobs under different static
slot configurations, where each node has (a) 2 map slots and 2 reduce slots,
and (b) 1 map slot and 3 reduce slots.

jobs. On the other hand, a simple adjustment in such slot
configurations is not enough. An effective approach should
tune the slot assignments such that the execution times of map
and reduce phases can be well balanced and the makespan of
a given set can be reduced to the end.

III. SYSTEM MODEL AND STATIC SLOT CONFIGURATION

In this section, we present the system model we considered
and formulate the problem. In addition, we analyze the default
static slot configuration in Hadoop and present an algorithm
to derive the best configuration.

A. Problem Formulation

In our problem setting, we consider that a Hadoop cluster
consisting of k nodes has received a batch of n jobs for
processing. We use J to represent the set of jobs, J =
{j1, j2, . . . , jn}. Each job ji is configured with nm(i) map
tasks and nr(i) reduce tasks. Let st(i) and ft(i) indicate the
start time and the finish time of job ji, respectively. In addition,
we assume the Hadoop system sets totally S slots on all the
nodes in the cluster. Let sm and sr be the number of map slots
and reduce slots, respectively. We then have S = sm + sr.
In this paper, our objective is to develop an algorithm to
dynamically tune the parameters of sm and sr, given a fixed
value of S, in order to minimize the makespan of the given
batch of jobs, i.e., minimize{max{ft(i),∀i ∈ [1, n]}}.

In a Hadoop system, the makespan of multiple jobs also
depends on the job scheduling algorithm which is coupled
with our solution of allocating the map and reduce slots on
each node. In this paper, we assume that a Hadoop cluster uses
the default FIFO (First-In-First-Out) job scheduler because of
the following two reasons. First, given n jobs waiting for
service, the performance of FIFO is no worse than other
schedulers in terms of makespan. In the example of “Case 2”
mentioned in Section II, the makespan under FIFO is 594 sec
while Fair, another alternative scheduler in Hadoop, consumes
772 sec to finish jobs. Second, using FIFO simplifies the
performance analysis because generally speaking, there are
fewer concurrently running jobs at any time. Usually two jobs,
with one in map phase and the other in reduce phase.

Furthermore, we use execution time to represent the work-
load of each job. As a MapReduce job is composed of two
phases, we define wm(i) and wr(i) as the workload of map
phase and reduce phase in job ji, respectively. We have
developed solutions with and without the prior knowledge
of the workload and we will discuss how to obtain this
information later.

B. Static Slot Configuration with Workload Information

First, we consider the scenario that the workload of a job is
available and present the algorithm for static slot configuration
which is default in a Hadoop system. Basically, the Hadoop
cluster preset the values of sm and sr under the constraint
of S = sm + sr before executing the batch of jobs, and the
slot assignment will not be changed during the entire process.
We have developed the following Algorithm 1 to derive the
optimal values of sm and sr.

Our algorithm and analysis are based on an assumption that
the workload of map or reduce phase is inversely proportional
to the number of slots assigned to the phase. Given sm and sr,
the map (resp. reduce) phase of ji needs nm(i)

sm
(resp. nr(i)

sr
)

rounds to finish. In each round, sm map tasks or sr reduce
tasks are processed in parallel and the time consumed is equal
to the execution time of one map or one reduce task. Let tm(i)
and tr(i) be the average execution time for a map task and a
reduce task, respectively. The workloads of map and reduce
phases are defined as

wm(i) = nm(i) · tm(i), wr(i) = nr(i) · tr(i). (1)

