
FRESH: Fair and Efficient Slot Configuration and

Scheduling for Hadoop Clusters

Jiayin Wang∗

jane@cs.umb.edu

Yi Yao†

yyao@ece.neu.edu

Ying Mao∗

yingmao@cs.umb.edu

Bo Sheng∗

shengbo@cs.umb.edu

Ningfang Mi†

ningfang@ece.neu.edu

∗Department of Computer Science, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA 02125
†Department of Electrical and Computer Engineering, Northeastern University, 360 Huntington Ave., Boston, MA 02115

Abstract—Hadoop is an emerging framework for parallel big
data processing. While becoming popular, Hadoop is too complex
for regular users to fully understand all the system parameters
and tune them appropriately. Especially when processing a
batch of jobs, default Hadoop setting may cause inefficient
resource utilization and unnecessarily prolong the execution time.
This paper considers an extremely important setting of slot
configuration which by default is fixed and static. We proposed an
enhanced Hadoop system called FRESH which can derive the best
slot setting, dynamically configure slots, and appropriately assign
tasks to the available slots. The experimental results show that
when serving a batch of MapReduce jobs, FRESH significantly
improves the makespan as well as the fairness among jobs.

I. INTRODUCTION

MapReduce has become a popular paradigm for parallel

large data processing with no database support. Hadoop, as an

open source implementation of MapReduce, has been widely

adopted in both academia and industry. We envision that

Hadoop-like MapReduce systems will become ubiquitous in

the future to serve a variety of applications and customers.

It is motivated by two factors. First, big data processing

has shown the potential of benefiting many applications and

services ranging from financial service, health applications,

customer analysis, to social network applications. With more

and more daily generated data, powerful processing ability

will become the focus for research and development. Second,

with the rise of cloud computing, it is now inexpensive and

convenient for regular customers to rent a large cluster for data

processing. The availability of such elastic environments will

certainly expand the potential user group of Hadoop systems.

While Hadoop is welcomed in the community, there are still

some challenges which, if not solved, may hinder the further

development. How to improve the performance in terms of

execution times is the top issue on the list, especially when we

imagine that a Hadoop cluster will often serve a large volume

of jobs in a batch in the future [1]. Researchers have put

tremendous efforts on job scheduling, resource management,

program design, and Hadoop applications [2]–[10] aiming to

improve the system performance. In this paper, we target on

an extremely important Hadoop parameter, slot configuration,

and develop a suite of solutions to improve the performance,

with respect to the makespan of a batch of jobs and the fairness

among them.

In a classic Hadoop cluster, each job consists of multiple

map and reduce tasks. The concept of “slot” is used to indicate

the capacity of accommodating tasks on each node in the

cluster. Each node usually has a predefined number of slots and

a slot could be configured as either a map slot or a reduce slot.

The slot type indicates which type of tasks (map or reduce)

it can serve. At any given time, only one task can be running

per slot. While the slot configuration is critical for the perfor-

mance, Hadoop by default uses fixed numbers of map slots and

reduce slots at each node throughout the lifetime of a cluster.

The values are usually set with heuristic numbers without

considering job characteristics. Such static settings certainly

cannot yield the optimal performance for varying workloads.

Therefore, our main target is to address this issue and improve

the makespan performance. Besides the makespan, fairness is

another performance metric we consider. Fairness is critical

when multiple jobs are allowed to be concurrently executed in

a cluster. With different characteristics, each job may consume

different amount of system resources. Without a careful plan

and management, some jobs may starve while other take

advantages and finish the execution much faster. Prior work

has studied this issue and proposed some solutions. But we

found that the previous work did not accurately define the

fairness for this two-phase MapReduce process. In this paper,

we present a novel fairness definition that captures the overall

resource consumption. Our solution also aims to achieve a

good fairness among all the jobs.

Specifically, we propose a new approach, “FRESH”, to

achieving fair and efficient slot configuration and scheduling

for Hadoop clusters. Our solution attempts to accomplish two

major tasks: (1) decide the slot configuration, i.e., how many

map/reduce slots are appropriate; and (2) assign map/reduce

tasks to available slots. The targets of our approach include

minimizing the makespan as the major objective and mean-

while improving the fairness without degrading the makespan.

FRESH includes two models, static slot configuration and

dynamic slot configuration. In the first model, FRESH derives

the slot configuration before launching the Hadoop cluster

and uses the same setting during the execution just like the

conventional Hadoop. In the second model, FRESH allows a

slot to change its type after the cluster has been started. When

a slot finishes its task, our solution dynamically configures the

slot and assigns it the next task. Our experimental results show

that FRESH significantly improves the performance in terms

of makespan and fairness in the system .

II. RELATED WORK

Job scheduling is an important direction for improving the

performance of a Hadoop system. The default FIFO scheduler

cannot work fairly in a shared cluster with multiple users

and a variety of jobs. FAIR SCHEDULER [11] and Capacity

Scheduler [12] are widely used to ensure each job can get a

proper share of the available resources. Both of them consider

fairness separately in map phase and reduce phase, but not the

overall executions of jobs.

To improve the performance, Quincy [4] and Delay Schedul-

ing [2] optimize data locality in the case of FAIR SCHED-

ULER. But these techniques trade fairness off against data

locality. Coupling Scheduler in [13]–[15] aims to mitigate the

starvation of reduce slots in FAIR SCHEDULER and analyze

the performance by modeling the fundamental scheduling

characteristics for MapReduce. W. Wang [16] presents a new

queueing architecture and proposes a map task scheduling

to strike the right balance between data-locality and load-

balancing. Another category of schedulers consider user-level

goals while improving the performance. ARIA [5] allocates

the appropriate amounts of resources to the jobs to meet the

predefined deadline. iShuffle [17] separates shuffle phase from

reduce tasks and provides a platform service to manage and

schedule data output from map phase. However, all these

techniques are still based on static slot configurations.

