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Abstract—In the era of big data and cloud computing, large
amounts of data are generated from user applications and need
to be processed in the datacenter. Data-parallel computing frame-
works, such as Apache Spark, are widely used to perform such
data processing at scale. Specifically, Spark leverages distributed
memory to cache the intermediate results, represented as Resilient
Distributed Datasets (RDDs). This gives Spark an advantage
over other parallel frameworks for implementations of iterative
machine learning and data mining algorithms, by avoiding
repeated computation or hard disk accesses to retrieve RDDs. By
default, caching decisions are left at the programmer’s discretion,
and the LRU policy is used for evicting RDDs when the cache is
full. However, when the objective is to minimize total work, LRU
is woefully inadequate, leading to arbitrarily suboptimal caching
decisions. In this paper, we design an algorithm for multi-stage
big data processing platforms to adaptively determine and cache
the most valuable intermediate datasets that can be reused in the
future. Our solution automates the decision of which RDDs to
cache: this amounts to identifying nodes in a direct acyclic graph
(DAG) representing computations whose outputs should persist
in the memory. Our experiment results show that our proposed
cache optimization solution can improve the performance of
machine learning applications on Spark decreasing the total work
to recompute RDDs by 12%.

Keywords—Cache Optimization, Multi-stage Framework, Inter-
mediate Data Overlapping, Spark

I. INTRODUCTION
With the rise of big data analytics and cloud comput-

ing, cluster-based large-scale data processing has become a
common paradigm in many applications and services. Online
companies of diverse sizes, ranging from technology giants to
smaller startups, routinely store and process data generated
by their users and applications on the cloud. Data-parallel
computing frameworks, such as Apache Spark [1], [2] and
Hadoop [3], are employed to perform such data processing
at scale. Jobs executed over such frameworks comprise hun-
dreds or thousands of identical parallel subtasks, operating
over massive datasets, and executed concurrently in a cluster
environment.

The time and resources necessary to process such mas-
sive jobs are immense. Nevertheless, jobs executed in such
distributed environments often have significant computational
overlaps: different jobs processing the same data may involve
common intermediate computations, as illustrated in Fig. 1.
Such computational overlaps arise naturally in practice. Indeed,
computations performed by companies are often applied to the
same data-pipeline: companies collect data generated by their
applications and users, and store it in the cloud. Subsequent
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Fig. 1. Job arrivals with computational overlaps. Jobs to be executed over the
cluster arrive at different times t1, . . . , t5. Each job is represented by a Directed Acyclic
Graph (DAG), whose nodes correspond to operations, e.g., map, reduce, or join, while
arrows represent order of precedence. Crucially, jobs have computational overlaps: their
DAGs comprise common sets of operations executed over the same data, indicated as
subgraphs colored identically across different jobs. Caching such results can significantly
reduce computation time.

operations operate over the same pool of data, e.g., user
data collected within the past few days or weeks. More
importantly, a variety of prominent data mining and machine
learning operations involve common preprocessing steps. This
includes database projection and selection [4], preprocessing
in supervised learning [5], and dimensionality reduction [6],
to name a few. Recent data traces from industry have reported
40 ∼ 60% recurring jobs in Microsoft production clusters [7],
and up to 78% jobs in Cloudera clusters involve data re-
access [8].

Exploiting such computational overlaps has a tremendous
potential to drastically reduce job computation costs and lead
to significant performance improvements. In data-parallel com-
puting frameworks like Spark, computational overlaps inside
each job are exploited through caching and memoization: the
outcomes of computations are stored with the explicit purpose
of significantly reducing the cost of subsequent jobs. On
the other hand, introducing caching also gives rise to novel
challenges in resource management; to that end, the purpose
of this paper is to design, implement and evaluate caching
algorithms over data-parallel cluster computing environments.

Existing data-parallel computing frameworks, such as
Spark, incorporate caching capabilities in their framework in
a non-automated fashion. The decision of which computation
results to cache rests on the developer that submits jobs: the
developer explicitly states which results are to be cached, while
cache eviction is implemented with the simple policy (e.g.,
LRU or FIFO); neither caching decisions nor evictions are part
of an optimized design. Crucially, determining which outcomes
to cache is a hard problem when dealing with jobs that consist
of operations with complex dependencies. Indeed, under the
Directed Acyclic Graph (DAG) structures illustrated in Fig. 1,
making caching decisions that minimize, e.g., total work is
NP-hard [9], [10].