Algorithm 1 can derive the best static setting of sm and sr
given the workload information. The outer loop (lines 1–10) in
the algorithm enumerates the value of sm and sr (i.e., S−sm).
For each setting of sm and sr, the algorithm first calculates
the workload (wm(i) and wr(i)) for each job ji in lines 3–5.
The second inner loop (lines 6–8) is to calculate the finish
time of each job. Under the FIFO policy, there are at most
two concurrently running jobs in the Hadoop cluster. Each
job’s map or reduce phase cannot start before the precedent
job’s map or reduce phase is finished (we assume here that
all jobs have more tasks than the slots number in system for
the simplicity of discussion). More specifically, the start time
of map tasks of job ji, i.e., st(i), is the finish time of ji−1’s
map phase, i.e., st(i) = st(i − 1) + wm(i−1)

sm
. Additionally,

the start time of ji’s reduce phase should be no earlier than
both the finish time of ji’s map phase and the finish time
of ji−1’s reduce phase. Therefore, the finish time of ji is
ft(i) = max(st(i) + wm(i)

sm
, ft(i − 1)) + wr(i)

sr
. Finally, the

variables Opt SM and Opt MS keep track of the optimal
value of sm and the corresponding makespan (lines 9–10),
and the algorithm returns Opt SM and S −Opt SM as the
values for sm and sr at the end. The time complexity of the
algorithm is O(S · n).

IV. DYNAMIC SLOT CONFIGURATION

As discussed in Section II, the default Hadoop cluster uses
static slot configuration and does not perform well for varying



Algorithm 1 Static Slot Configuration
1: for sm = 1 to S do
2: sr = S − sm
3: for i = 1 to n do
4: wm(i) = nm(i) · tm(i)
5: wr(i) = nr(i) · tr(i)
6: for i = 1 to n do
7: st(i) = st(i− 1) + wm(i−1)

sm

8: ft(i) = max(st(i) + wm(i)
sm

, ft(i− 1)) + wr(i)
sr

9: if ft(n) < Opt MS then
10: Opt MS = ft(n); Opt SM = sm
11: return Opt SM and S −Opt SM

workloads. The inappropriate setting of sm and sr may lead
to extra overhead because of the following two cases:
(1) if job ji’s map phase is completed later than job ji−1’s
reduce phase, then the reduce slots will be idle for the interval
period of (st(i) + wm(i))− ft(i− 1), see Fig. 4(a);
(2) if job ji’s map phase is completed earlier than the job
ji−1’s reduce phase, then ji’s reduce tasks have to wait for a
period of ft(i − 1) − (st(i) + wm(i)) until reduce slots are
released by ji−1, see Fig. 4(b).

job i

job i-1 job i

job i

job i-1 job i

job i

job i-1 job i

Map

Reduce

(a) (b) (c)

Fig. 4. Illustration of aligning the map and reduce phases. (a) and (b) are
the two undesired cases mentioned above, and our goal is to achieve (c).

In this section, we present our solutions that dynamically
allocate the slots to map and reduce tasks during the execution
of jobs. The architecture of our design is shown in Fig. 5. In
dynamic slot configuration, when one slot becomes available
upon the completion of a map or reduce task, the Hadoop
system will re-assign a map or reduce task to the slot based
on the current optimal values of sm and sr. There are totally∑

i∈[1,n](nm(i) + nr(i)) tasks and at the end of each task,
Hadoop needs to decide the role of the available slot (either
a map slot or a reduce slot). In this setting, therefore, we
cannot enumerate all the possible values of sm and sr (i.e.,
2
∑

i
(nm(i)+nr(i)) combinations) as in Algorithm 1. Instead,

we modify our objective in the dynamic slot configuration as
there is no closed-form expression of the makespan.

Our goal now is, for the two concurrently running jobs (one
in map phase and the other in reduce phase), to minimize
the completion time of these two phases. Our intuition is to
eliminate the two undesired cases mentioned above by aligning
the completion of ji’s map phase and ji−1’s reduce phase, see
Fig. 4(c). Briefly, we use the slot assignment as a tunable
knob to change the level of parallelism of map or reduce
tasks. When we assign more map slots, map tasks obtain more
system resources and could be finished faster, and vice versa
for reduce tasks. In the rest of this section, we first present our
basic solution with the assumption of prior knowledge of job
workload. Then, we describe how to estimate the workload
in practice when it is not available. In addition, we present
a feedback control-based solution to provide more accurate
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Fig. 5. The architecture overview of our design. The shade rectangles
indicate our new/modified components in Hadoop.

estimation of the workload. Finally, we discuss the design of
task scheduler in compliance with our solution.