Another important direction to improve performance in

Hadoop is the resource aware scheduling. RAS [9] aims at im-

proving resource utilization across machines and meeting jobs

completion deadline. MROrchestrator [10] introduces an ap-

proach to detect task resource utilization at each TaskTracker

as a local resource manager and allocate resources to tasks

at the JobTracker as a global resource manager. Furthermore,

some other work is focused on heterogeneous environments.

M. Zaharia et al. proposes a LATE scheduler [18] to stop

unnecessary speculative executions in a heterogeneous Hadoop

cluster. LsPS [19] uses the present heterogeneous job size

patterns to tune the scheduling schemes.

Finally, we have proposed TuMM [20] in our prior work

which dynamically adjusts slots configurations in Hadoop

based on FIFO. This paper, however, considers concurrent

execution of multiple jobs, which is a completely different

and more complicated problem setting. We also include a new

objective of fairness in this paper. The Hadoop community re-

cently released Next Generation MapReduce (NGM) [7] which

offers a resource container instead of fixed-size slots. Our work

can certainly be integrated into the Hadoop framework (NGM)

for makespan and fairness improvement.

III. SYSTEM MODEL AND OVERALL FAIRNESS

We consider that a user submits a batch of n jobs, J =
{J1, J2, . . . , Jn}, to a Hadoop cluster with S slots in total.

Each job Ji contains nm(i) map tasks and nr(i) reduce tasks.

Let sm and sr be the total numbers of map slots and reduce

slots in the cluster, i.e., S = sm + sr. We assume that an

admission control mechanism is in effect in the cluster such

that there is an upper bound limit on the number of jobs that

can run concurrently. Specifically, we assume in this paper

that at any time, there are at most k jobs running in map

phase and at most k jobs running in reduce phase. Thus, the

maximum number of active jobs in the cluster is 2k. Here,

k is a user-specified parameter for balancing the trade-off

between fairness and makespan. Our objective is to minimize

the makespan (i.e., the total completion length) of the job set

J while achieving the fairness among these jobs as well.

To solve the problem, we develop a new scheduling solution

FRESH for allocating slots to Hadoop tasks. Essentially, we

need to address two issues. First, given the total number of

slots, how to allocate them for map and reduce, i.e, how many

map slots and reduce slots are appropriate. Second, when a

slot is available, which task should be assigned to it. FRESH

considers two models, i.e., static slot configuration (see Fig. 1)

and dynamic slot configuration (see Fig. 2). In the first model,

the numbers of map and reduce slots are decided before

launching the cluster, similar to the conventional Hadoop

system. In this model, we assume that job profiles are available

as prior knowledge. Our goal is to derive the best slot setting,

thus addressing the first issue. During the execution, FAIR

SCHEDULER is used to assign tasks to available slots. In

the second model of dynamic slot configuration, FRESH

allows a slot to change its type in an online manner and thus

dynamically controls the allocation of map and reduce slots.

In addition, FRESH includes an algorithm that assigns tasks

to available slots.

Jobs

Total Slots

Fair SchedulerFRESH

map slots reduce slots

Before execution During execution

Assign tasks to slots

Configure

slots

Fig. 1: Static Slot Configuration.

Jobs

Total Slots

FRESH

map slots reduce slots

Before execution During execution

Assign tasks to slots

Configure

slots

Fig. 2: Dynamic Slot Configuration.

IV. STATIC SLOT CONFIGURATION

In this section, we present our algorithm in FRESH for

static slot configuration, where the assignments of map and

reduce slots are preset in configuration files and loaded when

the Hadoop cluster is launched. Our objective is to derive the

optimal slot configuration given the workload profiles of a set

of Hadoop jobs.

We assume that the workload of each job is available

as prior knowledge. This information can be obtained from

historical execution records or empirical estimation. Let t̄m(i)
and t̄r(i) be the average execution time of a map task and

a reduce task of job Ji. We define wm(i) and wr(i) as the

workloads of map tasks and reduce tasks of Ji, which represent

the summation of the execution time of all map tasks and

reduce tasks of Ji. Therefore, wm(i) and wr(i) can be defined

as: wm(i) = nm(i)· t̄m(i), wr(i) = nr(i)· t̄r(i).
Let cm and cr represent the number of slots that a job can

occupy to run its map and reduce tasks. Recall that FAIR

SCHEDULER is used to assign tasks and each active job is

evenly allocated slots for its tasks. In addition, under our

admission control policy, a busy cluster has k jobs concur-

rently running in map phase and k jobs concurrently running

in reduce phase. Therefore, we have cm and cr defined as

follows: cm = sm
k
, cr = sr

k
.

We develop a new algorithm (see Algorithm 1) to derive

the optimal static slot configuration. Our basic idea is to

enumerate all possible settings of sm and sr, and calculate

the makespan for any given pair (sm, sr). We use M and

R to represent the sets of jobs that are currently running in

their map phase and reduce phase, respectively. Each element

in M and R is the job index of the corresponding running

job. Initially, M = {1, 2, . . . , k} and R = {}. According

to their definitions, when job Ji finishes its map phase, the

index i will be moved from M to R. The sizes of M and R
are upper-bounded by the parameter k. Additionally, we use

Wi to represent the remaining workload of Ji in the current

phase (either map or reduce phase). Before Ji enters the map

phase, Wi is set to its workload of the map phase wm(i), i.e.,

Wi = wm(i). During the execution in the map phase, Wi will

be updated according to the progress. When job Ji finishes

its map phase, Wi will be set to its workload of the reduce

phase, i.e., Wi = wr(i).
Algorithm 1 presents the details of our solution. The outer

loop enumerates all possible slot configurations (i.e., sm and

sr). For each particular configuration, we first calculate the

workloads of each job’s map and reduce phases, i.e., wm(i)
and wr(i), and set the initial value of Wi (see lines 3–5). In

line 6, we initialize some important variables, whereM andR
are as defined above, R′ represents an ordered list of pending

jobs that have finished their map phase, but have not entered

their reduce phase yet, and T , initialized as zero, records the

makespan of this set of jobs. The core component of the

algorithm is the while loop (see lines 7–22) that calculates

the makespan and terminates when bothM and R are empty.