In this paper, we develop an adaptive algorithm for caching
in a massively distributed data-parallel cluster computing en-



vironment, handling complex and massive data flows. Specif-
ically, a mathematical model is proposed for determining
caching decisions that minimize total work, i.e., the total com-
putation cost of a job. Under this mathematical model, we have
developed new adaptive caching algorithms to make online
caching decisions with optimality guarantees, e.g., minimizing
total execution time. Moreover, we extensively validate the per-
formance over several different databases, machine learning,
and data mining patterns of traffic, both through simulations
and through an implementation over Spark, comparing and
assessing their performance with respect to existing popular
caching and scheduling policies.

The remainder of this paper is organized as follows. Sec. II
introduces background and motivation. Sec. III presents our
model, problem formulation, and our proposed algorithms.
Their performance is evaluated in Sec. IV. Sec. V reviews
related work, and we conclude in Sec. VI.

II. BACKGROUND AND MOTIVATION
A. Resilient Distributed Datasets in Spark

Apache Spark has recently been gaining ground as an
alternative for distributed data processing platforms. In contrast
to Hadoop and MapReduce [11], Spark is a memory-based
general parallel computing framework. It provides resilient
distributed datasets (RDDs) as a primary abstraction: RDDs
are distributed datasets stored in RAM across multiple nodes
in the cluster. In Spark, the decision of which RDDs to store
in the RAM-based cache rests with the developer [12]: the
developer explicitly requests for certain results to persist in
RAM. Once the RAM cache is full, RDDs are evicted using
the LRU policy. Alternatively, developers are further given the
option to store evicted RDDs on HDFS, at the additional cost
of performing write operations on HDFS. RDDs cached in
RAM are stored and retrieved faster; however, cache misses
occur either because an RDD is not explicitly cached by the
developer, or because it was cached and later evicted. In either
case, Spark is resilient to misses at a significant computational
overhead: if a requested RDD is neither in RAM nor stored
in HDFS, Spark recomputes it from scratch. Overall, cache
misses, therefore, incur additional latency, either by reading
from HDFS or by fully recomputing the missing RDD.

An example of a job in a data-parallel computing frame-
work like Spark is given in Fig. 2. A job is represented as a
DAG (sometimes referred to as the dependency graph). Each
node of the DAG corresponds to a parallel operation, such
as reading a text file and distributing it across the cluster,
or performing a map, reduce, or join operation. Edges in the
DAG indicate the order of precedence: an operation cannot
be executed before all operations pointing towards it are
completed, because their outputs are used as inputs for this
operation. As in existing frameworks like Spark or Hadoop,
the inputs and outputs of operations may be distributed across
multiple machines: e.g., the input and output of a map would
be an RDD in Spark, or a file partitioned across multiple disks
in HDFS in Hadoop.

B. Computational Overlaps
Caching an RDD resulting from a computation step in

a job like the one appearing in Fig. 2 can have significant
computational benefits when jobs may exhibit computational
overlaps: not only are jobs executed over the same data, but
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Fig. 2. Job DAG example. An example of a parallel job represented as a DAG. Each
node corresponds to an operation resulting RDD that can be executed over a parallel
cluster (e.g., a map, reduce, or join operation). DAG edges indicate precedence. Simple,
crunodes (in/out) and cross nodes are represented with solid or lined textures.

also consist of operations that are repeated across multiple
jobs. This is illustrated in Fig. 1: jobs may be distinct, as they
comprise different sets of operations, but certain subsets of
operations (shown as identically colored subgraphs in the DAG
of Fig. 1) are (a) the same, i.e., execute the same primitives
(maps, joins, etc.) and (b) operate over the same data.

Computational overlaps arise in practice for two reasons.
The first is that operations performed by companies are often
applied to the same data-pipeline: companies collect data
generated by their applications and users, which they maintain
in the cloud, either directly on a distributed file system like
HDFS, or on NoSQL databases (like Google’s Datastore [13]
or Apache HBase [14]). Operations are therefore performed on
the same source of information: the latest data collected within
a recent period of time. The second reason for computational
overlaps is the abundance of commonalities among computa-
tional tasks in data-parallel processing. Commonalities occur
in several classic data-mining and machine learning operations
heavily utilized in inference and prediction tasks (such as
predictions of clickthrough rates and user profiling). We give
some illustrative examples below:
Projection and Selection. The simplest common prepro-
cessing steps are projection and selection [4]. For example,
computing the mean of a variable age among tuples satisfying
the predicate gender = female and gender = female ∧
income ≥ 50K might both first reduce a dataset by selecting
rows in which gender = female. Even in the absence
of a relational database, as in the settings we study here,
projection (i.e., maintaining only certain feature columns) and
selection (i.e., maintaining only rows that satisfy a predicate)
are common. For example, building a classifier that predicts
whether a user would click on an advertisement relies upon
first restricting a dataset containing all users to the history of
the user’s past clicking behavior. This is the same irrespective
of the advertisement for which the classifier is trained.
Supervised Learning. Supervised learning tasks such as re-
gression and classification [5], i.e., training a model from
features for the purpose of predicting a label (e.g., whether
a user will click on an advertisement or image) often involve
common operations that are label-independent. For example,
performing ridge regression first requires computing the co-
variance of the features [5], an identical task irrespective of
the label to be regressed. Similarly, kernel-based methods
like support vector machines require precomputing a kernel
function across points, a task that again remains the same
irrespective of the labels to be regressed [15]. Using either
method to, e.g., regress the click-through rate of an ad, would
involve the same preprocessing steps, irrespectively of the
labels (i.e., clicks pertaining to a specific ad) being regressed.
Dimensionality Reduction. Preprocessing also appears in the
form of dimensionality reduction: this is a common pre-