A. Basic Sketch With Prior Knowledge of Workload
Assume the workload information is available, at the end

of a task, Hadoop can obtain the value of the remaining
workload for both map and reduce phases. Intuitively, we
should assign more slots (resources) to the task type that
has heavier remaining workload. Assume ji and ji−1 are
two active jobs and ji−1 is in reduce phase while ji is in
map phase. At the end of a task, we can get the number of
remaining map tasks of ji and remaining reduce tasks of ji−1,
indicated by n′

m(i) and n′
r(i − 1). Let w′

m(i) and w′
r(i − 1)

represent the remaining workload of ji’s map phase and ji−1’s
reduce phase, we have:

w′
m(i) = n′

m(i) · tm(i), w′
r(i− 1) = n′

r(i− 1) · tr(i− 1) (2)

To align the completions of these two phases, the best param-
eters should satisfy the following condition:
n′
m(i)
sm

· tm(i) =
n′
r(i−1)
sr

· tr(i− 1) ⇒ wm(i)′

sm
= wr(i−1)′

sr
(3)

Therefore, the number of map and reduce slots should be
proportional to their remaining workloads as shown in Eq. 4-5,

sm = b w′
m(i)

w′
m(i) + w′

r(i− 1)
· Sc, (4)

sr = S − sm, (5)

where sm and sr represent the target numbers of map and
reduce slots respectively, and S is the total number of slots
in the cluster which is configured based on system capacity.
Furthermore, we introduce the upper bound shm and the lower
bound slm for the map slots assignment. When the estimated
value of sm exceeds the bounds, we use the bound value as
the new sm value instead. In our design, slm is set to be the
number of nodes in the cluster (k) such that there is at least
one map slot on each node at any time. Similarly, shm is set
to be equal to S − slm such that the reduce slots number in
each node is always greater than or equal to 1. When a map
or reduce task is finished, one slot becomes available. The
Hadoop system calculates the values of sm and sr according
to Eq. 4-5. If the current map slots are fewer than sm, then
the available slot will become a map slot and serve a map
task. Otherwise, it turns to a reduce slot. With this setting, the
current map and reduce phases could finish at approximately
the same time with a high system resource utilization.



B. Workload Estimation

Our solution proposed above depends on the assumption
of prior knowledge of workload information. In practice,
workload can be derived from job profiles, training phase,
or other empirical settings. In some applications, however,
workload information may not be available or accurate. In this
subsection, we present a method that estimates the workload
during the job execution without any prior knowledge.

We use w′
m and w′

r to represent the remaining workload
of a map or reduce phase, i.e., the summation of execution
time of the unfinished map or reduce tasks. Note that we only
track the map/reduce workloads of running jobs, but not the
jobs waiting in the queue. Basically, the workload is calculated
as the multiplication of the number of remaining tasks and the
average task execution time of a job. Specifically, when a map
or reduce task is finished, the current workload information
needs to be updated, as shown in Algorithm 2, where n′

m(i)/
n′
r(i) is the number of unfinished map/reduce tasks of job ji,

and tm(i)/ tr(i) means the average execution time of finished
map/reduce tasks from ji. Note that the execution time of
each finished task is already collected and reported to the
JobTracker in current Hadoop systems. In addition, we use
the Welford’s one pass algorithm to calculate the average of
task execution times, which incurs very low overheads on both
time and memory space.