In this loop, our algorithm mimics the execution order of all

the jobs. Both M and R keep intact until one of the running

jobs finishes its current map (or reduce) phase. In each round

of execution in the while loop, our algorithm finds the first

job that changes the status and then updates the job sets

accordingly. This target job could be in either map or reduce

phase depending on its remaining workload and the number

of slots assigned to each job. In Algorithm 1, lines 8–9 find

two jobs (Ju and Jv) which have the minimum remaining

workloads in M and R, respectively. These two jobs are

the candidates to first finish their current phases. Variables

cm and cr represent the number of slots assigned to each of

them under FAIR SCHEDULER scheduling policy. Thus, the

remaining execution times for Ju and Jv to complete their

phases are Wu

cm
and Wv

cr
, respectively.

Algorithm 1 Static Slot Configuration

1: for sm = 1 to S do

2: sr = S − sm
3: for i = 1 to n do

4: wm(i) = nm(i)· t̄m(i), wr(i) = nr(i)· t̄r(i)
5: Wi = wm(i)
6: M = {1, 2, . . . , k},R = {},R′ = {}, T = 0
7: while M⋃R 6= φ do

8: u = argmini∈M Wi, cm = sm
|M|

9: v = argmini∈R Wi, cr = sr
|R|

10: if Wu

cm
< Wv

cr
then

11: M←M− u, T = T + Wu

cm
, Wu = wr(u)

12: DeductWorkload(M, wm(u))

13: DeductWorkload(R, wm(u)
cm
· cr)

14: pick a new job from J and add its index to M
15: if |R| < k then R ← R+ u
16: else add u to the tail of R′

17: else

18: R ← R− v, T = T + Wv

cr
19: DeductWorkload(R,Wv)

20: DeductWorkload(M, Wv

cr
· cm)

21: if |R′| > 0 then move R′[0] to R
22: if T < Opt MS then Opt MS = T,Opt SM = sm
23: return Opt SM and Opt MS

If Ju finishes its map phase first (the case in lines 10–16),

then we remove u fromM, update the current makespan, and

set the remaining workload of Ju to the workload of its reduce

phase (line 11). We also update the remaining workloads of

all other active jobs in M and R (lines 12–13). In addition,

the algorithm picks a new job to enter its map phase in line

14. Finally, we add u to R to start its reduce phase if the

capacity limit of R is not reached. Otherwise, u is added to

the tail of the pending list R′ (lines 15–16).

The function DeductWorkload is called to update the

remaining workloads for active jobs in M or R. As shown

below, the inputs of this function include a job set A (e.g.,M,

R) and the value of the completed workload w. The remaing

workload of each job i in A is then updated by deducting w.

function DeductWorkload(A, w){
/*A: a set of job IDs, w: a workload value */

for i ∈ A do Wi ←Wi − w end }
Once job Jv finishes its reduce phase (see the other case

in lines 17–21), we update the current makespan as well as

the remaining workloads of all other active jobs inM and R.

Similarly, index v is removed from R. If R′ is now not empty,

then the first job in R′ will be moved to R. At the end, in

lines 22–23, the algorithm compares the present makespan T
to the variable Opt MS which keeps track of the minimum

makespan, and updates Opt MS if needed. Another auxiliary

variable Opt SM is used to record the corresponding slot

configuration. The time complexity of Algorithm 1 is O(S ·
N2

T), where NT =
∑

i(nm(i) + nr(i)) is the total number of

tasks of all the jobs. In practice, the computation overhead of

Algorithm 1 is quite small. For example, with 500 slots and

100 jobs each having 400 tasks, the computation overhead is

0.578 seconds on a desktop server with 2.4GHz CPU.

V. DYNAMIC SLOT CONFIGURATION

In this section, we turn to discuss the model in FRESH for

dynamic slot configuration. The critical target of this model is

to enable a slot to change its type (i.e., map or reduce) after the

cluster is launched. To accomplish it, we develop solutions for

both configuring slots and assigning tasks to slots. In addition,

we redefine the fairness of resource consumption among jobs.

Therefore, our goal is to minimize the makespan of jobs while

achieving the best fairness without degrading the makespan

performance. The rest of this section is organized as follows.

We first introduce the new overall fairness metric. Then we

present the algorithm for dynamically configuring map and

reduce slots. Finally, we describe how FRESH assigns tasks

to the slots in the cluster.

A. Overall Fairness Measurement

Fairness is an important performance metric for our algo-

rithm design. However, the traditional fairness definition does

not accurately reflect the total resource consumptions of jobs.

In this subsection, we present a new approach to quantify

fairness measurement, where we define the resource usage in

MapReduce process and use Jain’s index [21] to represent the

level of fairness.

In a conventional Hadoop system, FAIR SCHEDULER evenly

allocates the map (resp. reduce) slots to active jobs in their

map (resp. reduce) phases. Although the fairness is achieved

in map and reduce phases separately, it does not guarantee

the fairness among all jobs when we combine the resources

(slots) consumed in both map and reduce phases. For example,

assume a cluster has 4 map slots and 4 reduce slots running

the following 3 jobs: J1 (2 map tasks and 9 reduce tasks), J2
(3 map tasks and 4 reduce tasks), and J3 (7 map tasks and

3 reduce tasks). Assume every task can be finished in a unit

time. The following table shows the slot assignment with FAIR

SCHEDULER at the beginning of each time point (‘M’ and ‘R’

indicate the type of slots allocated for the jobs). Eventually, all

three jobs are finished in 5 time units. However, they occupy

11, 7, and 10 slots respectively.