processing step in a broad array of machine learning and
data mining tasks, including regression, classification, and
clustering. Prior to any such tasks, data is first projected in
a lower dimensional space that preserves, e.g., data distances.
There are several approaches to doing this, including principal
component analysis [16], compressive sensing [6], and training
autoregressive neural networks [17], to name a few. In all these
examples, the same projection would be performed on the data
prior to subsequent processing, and be reused in the different
tasks described above.

To sum up, the presence of computational overlaps across
jobs gives rise to a tremendous opportunity of reducing compu-
tational costs. Such overlaps can be exploited precisely through
the caching functionality of a data-parallel framework. If a
node in a job is cached (i.e., results are memoized), then neither
itself nor any of its predecessors need to be recomputed.
C. Problems and Challenges

Designing caching schemes poses several significant chal-
lenges. To begin with, making caching decisions is an in-
herently combinatorial problem. Given (a) a storage capacity
constraint, (b) a set of jobs to be executed, (c) the size of
each computation result, and (d) a simple linear utility on each
job, the problem is reduced to a knapsack problem, which
is NP-hard. The more general objectives we discussed above
also lead to NP-hard optimization problems [18]. Beyond
this inherent problem complexity, even if jobs are selected
from a pool of known jobs (e.g., classification, regression,
querying), the sequence to submit jobs within a given time
interval is a priori unknown. The same may be true about
statistics about upcoming jobs, such as the frequency with
which they are requested. To that end, a practical caching
algorithm must operate in an adaptive fashion: it needs to make
online decisions on what to cache as new jobs arrive, and adapt
to changes in job frequencies.

In Spark, LRU is the default policy for evicting RDDs
when the cache is full. There are some other conventional
caching algorithms such as LRU variant [19] that maintains
the most recent accessed data for future reuse, and ARC [20]
and LRFU [21] that consider both frequency and recency in
the eviction decisions. When the objective is to minimize total
work, these conventional caching algorithms are woefully inad-
equate, leading to arbitrarily suboptimal caching decisions [9].
Recently, a heuristic policy [22], named “Least Cost Strategy”
(LCS), was proposed to make eviction decisions based on the
recovery temporal costs of RDDs. However, this is a heuristic
approach and again comes with no guarantees. In contrast,
we intend to leverage Spark’s internal caching mechanism to
implement our caching algorithms and deploy and evaluate
them over the Spark platform, while also attaining formal
guarantees.

III. ALGORITHM DESIGN
In this section, we introduce a formal mathematical model

for making caching decisions that minimize the expected total
work, i.e., the total expected computational cost for completing
all jobs. The corresponding caching problem is NP-hard, even
in an offline setting where the popularity of jobs submitted
to the cluster is a priori known. Nevertheless, we show it is
possible to pose this optimization problem as a submodular
maximization problem subject to knapsack constraints. This
allows us to produce a 1 − 1/e approximation algorithm for
its solution. Crucially, when job popularity is not known, we

have devised an adaptive algorithm for determining caching
decisions probabilistically, that makes caching decisions lie
within 1 − 1/e approximation from the offline optimal, in
expectation.

A. DAG/Job Terminology
We first introduce the terminology we use in describing

caching algorithms. Consider a job represented as a DAG as
shown in Fig. 2. Let G(V,E) be the graph representing this
DAG, whose nodes are denoted by V and edges are denoted by
E. Each node is associated with an operation to be performed
on its inputs (e.g., map, reduce, join, etc.). These operations
come from a well-defined set of operation primitives (e.g., the
operations defined in Spark). For each node v, we denote as
op(v) the operation that v ∈ V represents. The DAG G as
well as the labels {op(v), v ∈ V } fully determine the job. A
node v ∈ V is a source if it contains no incoming edges,
and a sink if it contains no outgoing edges. Source nodes
naturally correspond to operations performed on “inputs” of
a job (e.g., reading a file from the hard disk), while sinks
correspond to “outputs”. Given two nodes u, v ∈ V , we
say that u is a parent of v, and that v is a child of u, if
(u, v) ∈ E. We similarly define predecessor and successor as
the transitive closures of these relationships. For v ∈ V , we
denote by pred(v) ⊂ V , succ(c) ⊂ V the sets of predecessors
and successors of v, respectively. Note that the parent/child
relationship is the opposite to usually encountered in trees,
where edges are usually thought of as pointing away from the
root/sink towards the leaves/sources. We call a DAG a directed
tree if (a) it contains a unique sink, and (b) its undirected
version (i.e., ignoring directions) is acyclic.