Algorithm 2 Workload Information Collector
if a map task of job ji is finished then

update the average execution time of a map task tm(i)
w′

m(i) = tm(i) · n′
m(i)

if a reduce task of job ji is finished then
update the average execution time of a reduce task tr(i)
w′

r(i) = tr(i) · n′
r(i)

C. Feedback Control-based Workload Estimation

In this subsection, we present an enhanced workload estima-
tion algorithm to achieve more accurate workload information.
Our previous analysis adopts an assumption that the execution
time of a map or reduce task is similar, represented by
the average values tm(i) and tr(i), respectively. They are
also used for calculating the workload wm and wr. This
estimation works well in systems where the slots assignment
is fixed. In our system design, however, the slots assignment
is dynamically changed, which affects the per task execution
time in practice. Assigning more slots to one type of tasks may
cause the contention on a particular system resource and lead
to an increased execution time of each following task in the
same type. For example, in “Case 2” described in Section II,
when we use 1 map slot on each node, the average execution
time of a map task is 18.5 sec. When we increase the number
of map slots per node to 2, the average execution time of a
map task becomes 23.1 sec with a 25% increase.

To overcome this issue, we have designed a feedback
control based mechanism to tune the slots assignment. Under
this mechanism, the slots assignment, sm and sr, is first
calculated through Eq. 4-5. An additional routine is introduced

to periodically update the workload information based on
newly captured average task execution times. If the workloads
have changed, then the slots assignment will also be updated
according to Eq. 6-7.

sm = sm + bα · ( w′
m

w′
m + w′

r

− wm

wm + wr
) · Sc, (6)

sr = S − sm. (7)

When the new estimated workloads, i.e., w′
m and w′

r, differ
from the previous estimation, an integral gain parameter α
is used to control the new assignment of slots based on the
new estimation. The Hadoop system will iteratively calculate
sm and sr (Eq. 6-7) until there is no change on these two
parameters. The value of α is set to be 1.2 in our system such
that the slots assignment could converge quickly.

D. Slot Assigner

The task assignment in Hadoop works in a heartbeat fash-
ion: the TaskTrackers report slots occupation situation to the
JobTracker with heartbeat messages; and the JobTracker se-
lects tasks from the queue and assigns them to free slots. There
are two new problems need to be addressed when assigning
tasks under TuMM. First, slots of each type should be evenly
distributed across the slave nodes. For example, when we have
a new slot assignment sm = 5, sr = 7 in a cluster with 2 slave
nodes, a 2:3/4:3 map/reduce slots distribution is better than
the 1:4/5:2 map/reduce slots distribution in case of resource
contention. Second, the currently running tasks may stick with
their slots and therefore the new slot assignments may not be
able to apply immediately. To address these problems, our
slot assignment module (SA) takes both the slots assignment
calculated through Eq. 6-7 and the situation of currently
running tasks into consideration when assigning tasks.

The process of SA is shown in Algorithm 3. The SA first
calculates the map and reduce slot assignments of slave node
x (line 1), indicated by sm(x) and sr(x), based on the current
values of sm and sr and the number of running tasks in cluster.
Because of the flooring operation in line 1, the assigned slots
(sm(x) + sr(x)) on node x may be fewer than the available
slots (S/k). In lines 3–6, we increase either sm(x) or sr(x)
to compensate slot assignment. Our decision is based on the
deficit of current map and reduce slots (line 3), where sm/ sr
represent our target assignment and rtm/ rtr are the number
of current running map/reduce tasks. Eventually, we assign a
task to the available slot in lines 7–10. Similarly, the decision
is made by comparing the deficit of map and reduce tasks on
node x, where sm(x)/ sr(x) are our target assignment and
rtm(x)/ rtr(x) are the numbers of running tasks.

V. EVALUATION

A. Experimental Setup and Workloads

1) Implementation: We implemented our new scheme on
the top of Hadoop Version 0.20.2. First, we added two new
modules into the JobTracker: the Workload Monitor (WM)
that is responsible to collect past workload information such
as execution times of completed tasks and to estimate the



Algorithm 3 Slot Assigner
0: Input: Number of slave nodes in cluster: k

Total numbers of running map/reduce tasks: rtm, rtr;
0: When receive heartbeat message from node x with the number

of running map/reduce tasks on node x: rtm(x), rtr(x);
1: Initialize assignment of slots for node x:

sm(x)← bsm/kc, sr(x)← bsr/kc;
2: if (sm(x) + sr(x)) < S/k then
3: if (sm − rtm) > (sr − rtr) then
4: sm(x)← sm(x) + 1;
5: else
6: sr(x)← sr(x) + 1;
7: if (sm(x)− rtm(x)) > (sr(x)− rtr(x)) then
8: assign a map task to node x;
9: else