0 1 2 3 4

J1 2(M) 4(R) 2(R) 1(R) 2(R)
J2 1(M) 2(M) 2(R) 1(R) 1(R)
J3 1(M) 2(M) 4(M) 2(R) 1(R)

In this paper, we define a new fairness metric, named overall

fairness, as follows. At any time point T , let J ′ represents the

set of currently active jobs in the system, and Ti represents the

starting time of job Ji in J ′. We use two matrices tm[i, j] and

tr[i, j] to represent the execution times of job Ji’s j-th map

task and j-th reduce task, respectively. Note that these two

matrices include the unfinished tasks. Therefore, the resources

consumed by job Ji by time T can be expressed as

ri(T) =

∑

j tm[i, j] +
∑

j tr[i, j]

T − Ti

. (1)

where the above formula represents the effective resources Ji
has consumed during the period of T − Ti. The bigger ri(T)
is, the more resources Ji has been assigned to. In addition, we

use Jain’s index on ri to indicate the overall fairness (F (T))

at the time point T , i.e., F (T) =
(
∑

i
ri(T))2

|J ′|
∑

i
r2
i
(T)

, where F (T) ∈
[1
|J ′| , 1] and a larger value indicates better fairness.

B. Configure Slots

The function of configuring slots is to decide how many

slots should serve map/reduce tasks based on the current

situation. Specifically, when a task is finished and a slot is

freed, our system needs to determine the type of this available

slot in order to serve other tasks. In this subsection, we present

the algorithm in FRESH that appropriately configures map

and reduce slots.

First of all, our solution makes use of the statistical infor-

mation of the finished tasks from each job. This information is

available in Hadoop system variables and log files. Let t̄m(i)
and t̄r(i) be the average execution times of job Ji’s map

task and reduce task, respectively. Once a task completes,

we can access its execution time and then update t̄m(i) or

t̄r(i) for job Ji which that particular task belongs to. In

addition, we use n′
m(i) and n′

r(i) to indicate the number of

remaining map tasks and reduce tasks, respectively, in job Ji.
The remaining workload of a job Ji is then defined as follows:

w′
m(i) = n′

m(i)· t̄m(i), w′
r(i) = n′

r(i)· t̄r(i), where w′
m(i)

is Ji’s remaining map workload and w′
r(i) is the remaining

reduce workload of Ji. Finally, we estimate the total remaining

workloads of all the pending map and reduce tasks. Let RWm

represents the summation of all the remaining map workloads

of jobs in M while RWr represents the summation of all the

remaining reduce workloads for jobs in R and R′. RWm and

RWr can be calculated as:

RWm =
∑

i∈M

w′
m(i), RWr =

∑

i∈R
⋃

R′

w′
r(i).

Note that RWm includes the jobs running in their map phases

(in M) while RWr includes the jobs running in their reduce

phases (in R) as well as the jobs that have finished their map

phases but wait for running their reduce phase (in R′).

The intuition of the algorithm in FRESH is to keep jobs in

their map and reduce phases in a consistent progress so that

all jobs can be properly pipelined to avoid waiting for slots or

having idle slots. Therefore, the numbers of map and reduce

slots should be proportional to the total remaining workloads

RWm and RWr, i.e., the heavier loaded phase gets more slots

to serve its tasks. However, this idea may not work well in the

map-reduce process because there could be a sudden change

on the remaining workloads. The problem arises when a job

finishes its map phase and enters the reduce phase. Based

on the definition of RWm and RWr, this job will bring its

reduce workload to RWr and a new job which starts its map

phase then add its new map workload to RWm. Such workload

updates, however, could greatly change the weights of RWm

and RWr. For example, if RWm >> RWr, most of slots are

map slots. Assume a reduce-intensive job just finishes its map

phase and incurs a lot of reduce workload, the system has no

sufficient reduce slots to serve the new reduce tasks. It takes

some time for the cluster to adjust to this sudden workload

change as it has to wait for the completions of many map tasks

before configuring those released slots to be reduce slots.

We develop Algorithm 2 to derive the optimal slot configu-

ration in an online mode. We follow the basic design principal

with a threshold-based control to mitigate the negative effects

from those sudden changes in map/reduce workloads. When a

map/reduce task is finished, the algorithm collects the task

execution time and updates a set of statistical information

including the average task execution time, the number of

remaining tasks, the remaining workload of job Ji, and the

total remaining workloads (see lines 1–4). Following that, the

algorithm calls a function, called CalExpSm, to calculate the

expected number of map slots (expSm) based on the current

statistical information. If the expectation is more than the

current number of map slots (sm), this free slot will become

a map slot. Otherwise, we set it to be a reduce slot.

Algorithm 2 Configure a Free Slot

1: if a map task of job Ji is finished then

2: update t̄m(i), n′
m(i), w′

m(i) and RWm

3: if a reduce task of job Ji is finished then

4: update t̄r(i), n
′
r(i), w

′
r(i) and RWr

5: expSm =CalExpSm()
6: if expSm > sm then set the slot to be a map slot

7: else set the slot to be a reduce slot

The details of the function CalExpSm are presented in

Algorithm 3. We use θcur to represent the expected ratio of

map slots based on the current remaining workload. In line

2, we choose an active job Ja which has the minimum map

workload, i.e., job Ja is supposed to first finish its map phase.