B. Mathematical Model
Consider a setting in which all jobs are applied to the same

dataset; this is without loss of generality, as multiple datasets
can be represented as a single dataset–namely, their union–
and subsequently adding appropriate projection or selection
operations as preprocessing to each job. Assume further that
each DAG is a directed tree. Under these assumptions, let G
be the set of all possible jobs that can operate on the dataset.
We assume that jobs G ∈ G arrive according to a stochastic
stationary process with rate λG > 0. Recall that each job
G(V,E) comprises a set of nodes V , and that each node v ∈ V
corresponds to an operation op(v). We denote by as cv ∈ R+

the time that it takes to execute this operation given the outputs
of its parents, and sv ∈ R+ be the size of the output of op(v),
e.g., in Kbytes. Without caching, the total-work of a job G
is then given by W (G(V,E)) =

∑
v∈V cv. We define the

expected total work as:

W̄ =
∑
G∈G

λG ·W (G) =
∑

G(V,E)∈G

λG(V,E)

∑
v∈V

cv. (1)

We say that two nodes u, u′ are identical, and write u = u′,
if both these nodes and all their predecessors involve exactly
the same operations. We denote by V the union of all nodes
of DAGs in G. A caching strategy is a vector x = [xv]v∈V ∈
{0, 1}|V|, where xv ∈ {0, 1} is a binary variable indicating
whether we have cached the outcome of node v or not. As
jobs in G are directed trees, when node v is cached, there is
no need to compute that node or any predecessor of that node.



Hence, under a caching strategy x, the total work of a job G
becomes:

W =
∑
v∈V cv(1− xv)

∏
u∈succ(v)(1− xu). (2)

Intuitively, this states that the cost cv of computing op(v) needs
to be paid if and only if neither v nor any of its successors
have been cached.
C. Maximizing the Caching Gain: Offline Optimization

Given a cache of size K Kbytes, we aim to solve the
following optimization problem:

MAXCACHINGGAIN

Max: F (x)=W̄−
∑
G∈G

λGW (G, x) (3a)

=
∑

G(V,E)∈G

λG

∑
v∈V

cv
[
1− (1−xv)

∏
u∈succ(v)

(1−xu)
]

(3b)

Sub. to:
∑

v∈V svxv ≤ K, xv ∈ {0, 1}, for all v ∈ V. (3c)

Following [9], we call function F (x) the caching gain:
this is the reduction on total work due to caching. This offline
problem is NP-hard [10]. Seen as an objective over the set of
nodes v ∈ V cached, F is a monotone, submodular function.
Hence, (3) is a submodular maximization problem with a
knapsack constraint. When all outputs have the same size,
the classic greedy algorithm by Nemhauser et al. [23] yields
a 1 − 1/e approximation. In the case of general knapsack
constraints, there exist well-known modifications of the greedy
algorithm that yields the same approximation ratio [24]–[26].

Beyond the above generic approximation algorithms for
maximizing submodular functions, (3) can be solved by pipage
rounding [27]. In particular, there exists a concave function
L : [0, 1]|V| such that:

(1− 1/e)L(x) ≤ F (x) ≤ L(x), for all x ∈ [0, 1]|V|. (4)

This concave relaxation of F is given by:

L(x) =
∑

G(V,E)∈G

λG
∑
v∈V

cv min
{

1, xv +
∑

u∈succ(v)

xu
}
. (5)

Pipage rounding solves (3) by replacing objective F (x) with
its concave approximation L(x) and relaxing the integrality
constraints (3c) to the convex constraints x ∈ [0, 1]|V|. The
resulting optimization problem is convex–in fact, it can be
reduced to a linear program, and thus solved in linear time.
Having solved this convex optimization problem, the resulting
fractional solution is subsequently rounded to produce an
integral solution. Several polynomial time rounding algorithms
exist (see, e.g., [27], [28], and [26] for knapsack constraints).
Due to (4) and the specific design of the rounding scheme, the
resulting integral solution is guaranteed to be within a constant
approximation of the optimal [26], [27].