10: assign a reduce task to node x.

workloads of currently running map and reduce tasks and
the Slot Assigner (SA) which uses the estimated information
received from WM to adjust the slot ratio between map
and reduce for each slave node. The JobTracker with these
additional modules will then assign tasks to a slave node
based on the adjusted slot ratio and the current slot status at
that particular node. In addition, we modified the TaskTracker
as well as the JvmManager at each slave node to check the
number of individual map and reduce tasks running on that
node based on the new slot ratio received from the JobTracker.
The architecture overview of this new Hadoop framework is
shown in Fig. 5.

2) Workloads: We choose five representative Hadoop
benchmarks from Purdue MapReduce Benchmarks Suite [12]:

• Inverted Index: take text documents as input and generate
word to document indexing.

• Histogram Rating: take the movie rating data as input
and calculate a histogram of input data.

• Word Count: take text documents as input and count the
occurrence of each word.

• Classification: take the movie rating data as input and
classify the movies into one of the predefined clusters.

• Grep: take text documents as input and search for a
pattern in the files.

In addition, we use a 10GB movie rating data [12] that
consists of user ranking information and a 7GB wiki category
links data [13] that includes the information about wiki page
categories, as the input to the above five benchmarks.

3) Hadoop Cluster: All the experiments are conducted in
a Hadoop cluster which consists of 5 m1.xlarge Amazon EC2
instances. Specifically, we have one master node and four
slave nodes in the cluster. The number of slots which can
be available on each slave node is set as 4 since an m1.xlarge
instance at Amazon EC2 has 4 virtual cores.

B. Performance Evaluation

In this section, we evaluate the performance of TuMM in
terms of the makespan of a batch of MapReduce jobs. We first
consider the simple workloads which consist of jobs from a
single MapReduce benchmark and then validate the robustness

of our approach with a mixed workload that is a combination
of different MapReduce benchmarks.

1) Simple Workloads: We here conduct a set of experiments
such that in each experiment 3 Hadoop jobs from one of
the above benchmarks (see Section V-A2) are waiting for
service. We remark that such a simple workload is often found
in real systems as the same Hadoop jobs may be executed
repeatedly to process similar or different input data sets. In
our experiments, three Hadoop jobs use the same data set as
the input. Furthermore, as the comparisons, we evaluate the
performance under the static slot ratios for map and reduce.
Since all the slave nodes normally have the same slot ratio
in current Hadoop implementations, With our setting in the
evaluation (i.e., total number of slots per node is 4), there are
three static configuration alternatives, i.e., 1:3, 2:2 and 3:1, for
a Hadoop cluster. So we enumerate all these three possible
settings for the comparison with our solution.

Fig. 6 shows the makespans (i.e., the completion lengths)
of a given set when we have different slot configurations. We
first observe that the performance varies a lot under three static
slot settings. For example, the Inverted Index jobs experience
the fastest makespan when the slot ratio is equal to 1:3. In
contrast, the Histogram Rating jobs achieve better performance
when we assign more slots to their map tasks, e.g., with slot
ratio of 3:1. We also observe that TuMM always yields the
best performance, i.e., the shortest makespan, for all the five
Hadoop benchmarks. We interpret this effect as the result of
dynamic slot ratio adjustments enabled by TuMM.

Compared to the slot ratio of 2:2, our approach in average
achieves about 20% relative improvement in the makespan.
Moreover, such improvement becomes more visible when the
workloads of map and reduce tasks become more unbalanced.
For example, the makespan of the Inverted Index jobs is
reduced by 28% where these jobs have their reduce phases
longer than their map phases.