If Ja is still far from the completion of its map phase, then

the risk of having a sudden workload change is low and the

function just returns θcur · S as the expected number of map

slots. We set a parameter τ1 as the progress threshold. When

job Ja is close to the end of its map phase, i.e., the progress

exceeds τ1, the function will consider the potential issue with

the sudden change of the workload (lines 6–13). Essentially,

the function tries to estimate the map and reduce workloads

when Ja enters its reduce phase, and calculate the expected

ratio of map slots θexp at that point. A sudden change of the

workload happens when θexp is quite different from the ratio

of map slots θcur we get based on the current configuration. In

the case that a sudden change is predicted, we will use θexp ·S
instead as the guideline for new slot configuration. Otherwise,

the function still returns θcur · S.

Specifically in Algorithm 3, when Ja finishes its remaining

map workload w′
m(a), we assume the other jobs in M have

made roughly the same progress. Thus the total map workload

will be reduced by w′
m(a) · k. Then a new job will join the

set M, let it be job Jb, and wm(b) will be added to the total

remaining workload RWm (line 7). Meanwhile, Ja will belong

to either set R or R′ and its reduce workload wr(i) will be

added to the total remaining reduce workload RWr (line 8).

Variable θexp in line 9 denotes the expected ratio of map

slots at that point. Next, the function estimates the number

of map slots following the configuration ratio θcur when Ja
finishes its map phase. It involves the number of slots freed

from the current point. It is apparent that there is no other map

slot released based on the definition of Ja, thus we just need

to estimate the number of available reduce slots during this

period. In Algorithm 3, we use η to represent this number and

estimate its value based on the following Theorem 1. In line

11, we predict the number of map slots s′m using the current

configuration ratio, i.e., η · θcur slots will become map slots.

Eventually, the function compares the estimated ratio to the

expected ratio in line 12. If the difference is over a threshold

τ2, we will consider the future expected ratio θexp. Otherwise,

we will continue to use the current configuration ratio θcur.

Algorithm 3 Function CalExpSm()

1: θcur = RWm

RWm+RWr

2: a = argmini∈M w′
m(i)

3: if the progress of job Ja < τ1 then

4: return θcur · S
5: else

6: Let job Jb be the next that will start its map phase

7: RW ′
m = RWm − w′

m(a)· k + wm(b)
8: RW ′

r = RWr + wr(a)
9: θexp = RW ′

m/(RW ′
r +RW ′

m)
10: calculate η using Theorem 1

11: s′m = sm + θcur · η
12: if

|
s′m
S

−θexp|

θexp
> τ2 then return θexp · S

13: else return θcur · S

Theorem 1: Assume reduce tasks are finished at a rate of

one per r time units, the number (η) of available reduce slots

when Ja finishes its remaining map workload is equal to:

η =

√

m2
a + 4 · c · w′

m(a)−ma

2 · c · r .

where c = θcur

2·r·k , w′
m(a) indicates the remaining map workload

of Ja, and ma is the number of map slots assigned to Ja.

Proof: Assume job Ja will finish its remaining map

workload w′
m(a) in x time units. According to our assumption,

a reduce task will be finished every r time units. Therefore,

when Ja finishes its map phase, there will be η = x
r

reduce

slots released as well. Assume that we use θcur to allocate

slots and k jobs in M are evenly assigned newly released

slots. Job Ja will continuously obtain x·θcur

r·k new map slots. It

is equivalent to having half of them x·θcur

2·r·k from the beginning.

Therefore, the remaining time for Ja to finish the map phase

can be estimated as x = w′
m(a)/(x·θcur

2·r·k +ma), where ma is

the number of map slots currently assigned to Ja. By solving

the above equation, we have x =

√
m2

a+4·c·w′

m(a)−ma

2·c . Thus

η =

√
m2

a+4·c·w′

m(a)−ma

2·c·r .

C. Assign tasks to slots

Once the type of the released slot is determined, FRESH

will assign a task to that slot. Basically, we need to select

an active job and let the available map/reduce slot serve a

map/reduce task from that job. In FRESH, we follow the basic

idea in FAIR SCHEDULER but use the new overall fairness

metric instead: calculate the resource consumption for each job

based on Eq.(1) and choose the job with the most deficiency

of overall fairness.

Algorithm 4 Assign a Task to a Slot

1: Initial: C = {}, now ← current time in system

2: if the slot is configured for map tasks then C ←M
3: else C ← R
4: for each job Ji ∈ C do

5: totali = 0
6: for each task j in job Ji do

7: if task j is finished then ej ← fj − sj
8: else if task j is running then ej ← now − sj
9: else ej ← 0

10: totali = totali + ej
11: ri =

totali
now−Ti

12: s = argmini∈A ri
13: assign a task of job Js to the slot

Algorithm 4 illustrates our solution in FRESH for assigning

a task to an available slot. We use C to indicate a set of

candidate jobs. Initially, C is empty and we use variable now
to indicate the current time. When a slot is configured to serve

map tasks (using Algorithm 2), C is a copy of M. Otherwise,

C is a copy of R (lines 2–3). The outer loop (lines 4–11) then

calculates the resource consumption for each job in C at the

current time. Variable totali, initialized as 0 in line 5, is used

to record the total execution time for all finished and running

tasks in job Ji (lines 6–10). We use ej to denote the execution

time of task j. If task j has been finished, its execution time ej
is the difference between its finish time fj and its start time sj
(line 7). If task j is still running, then ej is equal to the current

time now deducted by its start time sj (line 8). Once the total

execution time for job Ji is obtained, we get the resources

consumption ri by normalizing the total execution time totali
by the duration between the current time and the start time

of job Ji (Ti), as shown in line 11. Finally, the job with the

minimum resource consumption is chosen to be served by the

available slot.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of FRESH and

compare it with other alternative schemes. We use FRESH-

Static and FRESH-Dynamic to represent our static slot con-

figuration and dynamic slot configuration respectively.