D. An Adaptive Algorithm with Optimality Guarantees
As discussed above, if the arrival rates λG, G ∈ G, are

known, we can determine a caching policy within a constant
approximation from the optimal solution to the (offline) prob-
lem MAXCACHINGGAIN by solving a convex optimization
problem. In practice, however, the arrival rates λG may not
be known. To that end, we are interested in an adaptive
algorithm, that converges to caching decisions without any
prior knowledge of job arrival rates λG. Building on [9], we
propose an adaptive algorithm for precisely this purpose. We

Algorithm 1: A Heuristic Caching Algorithm.
1 Procedure processJobs(G)
2 CG = Historical RDD access record;
3 CG = Current job RDD access record;
4 for G ∈ G do
5 processJob(G(V,E), CG);
6 updateCache(CG, CG );
7 Procedure processJob(G(V,E), C)
8 CG.clear();
9 for v∈V do

10 v.accessed=False;
11 toAccess=set(DAG.sink());
12 while toAccess6= ∅ do
13 v=toAccess.pop();
14 CG[v]=estimateCost(v);
15 if not v.cached then
16 for u ∈ v.parents do
17 if not u.accessed then
18 toAccess.add(u);
19 access(v); /* Iterate RDD v. */
20 v.accessed=True;
21 return;
22 Procedure estimateCost(v)
23 cost=compCost[v]; /* If all parents are ready. */
24 toCompute=v.parents /* Check each parent. */
25 while toCompute 6= ∅ do
26 u=toCompute.pop();
27 if not (u.cached or u.accessed or u.accessedInEstCost) then
28 cost+=compCost[u];
29 toCompute.appendList(u.parents);
30 u.accessedInEstCost=True;
31 return cost;
32 Procedure updateCache(CG, CG)
33 for v ∈ CG do
34 if v ∈ CG then
35 CG [v] = (1− β)× CG [v] + β × CG[v];
36 else
37 CG [v] = (1− β)× CG [v];
38 updateCacheByScore(CG );
39 return;

describe the details of this adaptive algorithm in our technical
report [29]. In short, our adaptive algorithm performs projected
gradient ascent over concave function L, given by (5). That is,
our algorithm maintains at each time a fractional y ∈ [0, 1]|V|,
capturing the probability with which each RDD should be
placed in the cache. Our algorithm collects information from
executed jobs; this information is used to produce an estimate
of the gradient ∇L(y). In turn, this is used to adapt the
probabilities y that we store different outcomes. Based on these
adapted probabilities, we construct a randomized placement x
satisfying the capacity constraint (3c). We can then show that
the resulting randomized placement has the following property:

Theorem 1: If x(t) is the placement at time t, then
limt→∞ E[F (x(t))] ≥

(
1−1/e

)
F (x∗), where x∗ is an optimal

solution to the offline problem MAXCACHINGGAIN (Eq. (3)).

The proof of Thm. 1 can be found in our technical report [29].

E. A Heuristic Adaptive Algorithm

Beyond attaining such guarantees, our adaptive algorithm
gives us a great intuition to prioritize computational outcomes.
Indeed, the algorithm prioritizes nodes v that have a high
gradient component ∂L/∂xv and a low size sv . Given a present
placement, RDDs should enter the cache if they have a high
value w.r.t. the following quantity [29]:

∂L
∂xv

/sv '
(∑

G∈G:v∈G λG ×∆(w)
)
/sv, (6)

where ∆(w) is the difference in total work if v is not cached.
This intuition is invaluable in coming up with useful heuristic
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Fig. 3. An example of RDD dependency in synthetic jobs. Denote Jx.Sy as stage y in job x, then we have J0.S0 = J1.S1 = J2.S0 = J3.S1, J1.S0∼5 = J3.S0∼5,
and J0.S0∼1 = J2.S0∼1. Unfortunately, even sharing the same computational overlap, by default these subgraphs will be assigned with different stage/RDD IDs by Spark since
they are from different jobs.

algorithms for determining what to place in a cache. In contrast
to, e.g., LRU and LFU, that prioritize jobs with high request
rate, Eq. (6) suggests that a computation should be cached if
(a) it is requested often, (b) caching it can lead to a significant
reduction on the total work, and (c) it has small size. Note
that (b) is dependent on other caching decisions made by our
algorithm. Observations (a), (b), and (c) are intuitive, and the
specific product form in (6) is directly motivated and justified
by our formal analysis. They give rise to the following simple
heuristic adaptive algorithm: for each job submitted, maintain
a moving average of (a) the request rate of individual nodes it
comprises, and (b) the cost that one would experience if these
nodes are not cached. Then, place in the cache only jobs that
have a high such value, when scaled by the size sv .