2) Mixed Workloads: In the previous experiments, each
workload only contains jobs from the same benchmark. Now,
we consider a more complex workload, which mixes jobs from
different Hadoop benchmarks. Reducing the makespan for
such a mixed workload thus becomes non-trivial. One solution
to tackle this problem is to shuffle the execution order of
these jobs. For example, the classic Johnson’s algorithm [14]
that was proposed for building an optimal two-stage job
schedule, could be applied to process a set of Hadoop jobs
and minimize the makespan of a given set as well. However,
this algorithm needs to assume a priori knowledge of the
exact execution times of each job’s map and reduce phases,
which unfortunately limits the adoption of this algorithm in
real Hadoop systems. Moreover, for some cases, it may not
be feasible to change the execution order of jobs, especially
when there exists dependency among jobs or some of them
have high priority to be processed first.

To address the above issues, our solution leverages the
knowledge of the completed tasks to estimate the execution
times of the currently running tasks and reduces the makespan
of a set of jobs by dynamically adjusting the slot assignments
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Fig. 6. Makespans of five Hadoop applications under TuMM and three static slot configurations.
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Fig. 7. Makespans of a mixed workload under TuMM and three static
slot configurations. Three execution orders are also considered: (a) a
sequence follows Johnson’s algorithm, (b) a sequence with reversed
order of Johnson’s algorithm, and (c) a random sequence.

for map and reduce tasks. As a result, TuMM does not need
to change the execution order of jobs and does not need to
know the exact task execution times in advance, either.

We generate the mixed workload for our experiments by
randomly choosing 10 jobs from 5 different Hadoop bench-
marks. In order to investigate the impact of job execution
order, we also consider three different execution sequences,
including (1) a sequence generated by Johnson’s algorithm
which can be considered as the optimal case in terms of
the makespan; (2) a sequence that is inverse to the first one
and can be considered as the worst case; and (3) a sequence
that is random. Similarly, we evaluate the performance (i.e.,
makespan) under TuMM and three static slot configurations.

Fig. 7 shows the makespans of the 10 jobs in the mixed
workload. We first observe that among three static settings, the
slot ratio of 2:2 always achieves the best performance under
three different execution orders. This is because the overall
workloads of map tasks and reduce tasks from the 10 jobs
are well balanced. We also notice that with a fixed number
of slots per node, different job execution orders could yield
different makespans. While our solution always achieves the
best performance and the impact of execution sequence on our
solution’s performance becomes less visible. This means that
no matter what the execution order is, TuMM can always serve
the jobs with the shortest makespans. That is, our approach
allows to improve the performance in terms of makespan
without changing the execution order of jobs.

To better understand how TuMM uses the slot ratio as a
tunable knob to improve the makespan, we further plot the
task execution times for each job as well as the transient slot
assignments in Fig. 8, where the plots in the first row depict
the running period of each task from the 10 jobs while the
plots in the second row illustrate how the slot assignments
change across time. As shown in Fig. 8, TuMM dynamically
adjusts the slot assignments to map and reduce tasks based on
the estimated workload information. For example, in the first
1200 seconds of Fig. 8-(2), TuMM attempts to assign more
slots to reduce tasks. Then, in the later 1200 seconds, TuMM
turns to allow more available map slots on each node. This is

because the Johnson’s algorithm shuffles the order of 10 jobs
such that all the reduce intensive jobs such as Inverted Index
and Grep run before the map intensive jobs, e.g., Histogram
Rating and Classification. The only exception is the first 100s
where most of the slots are assigned to map tasks even though
the running job actually has reduce intensive workloads. That
is because TuMM does not consider the reduce workloads
of this job in the first 100 seconds until its map tasks are
finished. Fig. 8-(1) shows the corresponding task execution
times under TuMM. It is obvious that each job’s reduce phase
successfully overlaps with the map phase of the following job
and the makespan of 10 jobs is then shortened compared to
the static settings.