A. Experimental Setup and Workloads

1) Implementation: We have implemented FRESH on

Hadoop version 0.20.2. For FRESH-static, we develop an

external program to derive the best slot setting and apply it

to the Hadoop configuration file. The Hadoop system itself

is not modified for FRESH-static. To implement FRESH-

dynamic, we have added a few new components to Hadoop.

First, we implement the admission control policy with the

parameter k, i.e., at most k jobs are allowed to be concurrently

running in map phase or in reduce phase. Second, we create

two new modules in JobTracker. One module updates the

statistical information such as the average execution time of a

task, and estimates the remaining workload of each active job.

The other module is designed to configure a free slot to be

a map slot or a reduce slot and assign a task to it according

to the algorithms in section V. The two threshold parameters

in Algorithm 3 are set as τ1 = 0.8 and τ2 = 0.6. We have

tested with different values and found that the performance

is close when τ1 ∈ [0.7, 0.9] and τ2 ∈ [0.5, 0.7]. Due to the

page limit, we omit the discussion about these two heuristic

values. In addition, job profiles (execution time of tasks) are

generated based on the experimental results when a job is

individually executed. However, we randomly introduce ±30%
bias to the measured execution time and use them as the job

profiles representing rough estimates.

2) Hadoop Cluster and Workloads: All the experiments

are conducted on Amazon AWS EC2 platform. We use two

clusters: one with 10 slave nodes and the other with 20 slave

nodes (m1.xlarge instances [22]). Each node is configured

with 4 slots since an m1.xlarge instance has 4 virtual cores.

Totally, there are either S = 40 slots or S = 80 slots in

a cluster in our experiments. Our workloads for evaluation

consider general Hadoop benchmarks with large datasets as the

input. In particular, four datasets are used in our experiments:

4GB/8GB wiki category links data, and 4GB/8GB movie

rating data. The wiki data include the information about wiki

page categories and the movie rating data are the user rating

information. We choose the following six Hadoop benchmarks

from Purdue MapReduce Benchmarks Suite [23] to evaluate

the performance: (1) Classification: Take the movie rating data

as input and classify the movies based on their ratings; (2)

Invertedindex: Take a list of Wikipedia documents as input and

generate word to document indexing; (3) Wordcount: Take a

list of Wikipedia documents as input and count the occurrences

of each word; (4) Grep: Take a list of Wikipedia documents

as input and search for a pattern in the files; (5) Histogram

Rating: Generate a histogram of the movie rating data (with

5 bins); (6) Histogram Movies: Generate a histogram of the

movie rating data (with 8 bins).

B. Performance Evaluation

Given a batch of MapReduce jobs, our performance metrics

are makespan and fairness among all jobs. We mainly compare

to the conventional Hadoop system with FAIR SCHEDULER.

In our setting, each slave has 4 slots, thus there are three

possible static settings in conventional Hadoop in terms of

the ratio of map/reduce slots. We use Fair-1:3, Fair-2:2, and

Fair-3:1 to represent these three settings respectively. We have

conducted two categories of tests with different workloads:

simple workloads consist of the same type of jobs (selected

from the six MapReduce benchmarks), and mixed workloads

represent a set of hybrid jobs. In the reset of this subsection,

we separately present the evaluation results with these two

categories of workloads.

1) Performance with Simple Workloads: For testing simple

workloads, we generate 10 Hadoop jobs for each of the above

6 benchmarks. Every set of 10 jobs share the same input data

set and they are consecutively submitted to the Hadoop cluster

with an interval of 2 seconds. In addition, we have tested

different values of k to show the effect of the admission control

policy, particularly k = 1, 3, 5, 10.

k=1 k=3 k=5 k=10
0

1000

2000

3000

4000

5000

6000

7000
Classification

M
a
k
e
s
p
a
n
 (

s
e
c
)

Fair−1:3

Fair−2:2

Fair−3:1

FRESH−Static

FRESH−Dynamic

k=1 k=3 k=5 k=10
0

0.2

0.4

0.6

0.8

1
Classification

F
a
ir
n
e
s
s

Fair−1:3

Fair−2:2

Fair−3:1

FRESH−Static

FRESH−Dynamic

k=1 k=3 k=5 k=10
0

1000

2000

3000

4000

5000

6000

7000
Grep

M
a
k
e
s
p
a
n
 (

s
e
c
)

Fair−1:3

Fair−2:2

Fair−3:1

FRESH−Static

FRESH−Dynamic

k=1 k=3 k=5 k=10
0

0.2

0.4

0.6

0.8

1
Grep

F
a
ir
n
e
s
s

Fair−1:3

Fair−2:2

Fair−3:1

FRESH−Static

FRESH−Dynamic

k=1 k=3 k=5 k=10
0

1000

2000

3000

4000

5000

6000

7000
Histogram Movies

M
a
k
e
s
p
a
n
 (

s
e
c
)

Fair−1:3

Fair−2:2

Fair−3:1

FRESH−Static

FRESH−Dynamic

k=1 k=3 k=5 k=10
0

0.2

0.4

0.6

0.8

1
Histogram Movies

F
a
ir
n
e
s
s

Fair−1:3

Fair−2:2

Fair−3:1

FRESH−Static

FRESH−Dynamic

Fig. 3: Makespan and fairness of simple workloads under FRESH
and FAIR SCHEDULER (with 10 slave nodes)

Due to the page limit, we show the evaluation results with

three benchmarks in Fig. 3. For the performance of makespan,

we observe that in conventional Hadoop, the best makespan

is achieved mostly when k = 1, i.e., only one job in map and

reduce phase which is equivalent to FIFO(First-In-First-Out)

scheduler. It indicates that while improving the fairness, FAIR

SCHEDULER sacrifices the makespan of a set of jobs. FRESH-

static performs no worse than the best setting with FAIR

SCHEDULER. In some workload such as “Classification”, the

improvement is adequate. In addition, FRESH-dynamic always

yields a significant improvement in all the tested settings.

