
OWLBIT: Orchestrating Wireless Transmissions for Launching

Big Data Platforms in an Internet of Things Environment

Nam Son Nguyen∗, Teng Wang∗, Tengpeng Li∗, Xiaoqian Zhang∗, Bo Sheng∗, Ningfang Mi†, Bin Zhao‡
∗Department of Computer Science, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA 02125

† Department of Electrical and Computer Engineering, Northeastern University , 360 Huntington Ave., Boston, MA 02115
‡ School of Computer Science and Technology, Nanjing Normal University, Nanjing, China

Abstract—The emergence of Edge Computing and the success
of Internet of Thing and (IoT) has tremendously changed the
way we think about data computing. With edge devices changing
from data producer to both data producer and consumer, the
chance for processing large data sets with Big Data on a cloud
of IoT devices is more realistic. In Big Data systems such as
Hadoop-Yarn, Spark, Pig, etc., the shuffling stage is by far the
most dominant source of network traffic. Unreliable performance
of network will greatly impact the shuffling process. Since
IoT devices mostly rely on wireless network based on 802.11,
providing proper throughput to big data computing system
is an important challenge that needs to be address. In this
paper, we argue that a cluster of IoT computers can support
big data by considering the information fed by the big data
applications. We propose a cross-layer framework that uses the
application layer information to guide the packet scheduling
at the link layer. We implement our system as an extension
module in Hadoop-Yarn system. The experimental evaluation
shows significant performance improvement.

I. INTRODUCTION

In recent years, big data processing applications have
become very popular in various fields helping extract useful
information from a large set of data. One important category
of big data applications is related to our physical world,
where electronic devices are deployed in our surrounding
environments and supply data for processing. The emerging
IoT (Internet of Things) devices are representative devices in
this domain that could measure different types of data and
communicate with other devices. These IoT devices are often
massively deployed and continuously collect data yield a large
volume of data set that would need a big data platform to
process.

In this paper, we present a middleware framework to
support the deployment of big data platforms over distributed
Internet of Things (IoT) devices. It is motivated by the fact
that nowadays the computation ability of IoT devices have
increased with the advance of hardware. In the traditional
view of data-oriented applications, IoT devices, considered
inexpensive but computationally weak, mainly play the role
of data provider while the data processing is conducted at
cloud-side servers or more recently introduced edge computing
sites. This traditional approach, however, causes heavy network
traffics that collect raw data from IoT devices, and computation
burden on the centralized processing sites.

In fact, with the advance of the hardware, recent IoT de-
vices such as Raspberry Pi have been equipped with adequate
RAMs and strong CPUs that are capable of processing a certain
amount of data in the applications. The participation of IoT

devices in big data processing can significantly save the data
transfer traffic and reduce the server load. It is practically
possible to migrate data processing tasks from the centralized
servers to massive IoT devices to avoid data transfer traffic
and better serve the applications. On the other hand, new big
data platforms such as Hadoop and Spark (see Fig. 1) are
designed to process a large volume of data in a distributed
manner where each node in a cluster handles a piece of data
and the results are merged and further processed in the next
stage. Such platforms are feasible to be deployed over a cluster
of IoT devices to help process various data.

Fig. 1. MapReduce process

This paper explores the integration of big data platforms
(e.g., Hadoop) and small IoT devices, reveals the new issues
in such systems, and develops an efficient supporting layer
to improve the performance. To the best of our knowledge,
this is the first system work that integrates big data processing
framework with IoT devices.

II. RELATED WORK

In this section, we briefly cover network flow scheduling
approaches for big data framework and wireless interference
awareness that are related to our work.
Network flow scheduling for big data framework. Several
previous efforts have tried to optimize network traffic in Big
Data MapReduce clusters, including Delay Scheduling [1]
and Quincy [2]. These works target on optimizing map-input
data locality for the purpose of reducing network contentions.
However they didn’t take in to account the shuffle stages
which, by observations in [3] [4], sometimes intermediate
data (map-output data) size can be as large as input size e.g.
sort or even larger for k-means clustering [5]. In contrary,
CoGRS [5] focuses on schedule placement of reduce tasks
or ShuffleWatcher [6] localizes the shuffle by scheduling
both maps and reducers on the same rack. Without a doubt
the contributions of above researches, none of them can be
applied to reduce wireless network congestions in Big Data on
IoT clusters. On the other hand, integrating these techniques
will benefit our solution.
Wireless interference. Centralized scheduling schemes