In summary, TuMM achieves non-negligible improvements
in makespan under both simple workloads and mixed work-
loads. By leveraging the history information, our solution
accurately captures the changes in map and reduce workloads
and adapts to such changes by adjusting the slot assignments
for these two types of tasks. Furthermore, different job exe-
cution orders do not affect TuMM’s performance. That is, our
solution can still reduce the makespan without changing the
execution order of a given set of jobs.

VI. RELATED WORKS

An important direction for improving the performance of a
Hadoop system is job scheduling. The default FIFO scheduler
does not work well in a shared cluster with multiple users
and a variety of jobs. Fair [15] and Capacity [16] schedulers
were proposed to ensure that each job can get a proper
share of the available resources; and Quincy [5] addressed
the scheduling problem with locality and fairness constraints.
Recently, Zaharia et al. [3] proposed a delay scheduling to
further improve the performance of the Fair scheduler by
increasing data locality. Verma et al. [4] introduced a heuristic
to minimize the makespan of a set of independent MapReduce
jobs by applying the classic Johnson’s algorithm.

Another category of schedulers furhter consider user-level
goals while improving the performance. ARIA, a deadline
aware scheduler, was recently proposed in [6], which always
schedules a job with the earliest deadline and uses the La-
grange’s method to find the minimum number of slots for
each job in order to meet the predefined deadline. Similarly,
Polo et al. [7] estimated the task execution times based on
the average execution times of the completed tasks instead
of the job profiles. Task execution times were then used to
calculate the number of slots that a job needed to meet its
deadline. Although these deadline aware schedulers support
user-level goals, their techniques are still based on static slot
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Fig. 8. Illustrating task execution times and slot assignments across time under TuMM, where the job execution sequence is (a) generated
by Johnson’s algorithm; (b) inverse to the first one; and (c) random. In the plots at the second row, black (resp. gray) areas represent the
number of available map (resp. reduce) slots in the cluster.

configurations, i.e., having a fixed number of map slots and
reduce slots per node throughout the lifetime of a cluster.

Finally, resource aware management is another important
direction for improving performance in Hadoop. RAS [10]
leverages existing profiling information to dynamically de-
termine the number of job slots and their placement in the
cluster. The goal of this approach is to maximize the resource
utilization of the cluster and to meet job completion time
deadlines. More recently, [11] introduces a local resource
manager at each TaskTracker to detect task resource utilization
and predict task finish time, and a global resource manager at
the JobTracker to coordinate the resource assignments to each
task; and [9] addresses the cluster resource utilization problem
by developing a dynamic split model of resource utilization.
The Hadoop community recently released Next Generation
MapReduce (NGM) [8], the latest architecture of Hadoop
MapReduce, which replaces the fixed-size slot with a resource
container that works in a fine-grained resource level. In this
work, we rely on the history task execution times instead of
the profiling of fine-grained resource usage to dynamically
adjust the number of map and reduce slots at each node. The
main objective of our work is to reduce the completion length
(i.e., makespan) of a set of MapReduce jobs. Our work is
complementary to the above techniques.

VII. CONCLUSION

In this paper, we presented a novel slot management
scheme, named TuMM, to enable dynamic slot configuration
in Hadoop. The main objective of TuMM is to improve
resource utilization and reduce the makespan of multiple
jobs. To meet this goal, the presented scheme introduces
two main components: Workload Monitor periodically tracks
the execution information of recently completed tasks and
estimates the present workloads of map and reduce tasks and
Slot Assigner dynamically allocates the slots to map and re-
duce tasks by leveraging the estimated workload information.
We implemented TuMM on the top of Hadoop v0.20.2 and
evaluated this scheme by running representative MapReduce
benchmarks in a cluster at Amazon EC2. The experimental
results demonstrate up to 28% reduction in the makespans
and 20% increase in resource utilizations. The effectiveness

and the robustness of TuMM are validated under both simple
workloads and a more complex mixed workload. In the future,
we plan to extend the current work to enable performance im-
provement in a Hadoop system with decentralized JobTrackers
and evaluate TuMM in a large-scaled experimental test-bed.
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