For example, FRESH-Dynamic improves about 32.75% in

makespan compared to FAIR SCHEDULER with slot ratio 2:2.

The performance of fairness, in most of the cases, is an

increasing function on k. Especially when k = 10, where all

jobs are allowed to be concurrently executed (no admission

control), almost all schemes obtain a good fairness value. Since

all jobs are from the same benchmark in simple workloads,

they finish their map phases in wave and enter the reduce

phase roughly in the same time. Thus FAIR SCHEDULER

performs well in this case (k=10). Overall, FRESH-Dynamic

outperforms all other schemes and achieves very-close-to-1

fairness value even when k = 3 or k = 5.

2) Performance with Mixed Workloads: Additionally, we

evaluate the performance with mixed workloads consisting of

different benchmarks. We specifically form five sets (Set A to

Set E) of mixed jobs whose details will be introduced when

we present the evaluation results. For mixed workloads, the

order of the jobs has a big impact on the performance. In

our experiments, after generating all the jobs, we conduct the

Johnsons’s algorithm [24], which can build an optimal two-

stage job schedule, to determine the order of the jobs.

TABLE I: Set A (12 Mixed Jobs)
Benchmark Dataset Map # Reduce #

01 Classification 8GB Movie Rating Data 270 250

02 Classification 4GB Movie Rating Data 129 120

03 Invertedindex 8GB Wikipedia 256 250

04 Invertedindex 4GB Wikipedia 128 120

05 Wordcount 8GB Wikipedia 256 200

06 Wordcount 4GB Wikipedia 128 100

07 Grep[a-g][a-z]* 8GB Wikipedia 270 250

08 Grep[a-g][a-z]* 4GB Wikipedia 128 100

09 Histogram ratings 8GB Movie Rating Data 270 250

10 Histogram ratings 4GB Movie Rating Data 129 120

11 Histogram movies 8GB Movie Rating Data 270 200

12 Histogram movies 4GB Movie Rating Data 129 100

Our mixed workloads are specified as follows. Set A∼C

contain equal number of jobs from every benchmark. The

details of Set A are listed in Table I. It has two jobs from

each benchmark, one job uses 4G data set and the other uses

8G dataset. Set B is a smaller workload, with one job from

each benchmark, and all jobs use 8G dataset. In addition, Set

C represents a larger workload which doubles the workload

of Set A, i.e., 4 jobs from each benchmark. Furthermore, we

create Set D and Set E to represent map-intensive and reduce-

intensive workloads. Based on our experiments, benchmark

“Inverted Index” and “Grep” are reduce-intensive, and “Clas-

sification” and “Histogram Rating” are map-intensive. Thus,

both Set D and Set E contain 12 jobs, and 8 jobs in Set D are

map-intensive and 8 jobs in Set E are reduce-intensive.

k=1 k=3 k=5 k=7 k=10 k=12
0

1000

2000

3000

4000

5000

6000

7000

M
a
k
e
s
p
a
n
 (

S
e
c
)

Fair−1:3
Fair−2:2

Fair−3:1
FRESH−Dynamic

k=1 k=3 k=5 k=7 k=10 k=12
0

0.2

0.4

0.6

0.8

1

F
a
ir
n
e
s
s

Fair−1:3
Fair−2:2

Fair−3:1
FRESH−Dynamic

Fig. 4: Makespan and fairness of Set A (with 10 slave nodes)

Fig. 4 shows the makespan and the overall fairness with

Set A and different values of k. FRESH-Dynamic’s makespan

is always superior to FAIR SCHEDULER. We observe that the

best makespan of FAIR SCHEDULER is achieved with Fair-2:2.

Compare to this best setting, FRESH-Dynamic still improves

the makespan by 27.62% when k = 5. For fairness, FAIR

SCHEDULER performs much worse with the mixed workloads

(the best value is around 0.8) than with simple workloads,

because diverse jobs finish their map phases at different

time points. On the other hand, FRESH-Dynamic significantly

improves the overall fairness, especially when k ≥ 5 (with

fairness values around 0.95).

FIFO Capacity Fair FRESH:1 FRESH:half FRESH:all
0

1000

2000

3000

4000

5000

M
a

k
e

s
p

a
n

 (
S

e
c
)

Set B
Set C
Set D
Set E

Fig. 5: Makespan of Set B∼E (with 10 slave nodes)

FIFO Capacity Fair FRESH:1 FRESH:half FRESH:all
0

0.2

0.4

0.6

0.8

1

F
a

ir
n

e
s
s

Set B

Set C

Set D

Set E

Fig. 6: Fairness of Set B∼E (with 10 slave nodes)

In addition, we present the results with Set B∼E. We test

FRESH-Dynamic with three different settings of k: only one

job, half of the jobs, and all the jobs, represented by FRESH:1,

FRESH:half, and FRESH:all respectively. We compare to the

conventional Hadoop with FIFO scheduler, Capacity sched-

uler [12] and FAIR SCHEDULER. For Capacity scheduler, we

create two queues and each queue has the same number of

task slots. Each queue can obtain at most 90% slots in the

cluster. Also, we separate jobs equally to these queues. The

experimental results are illustrated in Fig. 5 and Fig. 6. In

Fig. 5, in most of the cases, FAIR SCHEDULER yields the

worst performance of makespan with different sets of jobs. On

average, FRESH improves 31.32% of makespan compared to

the FAIR SCHEDULER and 25.1% to Capacity scheduler. When

a set of jobs is neither map-intensive or reduce-intensive (Set

B and Set C), FIFO performs as well as FRESH. However,

when workloads in map and reduce phases are unbalanced

(Set D and Set E), FRESH improves 24.47% of makespan

compared to FIFO. Overall, FRESH achieves an excellent

and stable makespan performance with different sets of jobs.