810

2018 IEEE 11th International Conference on Cloud Computing

2159-6190/18/$31.00 ©2018 IEEE
DOI 10.1109/CLOUD.2018.00110

which focus on reducing wasted airtime incurred by random
back-off DCF (Distributed Coordination Function), such as
the state of art Centaur [7], CO-Fi [8] and Shuffle [9]. Such
works use a centralized scheduler to schedule down-link
traffics toward the stations through WiFi access points. In
common, all are Micro-Scheduling, providing fast access to
the medium that requires powerful computation as well as
MAC-802.11 modifications through an upgrade firmware. Our
scheduling in owlBIT integrated with Big Data Framework
which often transmits data in batches. This typical scenario do
not requires per packet scheduling and computation overhead.
More importantly, our solution is lightweight and portable,
totally lies on application level hence it is sufficient for IoT
devices with a vision to Edge Computing. Oppose to Micro
scheduling, Cooperative Packet Scheduling Pipeline [10]
offers a closer approach to our work. The authors provide
a Macro Scheduling that schedules sets of packets through
a 2 1

2 -stage pipeline, an extension layer between Network
and MAC layers. However, this approach requires driver
modifications to make necessary calls to the extension layer.
Moreover, our work aims to an universal solution that can be
integrated into any commodity 802.11 wireless devices.
Beside the researches previously mentioned, many proposals
[11] [12] [13] [14] try to alleviate another method that
defined in the 802.11 standard, the Point Coordination
Function (PCF). In [11] the authors discussed two new
draft modes of operation, EDCF (Enhanced DCF) and HCF
(Hybrid Coordination Function). These new MAC-802.11
modes are being defined under 802.11e support up to eight
Traffic Classes of QoS.The DiffServ MAC Extension (DIME)
[12] provides Differentiated Services for MAC-802.11 with
Expedited Forward (EF) layer, they reuse the inter frames
spaces of PCF which guaranties low delay traffic. Similarly, in
combination with PCF, DPCF [13] improves the performance
of ad-hoc network while Adaptive Polling in [14] considers
traffic characteristics in polling. Unfortunately, PCF has
not yet widely supported by most wireless network cards
[15] while our proposed solution can implement the same
functions and QoS schemes.

III. MOTIVATION AND CHALLENGES

The main obstacle that hinders the deployment of big data
platforms on IoT devices is the limited on-board resources
and the low network bandwidth is the most critical problem.
Compared to data center servers that are wired with 1∼10Gbps
ethernet links, IoT devices, however, rely on WiFi connections
whose bandwidth is much lower and less stable. The network
limitation significantly impacts the shuffling phase in big data
jobs, where the results of a processing stage from all the
nodes are re-distributed across the cluster for the next stage. In
some applications, the data needed to be shuffled is large, e.g.,
in a typical MapReduce benchmark ‘sort’, the intermediate
data is as large as the input data. Shuffling data over the
WiFi connections could be time consuming. The problem is
magnified by the fact that big data tasks are often finished
in waves and start to shuffle their intermediate output data
around the same time causing serious self-interferences. While
all the nodes shuffle their data around the same time, their
network traffics cause significant interferences with each other.
The consequences include packet retransmissions and lowered

transmitting rates by rate adaptation that further prolong the
shuffling phase.

Here we use a simple experiment to demonstrate the impact
of self-interferences on the system performance. We conduct
a typical MapReduce job (sort) on an IoT cluster of 9 nodes,
and capture all the wireless packets. All the nodes are close to
each other with good wireless link qualities, and the external
wireless traffic is kept to the minimal level. Fig. 2 illustrates the
WiFi traffic along the job execution time. A MapReduce job
includes two computing stages (Fig. 1), Map phase consisting
of multiple map tasks and Reduce phase with reduce tasks. The
vertical bars show the amount of bytes sent by each node per
second (each color represents a different node). The horizontal
blue bars indicate the execution time of all the map tasks, and
the long red line is the execution of the only reduce task.