Alg. 1 shows the main steps of our heuristic adaptive
algorithm. It updates the cache (i.e., storage memory pool)
after the execution of each job (line 5) based on decisions
made in the updateCache function (line 6), which considers
both the historical (i.e., CG) and current RDD (i.e., CG) cost
scores. Particularly, when iterating RDDs in each job following
a recursive fashion, an auxiliary function estimateCost is
called to calculate and record the temporal and spatial cost
of each RDD in that job (see line 14 and lines 22 to 31).
Notice that estimateCost does not actually access any RDDs,
but conducts DAG-level analysis for cost estimation which
will be used to determine cache contents in the updateCache
function. In addition, a hash mapping table is also used to
record and detect computational overlap cross jobs (details see
in our implementation in Sec. IV-C). After that, we iterate
over each RDD’s parent(s) (lines 16 to 18). Once all its
parent(s) is(are) ready, we access (i.e., compute) the RDD
(line 19). Lastly, the updateCache function first updates the
costs of all accessed RDDs to decide the quantities cost
collected above with a moving average window using a decay
rate of β, implementing an Exponentially Weighted Moving
Average (EWMA). Next, updateCache makes cross-job cache
decisions based on the sorting results of the moving average
window by calling the updateCacheByScore function. The
implementation of this function can (1) refresh the entire RAM
by top score RDDs; or (2) evict lower score old RDDs to insert
higher score new RDDs.

IV. PERFORMANCE EVALUATION
In this section, we first demonstrate the performance of our

adaptive caching algorithm ( Alg. 1) on a simple illustrative
example. We then build a simulator to analyze the performance
of large-scale synthetic traces with complex DAGs. Lastly,
we validate the effectiveness of our adaptive algorithm by

conducting real experiments in Apache Spark with real-world
machine learning workloads.

A. Numerical Analysis
We use a simple example to illustrate how our adaptive

algorithm (i.e., Alg. 1) performs w.r.t minimizing total work.
This example is specifically designed to illustrate that our
algorithm significantly outperforms the default LRU policy
used in Spark. Assume that we have 5 jobs (J0 to J4) each
consisting of 3 RDDs, the first 2 of which are common across
jobs. That is, J0’s DAG is R0→R1→R2, J1 is R0→R1→R3,
J2 is R0→R1→R4, etc. The calculation time for R1 is 100
seconds while the calculation time for other RDDs (e.g., R2,
R3,...) is 10 seconds. We submit this sequence of jobs twice,
with the interarrival time of 10 seconds between jobs. Thus,
we have 10 jobs in a sequence of {J0, J1, ..., J4, J0, J1, ...,
J4}. We set the size of each RDD as 500MB and the cache
capacity as 500MB as well. Hence, at most one RDD can be
cached at any moment.

Table I shows the experimental results of this simple ex-
ample under LRU and our algorithm. Obviously, LRU cannot
well utilize the cache because the recently cached RDD (e.g.,
R2) is always evicted by the newly accessed RDD (e.g., R3).
As a result, none of the RDDs are hit under the LRU policy. By
producing an estimation of the gradient on RDD computation
costs, our algorithm instead places R1 in the cache after the
second job finishes and thus achieves a higher hit ratio of
36%, i.e., 8 out of 22 RDDs are hit. Total work (i.e., the total
calculation time for finishing all jobs) is significantly reduced
as well under our algorithm.

TABLE I. CACHING RESULTS OF THE SIMPLE CASE.

Policy J0 J1 J2 J3 ... J4 hitRatio totalWork
LRU R2 R3 R4 R5 ... R6 0.0% 1100
Adaptive R2 R1 R1 R1 ... R1 36.4% 300

B. Simulation Analysis
To further validate the effectiveness of our proposed algo-

rithm, we scale up our synthetic trace by randomly generating
a sequence of 1000 jobs to represent real data analysis ap-
plications with complex DAGs. Fig. 3 shows an example of
some jobs’ DAGs from our synthetic trace, where some jobs
include stages and RDDs with the same generating logic chain.
For example, stage 0 in J0 and stage 1 in J1 are identical, but
their RDD IDs are different and will be computed twice. On
average, each of these jobs consists of six stages and each
stage has six RDDs. The average RDD size is 50MB. We use
a decay rate of β = 0.6.
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Fig. 4. Hit ratio, access number and total work makespan results of large scale simulation experiments.