In Fig. 6, FIFO apparently yields the worst performance of

fairness. Both FRESH:half and FRESH:all outperform FAIR

SCHEDULER with > 0.95 fairness values in all the tested cases.

Finally, we test Set B on a large cluster with 20 slave nodes and

the results are shown in Table II. We can observe a consistent

performance gain from FRESH as in the smaller cluster of 10

slave nodes. Compared to FAIR SCHEDULER, FRESH reduces

the makespan by 31.1%.

TABLE II: Makespan and fairness of Set B with 20 slave nodes
FIFO Fair FRESH:1 FRESH:half FRESH:all

Makespan 1936s 2263s 1560s 1571s 1590s

Fairness 0.598 0.961 0.575 0.959 0.979

VII. CONCLUSION

This paper studies a Hadoop cluster serving a batch of

MapReduce jobs. We target on the slot configuration and

task scheduling problems. We develop FRESH, an enhanced

version of Hadoop, which supports both static and dynamic

slot configurations. In addition, we present a novel definition

of the overall fairness. Our solution can yield good makespans

while the fairness is also achieved. We have conducted

extensive experiments with various workloads and settings.

FRESH shows a significant improvement on both makespan

and fairness compared to a conventional Hadoop system.

REFERENCES

[1] J. Dean, S. Ghemawat, and G. Inc, “Mapreduce: simplified data pro-
cessing on large clusters,” in OSDI’04, 2004.

[2] M. Zaharia, D. Borthakur, J. S. Sarma et al., “Delay scheduling: A sim-
ple technique for achieving locality and fairness in cluster scheduling,”
in EuroSys’10, 2010.

[3] A. Verma, L. Cherkasova, and R. H. Campbell, “Two sides of a coin:
Optimizing the schedule of mapreduce jobs to minimize their makespan
and improve cluster performance,” in MASCOTS’12, Aug 2012.

[4] M. Isard, Vijayan Prabhakaran, J. Currey et al., “Quincy: fair scheduling
for distributed computing clusters,” in SOSP’09, 2009, pp. 261–276.

[5] A. Verma, L. Cherkasova, and R. H. Campbell, “Aria: Automatic
resource inference and allocation for mapreduce environments,” in
ICAC’11, 2011, pp. 235–244.

[6] J. Polo, D. Carrera, Y. Becerra et al., “Performance-driven task co-
scheduling for mapreduce environments,” in NOMS’10, 2010.

[7] Next generation mapreduce scheduler. [Online]. Available: http:
//goo.gl/GACMM

[8] X. W. Wang, J. Zhang, H. M. Liao, and L. Zha, “Dynamic split model
of resource utilization in mapreduce,” ser. DataCloud-SC ’11, 2011.

[9] J. Polo, C. Castillo, D. Carrera et al., “Resource-aware adaptive
scheduling for mapreduce clusters,” in Proceedings of the 12th

ACM/IFIP/USENIX international conference on Middleware, 2011.
[10] B. Sharma, R. Prabhakar, S.-H. Lim et al., “Mrorchestrator: A fine-

grained resource orchestration framework for mapreduce clusters,” in
IEEE 5th International Conference on Cloud Computing, 2012.

[11] Fair scheduler. [Online]. Available: http://hadoop.apache.org/common/
docs/r1.0.0/fair scheduler.html

[12] Capacity scheduler. [Online]. Available: http://hadoop.apache.org/
common/docs/r1.0.0/capacity scheduler.html

[13] J. Tan, X. Meng, and L. Zhang, “Performance analysis of coupling
scheduler for mapreduce/hadoop,” IBM T. J. Watson Research Center,
Tech. Rep., 2012.

[14] ——, “Delay tails in mapreduce scheduling,” in SIGMETRICS’12, 2012.
[15] ——, “Coupling task progress for mapreduce resource-aware schedul-

ing,” in INFOCOM’13, 2013, pp. 1618–1626.
[16] W. Wang, K. Zhu, L. Ying et al., “Map task scheduling in mapreduce

with data locality: Throughput and heavy-traffic optimality,” in INFO-

COM’13, 2013, pp. 1609–1617.
[17] Y. Guo, J. Rao, and X. Zhou, “ishuffle: Improving hadoop performance

with shuffle-on-write,” ICAC’13, 2013.
[18] M. Zaharia, A. Konwinski, A. D. Joseph et al., “Improving mapreduce

performance in heterogeneous environments,” in OSDI’08, 2008.
[19] Y. Yao, J. Tai, B. Sheng, and N. Mi, “Scheduling heterogeneous

mapreduce jobs for efficiency improvement in enterprise clusters,” in
IM’13, 2013.

[20] Y. Yao, J. Wang, B. Sheng, and N. Mi, “Using a tunable knob for reduc-
ing makespan of mapreduce jobs in a hadoop cluster,” in CLOUD’13,
2013.

[21] R. K. Jain, D.-M. W. Chiu, and W. R. Hawe, “A quantitative measure of
fairness and discrimination for resource allocation in shared systems,”
Digital Equipment Corporation, Tech. Rep., Dec. 1984.

[22] “Amazon EC2 Instances,” http://aws.amazon.com/ec2/instance-types/.
[23] Purdue mapreduce benchmarks suite. [Online]. Available: http:

//web.ics.purdue.edu/∼fahmad/benchmarks.htm
[24] S. M. Johnson, “Optimal two- and three-stage production schedules with

setup times included,” Naval Research Logistics Quarterly, vol. 1, no. 1,
pp. 61–68, 1954.