0 50 100 150 200
Time (s)

0

1

2

3

4

5

B
ye

ts
 tr

an
sf

er
re

d
(M

B
)

Intermediate data transmission (178 seconds)

map task

reduce task

Fig. 2. An example of sorting 256M data with Hadoop running on a cluster
of 9 Raspberry Pis

Obviously, shuffling intermediate data in this job takes an
extremely large portion of the whole execution time. In this
experiment, a total of 227K data packets are transmitted. The
following three measurements show the major negative impact
of the self-interferences.

Link layer retransmissions. The most direct effect is the link
layer retransmission caused by signal interferences between
different transmitting pairs in the cluster. In this particular
test, there is only one reduce task, i.e., the receiver of the
intermediate data, but multiple map task hosts may send data
at the same time causing the interferences. We observe that
there are 82K link layer retransmissions accounting for 36.1%
of all the packets. All these retransmissions incur additional
network workload and prolong the shuffling time.

Transmitting rate. Another consequence of link layer retrans-
missions is the lowered transmitting rate determined by the
rate adaptation algorithms. As a mandatory module in 802.11
standards, rate adaptation adjusts the transmitting rate to adapt
the dynamic wireless link quality. However, when a packet fails
to be delivered, it is hard for the rate adaptation algorithm to
distinguish if it is caused by interferences or poor link quality.
As a result, the transmitting rate will be changed to a lower but
more reliable one assuming the failure is caused by poor link
quality. The following Table I compares the transmitting rates
of retransmitted packets and successfully delivered packets.
Apparently, retransmission packets tend to use lower rates that
further increase the transmission time.

TX Rate (802.11g) 54M 48M 36M 24M < 24M

Retransmission 0% 42% 31% 15% 12%

Successful delivery 71% 23% 4% 1% 1%
TABLE I. COMPARISON OF TRANSMITTING RATES

TCP retransmissions. Finally, intermediate data transmissions
are based on TCP protocol, and severe interferences may cause

811

TCP retransmission when the delivery delay exceeds the time-
out parameter. In this experiment, we find that there are 8.3K
TCP retransmissions excluding the link layer retransmissions
in the trace. This additional network overhead accounts for
about 6% of the total intermediate data size.

Above all, the self-interferences caused by big data pro-
cessing applications could significantly affect the link-layer
transmission over the wireless links. In this paper, we aim
to develop a link-layer scheduling scheme with the knowledge
of the application-layer run-time status to mitigate the impact
of self-interferences.

IV. DESIGN OF OWLBIT

In this paper, we develop a holistic cross-layer framework
that weaves big data application run-time information with
WiFi packet scheduling to improve the overall performance
(we maintain our source codes at [16]). To the best of our
knowledge, this is the first system work that integrates big
data processing platforms with IoT devices. In this section, we
present the design details of OWLBIT. We first introduce the
architecture of our system including three major components.
Then we present each component in a subsection.

A. Sketch of Our Solution

Our solution targets on representative data-parallel plat-
forms deployed on a IoT cluster with a master node and
multiple slave nodes. Our main idea is to adopt a centralized
token-based WiFi packet scheduler to avoid self-interferences.
Only the node granted with the token can transmit data during
a time window. We develop an algorithm that selects the
best candidate to hold the token and adjusts its window size
according to the run-time information of job execution and
link quality. In particular, our system consists of the following
three components:

• Packet scheduling algorithm: This is the main algorithm
running at the master node that determines the packet
schedule of all the slave nodes. The main objective is to
avoid interferences while satisfying each slave node’s traffic
demand. Different from prior wireless packet scheduler, our
system adopts a large granularity when allocating a time
slot to a slave node. Based on the information reported
by the monitor module, this algorithm first estimates the
time needed for each node to transfer its data. The token
is granted to the node that needs the most transfer time. Its
window size is determined based on the predication of the
data generation so that during the time window, no other
nodes will have longer transfer time than the selected node.
When there are multiple active jobs, the algorithm gives a
node a higher priority if it hosts the tailing tasks of a stage.
Quickly transferring those tasks’ intermediate data helps
speed up the next stage and further release more system
resources.