We implement four caching algorithms for comparison:
(1) NoCache: a baseline policy, which forces Spark to ignore
all user-defined cache/persist demands, and thus provides the
lower bound of caching performance; (2) LRU: the default
policy used in Spark, which evicts the least recent used RDDs;
(3) FIFO: a traditional policy which evicts the earliest RDD
in the RAM; and (4) LCS: a recently proposed policy, called
“Least Cost Strategy” [22], which uses a heuristic approach to
calculate each RDD’s recovery temporal cost to make eviction
decisions. The main metrics include (a) RDD hit ratio that is
calculated as the ratio between the number of RDDs hit in the
cache and the total number of accessed RDDs, or the ratio
between the size of RDDs hit in the cache and the total size
of accessed RDDs; (b) Number of accessed RDDs and total
amount of accessed RDD data size that need to be accessed
through the experiment; (c) Total work (i.e., makespan) that is
the total calculation time for finishing all jobs; and (d) Average
waiting time for each job.

Fig. 4 depicts the performance of the five caching al-
gorithms. We conduct a set of simulation experiments by
configuring different cache sizes for storing RDDs. Clearly,
our algorithm (“Adaptive") significantly improves the hit ratio
(up to 70%) across different cache sizes, as seen Fig. 4(a) and
(b). In contrast, the other algorithms start to hit RDDs (with hit
ratio up to 17%) only when the cache capacity becomes large.
Consequently, our proposed algorithm reduces the number of
RDDs that need to be accessed and calculated (see Fig. 4(c)
and (d)), which further saves the overall computation costs, i.e.,
the total work in Fig. 4(e) and (f). We also notice that such an
improvement from “Adaptive" becomes more significant when
we have a larger cache space for RDDs, which indicates that
our adaptive algorithm is able to better detect and utilize those
shareable and reusable RDDs across jobs.
C. Spark Implementation

We further evaluate our cache algorithm by integrating
our methodology into Apache Spark 2.2.1, hypervised by
VMware Workstation 12.5.0. Table II summarizes the details
of our testbed configuration. In Spark, the memory space is
divided into four pools: storage memory, execution memory,
unmanaged memory and reserved memory. Only storage and
execution memory pools (i.e., UnifiedMemoryManager)
are used to store runtime data of Spark applications. Our im-
plementation focuses on storage memory, which stores cached

data (RDDs), internal data propagated through the cluster, and
temporarily unrolled serialized data. Fig. 5 further illustrates
the main architecture of modules in our implementation. In
detail, different from Spark’s built-in caching that responds to
persist and unpersist APIs, we build an RDDCacheManager
module in the Spark Application Layer to communicate with
cache modules in the Worker Layer. Our proposed module
maintains statistical records (e.g., historical access, compu-
tation overhead, DAG dependency, etc.), and automatically
decides which new RDDs to be cached and which existing
RDDs to be evicted when the cache space is full.

TABLE II. TESTBED CONFIGURATION.

Component Specs
Host Server Dell PowerEdge T310

Host Processor Intel Xeon CPU X3470
Host Processor Speed 2.93GHz
Host Processor Cores 8 Cores

Host Memory Capacity 16GB DIMM DDR3
Host Memory Data Rate 1333 MHz

Host Hypervisor VMware Workstation 12.5.0
Big Data Platform Apache Spark 2.2.1

Storage Device Western Digital WD20EURS
Disk Size 2TB

Disk Bandwidth SATA 3.0Gbps
Memory Size Per Node 1 GB

Disk Size Per Node 50 GB

Master/Client Node

Driver JVM

Spark Application Layer
Cluster Manager Layer

Worker Layer

App

SparkContext

RDDGraph

DAGScheduler

TaskScheduler

SchedulerBackend

RDDCacheManager

Worker Node

Executor

Cache

Task Task

Task Task

Worker Node

Executor

Cache

Task Task

Task Task

Resource Manage
Master Node

Resource Manage JVM

SparkStandalone

YARN

Mesos

Adaptive Cache

Fig. 5. Module structure view of our Spark implementation, where our
proposed RDDCacheManager module cooperates with cache module
inside each worker node.

We select Ridge Regression [30] as a benchmark because it
is a ubiquitous technique, widely applied in machine learning
and data mining applications [31], [32]. The input database we
use is a huge table containing thousands of entries (i.e., rows),
and each entry has more than ten features (i.e., columns).
More than hundred Spark jobs are repeatedly generated with
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Fig. 6. Hit ratio and normalized makespan results of a stress testing
on cache-unfriendly Ridge Regression benchmark with different cache
sizes under four cache algorithms.