• Monitor module: This module is running on each slave
node. It first monitors the status of the big data applications
including the progress of the tasks hosted by the slave, the
intermediate data that has been generated. In addition, it
monitors the link quality between the slave node and all
other nodes in the cluster. All the information is reported
periodically to the packet scheduling algorithm.

• Packet control module: This module is deployed at slave
nodes interacting with the packet scheduling algorithm on
the master’s side to enforce the determined packet schedule.
Our module implements a virtual network interface to cap-
ture all the outgoing data packets and keeps them temporar-
ily in a buffer. The buffered packets are sent only during the
scheduled slot following a polling protocol initialized by the
master node.

• Inter-process messaging module: This is an auxiliary module
that supports short message communication between other
modules.

Fig. 3. Architecture of OWLBIT

B. Packet Scheduling Algorithm

In this subsection, we present the packet scheduling algo-
rithm for shuffling the intermediate data. Our basic approach is
to allow only one node to transmit the intermediate data during
an assigned time window. The objective of this algorithm is
to determine the transmitting node and its allocated window
size. We consider a cluster of n IoT nodes, where all the nodes
can directly communicate with each other via wireless links.
The following information is reported by the slave nodes via
the monitor module and recorded at the master node: (1) Rij

indicates the effective throughput for transmitting intermediate
data between node i and j; (2) Dij denotes the amount of
data ready for shuffling at node i generated by job j; (3)
dij indicates the data generation rate of job j at node i. In
addition, we consider the allocated time window is k ·w, where
w is a fixed epoch length configured by the system. Thus,
the scheduling algorithm needs to return a node index and its
window size represented by k for shuffling data.

The details are illustrated in Algorithm 1. It includes
mainly two parts. The first part (lines 1–13) is to determine
the node to hold the transmission token, and the second part
(lines 14–24) is to derive the window size. The main metric
we consider in the algorithm is called Expected Transmission
Time, ETT in the algorithm. It represents the time needed for
each node to transmit all the held data. In the first part, our
algorithm simply selects the node whose ETT is he maximum.
The algorithm enumerates all the active jobs, and adds the

transmission time to ETT (lines 4–8).
Dij

Riu
represents the

transmission time per node per job, where u is the receiver
node, i.e., the host node of job j’s reduce tasks. For the jobs
that are close to their finish, we assign a higher priority by
multiplying the transmission time with a parameter α > 1.

In the second part, our goal is to assign multiple epoch
to the selected node if possible. In practice, there is always
protocol overheads while switching the transmitting node. We

812

aim to avoid unnecessary switch by estimating the ETT at
the end of each epoch. The main structure is a while loop
where each round k is increased by one. Line 16 calculates
the ETT of the selected node at the end of the epoch. Since it
has transmitted for a epoch, w is deducted from its ETT . But
we also need to consider the new data generated during the
epoch. In lines 17–22, the algorithm checks all other nodes’
ETT s and compare with the selected node. Once the selected
node is no longer the best choice, the loop terminates and the
value of k is returned.

Algorithm 1: Packet Scheduling Algorithm

Input : {Rij , Dij , dij , w}
Output: The selected node sel and its assigned

window size k

1 for each node i do
2 for each active job j do
3 u is the receiver of job j’s shuffling data
4 if job j’s progress > τ then
5 ETTi = ETTi +

Dij

Riu
· α

6 else
7 ETTi = ETTi +

Dij

Riu

8 end
9 end

10 if ETTi > max then
11 max = ETTi sel = i
12 end
13 end
14 k = 1
15 while true do
16 ETTsel = ETTsel − w +

∑
j

dij ·w
Riu

17 for each node i �= sel do
18 ETTi = ETTi +

∑
j

dij ·w
Riu

19 if ETTi > ETTsel then
20 break
21 end
22 end
23 k = k + 1
24 end
25 return sel and k

Implementation. We develop a protocol between the master
and slave nodes to implement the scheduling algorithm. At the
beginning of every epoch, e.g., w seconds, each slave node
pushes its report message to master node via a reliable TCP
channel. The contents of these messages are constructed by the
monitor module at each slave. We maintain these messages’
sizes to be as small as possible and maximize the transmitting
rate. At the server/master site, a dedicated thread collects these
messages from the slaves with a proper and small period of
time (t < w). To make sure all nodes sending their reports on
time, the master then broadcasts a quick signal to (1) reset the
timer of every node, and (2) if a node is having problems with
its clock and has not reported during the current epoch, the
broadcast signal will trigger this node to immediately line up
its clock as well as submit its late report. Note, at this moment,
the time left in this epoch will be equal to w − t. The rest of
the protocol is as follows:

1) The master node will check whether there is an active
algorithm (Packet Scheduling Algorithm). If it finds one that
has been plugged in, the algorithm will be applied and gone
through to compute the size of next time-window (time slot,
the time needed to transfer output data) as well as determine
a next sending node. In case that no algorithm is found,
Round-Robin scheduling [17] will take place by default.

2) The time-window will be written into a packet as a token
and only propagated to the selected next sending node.

3) As soon as a slave received the token which contains a
time-window, it sets a timer for k · w seconds equal to the
time-window and starts to transmit its shuffling data. During
this period, no other nodes will be sending.

4) When this timer ends, the node signals (‘finished’) the
master. At the same time, the data transmission is halted
and any newly generated shuffling data are queued.

5) Once the master node receives the slave’s ‘finished’ signal, it
floods a message to every node requesting for fresh updates,
and then it restarts the procedure. Note that this broadcast
message is identical to the one we used to reset and correct
the slaves’ clocks as we describe above.

Time Synchronization. For every network scheduling solu-
tion, a common problem is the synchronization of the clocks.
This condition is rarely achieved by just utilizing the machines’
internal clocks. It is even more difficult for small IoT devices.
Time shifting among the cluster’s members consequently leads
to ineffective scheduling decisions. We address this problem by
placing a Centralized Scheduler inside our cluster, that is the
master node. Other nodes act as workers and strictly follow the
instructions from their scheduler for transmission duration. The
workers block their outgoing traffic until a further instruction
comes (the time-window token). A node can only transmit its
output queue when it receives a time-window token from the
scheduler. This node also notifies its master immediately after
it spends the time-window. By this way, only one clock is
ticking at a moment.

C. Monitor Module

Our monitor module consists of two major components,
one is to monitor the run-time status of big data applications,
and the other is to measure the wireless link qualities.

Hadoop Parameter Collector. This is the main implemen-
tation of monitor module that binds to Hadoop Framework
core of every slave node. We inject our surveillance codes into
the Shuffle Handler Channel as well as the Reducer Tracking
Record of Hadoop to pullout useful information in runtime.
The records to be kept track of will be store locally, such as job
progress, reducer location, amount of output data that is ready
to shuffle, have been shuffled and the mapper’s output has
been failed to send. Periodically, every worker keeps checking
this module in background, reads the recorded information
and reports the selected pieces to the Master (the Centralized
Scheduler). The selected information is the amount of bytes
needed to send or shuffle which was calculated based on the
facts that some output data have already been sent, some
were failed to be sent (time-out due to network congestion).
Fig. 4 shows how the node calculates total size of data needed
to be reported. Each slave node reads the recorded runtime
information of Hadoop (read-cursor start from the last stopped
point plus one) and accumulates the size of mapper’s output.

813

If the status of current cursor’s position is either “Finished”
or “Failed”, then this accumulating data size will be deducted
by the data size in current position. The latest number is the
selected information and will be reported. It is easy to see that
at the end of a job, the number of new events in that job will
be equal to the finished and failed events. The server collects
these messages for computing and assigning time-windows to
each slave. When the data have been sorted out, the slave node
quickly notifies its master so that this server can cut short
the assigned time-window and allows other nodes to take turn
earlier.