an exponential arrival rate. Each job’s DAG contains at least
one Ridge Regression-related subgraph, which regresses a
randomly selected feature column (i.e., target) by a randomly
selected subset of the remaining feature columns (i.e., source),
i.e., ft = <(~fs), where ft is the target feature, and <(~fs)
is the regressed correlation function with an input of source
feature vector ~fs. Moreover, different jobs may share the same
selections of target and source features, and thus they may
have some RDDs with exactly the same generating logic chain
(i.e., a subset of DAGs). Unfortunately, the default Spark
cannot identify RDDs with the same generating logic chain
if they are in different jobs. In order to identify these reusable
and identical RDDs, our proposed RDDCacheManager uses a
mapping table to records each RDD’s generating logic chain
across jobs (by importing our customized header files into
the benchmark), i.e., we denote RDDx by a hashing function
key ← hash(Gx(V,E)), where Gx(V,E) is the subgraph of
RDDx (V is the set of all ancestor RDDs and E is the set of
all operations along the subgraph). Since not all operations
are deterministic [33] (e.g., shuffle operation on the same
input data may result in different RDDs), we only monitor
those deterministic operations which guarantee the same output
under the same input.

Rather than scrutinizing the cache-friendly case where our
adaptive algorithm appears to work well as shown in Sec. IV-B,
it will be more interesting to study the performance under the
cache-unfriendly case (also called “stress test” [34]), where
the space size of different combinations of source and target
features is comparatively large, which causes the production
of a large number of different RDDs across jobs. Moreover,
the probability of RDDs reaccess is low (e.g., the trace we
generated has less than 26% of RDDs are repeated across all
jobs), and the temporal distances of RDDs reaccess are also
relatively long [35]. Thus, it becomes more challenging for a
caching algorithm to make good caching decisions to reduce
the total work under such a cache-unfriendly case.

Fig. 6 shows the real experimental results under four differ-

ent caching algorithms, i.e., FIFO, LRU, LCS, and Adaptive.
To investigate the impact of cache size, we also change the size
of storage memory pool to have different numbers of RDDs
that can be cached in that pool. Compared to the other three
algorithms, our adaptive algorithm achieves non-negligible
improvements on both hit ratio (see in Fig. 6(a)) and makespan
(see in Fig. 6(b)), especially when the cache size increases.
Specifically, the hit ratio can be improved by 13% and the
makespan can be reduced by 12% at most, which are decent
achievements for such a cache-unfriendly stress test with less
room to improve performance. Furthermore, we observe that
Adaptive significantly increases the hit ratio and reduces the
makespan when we have more storage memory space, which
again indicates that our caching algorithm has the ability
to make good use of memory space. In contrast, the other
algorithms have less improvement on hit ratio and makespan,
since they cannot conduct cross-job computational overlap
detection. While, with a global overview of all accessed RDDs,
our adaptive algorithm can effectively select proper RDDs
from all jobs to be cached in the limited storage memory pool.

V. RELATED WORK
Memory management is a well-studied topic across in-

memory processing systems. Memcached [36] and Redis [37]
are highly available distributed key-value stores. Megas-
tore [38] offers a distributed storage system with strong
consistency guarantees and high availability for interactive
online applications. EAD [39] and MemTune [40] are dy-
namic memory managers based on workload memory demand
and in-memory data cache needs. There are some heuristic
approaches to evict intermediate data in big data platforms.
Least Cost Strategy (LCS) [22] evicts the data which lead
to minimum recovery cost in future. Least Reference Count
(LRC) [41] evicts the cached data blocks whose reference
count is the smallest where the reference count dependent
child blocks that have not been computed yet. Weight Re-
placement (WR) [42] is another heuristic approach to consider
computation cost, dependency, and sizes of RDDs. ASRW [43]
uses RDD reference value to improve the memory cache
resource utilization rate and improve the running efficiency
of the program. Study [44] develops cost metrics to compare
storage vs. compute costs and suggests when a transcoding on-
the-fly solution can be cost-effective. Weighted-Rank Cache
Replacement Policy (WRCP) [45] uses parameters as access
frequency, aging, and mean access gap ratio and such functions
as size and cost of retrieval. These heuristic approaches do
use optimization frameworks to solve the problem, but they
are only focusing on one single job, and ignoring cross-job
intermediate dataset reuse.

VI. CONCLUSION
The big data multi-stage parallel computing framework,

such as Apache Spark, has been widely used to perform data
processing at scale. To speed up the execution, Spark strives to
absorb as much intermediate data as possible to the memory to
avoid repeated computation. However, the default in-memory
storage mechanism LRU does not choose reasonable RDDs
to cache their partitions in memory, leading to arbitrarily
sub-optimal caching decisions. In this paper, we formulated
the problem by proposing an optimization framework, and
then developed an adaptive cache algorithm to store the most
valuable intermediate datasets in the memory. According to our
real implementation on Apache Spark, the proposed algorithm
can improve the performance by reducing 12% of the total



work to recompute RDDs. In the future, we plan to extend
our methodology to support more big data platforms.
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