Fig. 4. An example of how the slaves read the recorded events, the read-
cursor starts from the first record (at the beginning) or from the last stopped
location (the following periods). Accumulated data size will be deducted in
case the status is any other than“New”

Link Quality Measurement Unlike traditional clusters whose
all member servers are close to each other, an IoT cluster is
likely spreads over a much larger area with complex terrain.
Link quality or bandwidth between a pair of node may be
different with other pairs. Some have lower speed network
links and would require more air-time to transmit than others.
Meticulously measuring and updating the link quality of every
pair to master node can increase the efficiency of the packet
scheduling algorithm. Another critical benefit of this update
is allowing the transmitter to balance the speeds between its
virtual NIC and physical NIC. The architecture of using virtual
NIC will be discussed in the next subsection. Basically, our
system create a virtual NIC named VNIC0 that is the direct
network interface to applications. At the beginning of a time-
window, a node starts to transmit by just writing the data to
its VNIC0. Since this action is much faster than the physical
NIC speed. Therefore, at the end of such time-window, there
often are hundreds to a thousand of packets are still in the
egress queue of the physical NIC. Consequently the devices
keep interfering the channel. We implemented this module to
measure and update the speed between two nodes in packet
per second. Thus the node can control how many packets can
be carried out per second.

D. Packet Control Protocol

To optimize the effectiveness of our scheduling decisions
and forward to minimize the wireless interferences, we de-
signed our Packet Control Module that could guarantee only
one host is transmitting at a time.Thus, such a way requires
the machines to delay and hold their outgoing packets while
waiting for the master’s instructions to indicate a new trans-
mission period. We satisfy this requirement by implementing
the packet scheduling in OWLBIT using Virtual Network
Interfaces, VNIC. This Linux’s feature (Tun/Tap) [18] offers a
way to bring networking to user space and thus user’s programs
cannot only see but also manipulate raw network traffic. We
split the packet flows into two phases:

• Upon an outgoing packet from local processes (Hadoop-
Yarn in this case) is ready, it is directed out via a virtual
network interface (VNIC1) instead of a physical NIC.
From here the packet is copied to machine’s memory, in
a linked queue, waits for a scheduled time slot to be
actually transmitted out. We can call this interface a dummy
outgoing port, because the packet has not wen anywhere yet.
Intuitively, the outgoing traffic can be held or delayed just
by this dummy port.

• Whenever a node receives the token from server that allows
it to transmit, those packets in its memory will be delivered
to physical NIC (WiFi NIC) in FIFO orientation via another
virtual network interface, VNIC0. We will discuss the need
of this VNIC0 right below.

Why VNIC0? Commonly, to send data to the remote destina-
tions, a programmer would utilize sockets (e.g., TCP sockets)
to setup the network channels. Since socket is point-to-point
connection, there will be multiple pairs of socket for each
pair of transmitters. On the other hand, more often, the linked
queues carry a list of packets aim to different destinations,
therefore, he or she, the programmer must also takes care
the routing mechanisms. With the scale of IoT devices, a
normal IoT cluster could contain hundred to thousand units,
consequently, the routing and socket processing at user-level
burden the limited resource of such small devices. Moreover,
another problem needs to be accounted is fragmentations, Fig.5
demonstrates how a big data packet goes through the sockets.
Very much like any physical interfaces, a virtual network
interface distributes packets in MTU size. Recall that a packet
got out of the dummy interface are still inside the device, soon
or later, this packet must travel through a real NIC on reaching
its remote destinations. Thus, such packet is likely to be sliced
again into multiple chunks while carrying out the physical
interface due to additional headers. Now, at the receiver site,
if sockets are in used, the operating system decides to forward
this packet to the socket corresponding to the sender. From
here this packet will be redirected to VNIC1 i.e., the dummy
interface since the Hadoop-Yarn’s processes are binding to it
(We cannot just send data to Hadoop-Yarn’s processes). The
programmer’s codes should be smart enough to completely
read every packet from the socket e.g., read multiple times
per packet. Otherwise, incomplete packet will be discarded
at VNIC1 by default, like every physical NIC. We offer a

Fig. 5. Packet journey with sockets, some routing and fragmentation tasks
needed to be processed at user-program level

way to ease these works and problem by creating another
virtual network interface i.e., VNIC0. Fig.6 shows the packet
being fast forwarded across the journey. All the packets in
memory will be pushed to the Forwarding Information Base
(FIB) by just writing them back to the VNIC0. A difference
between the original packets and those who have been pushed

814

back to FIB is the Input-interface which is the VNIN0. Using
this conditional element, we can redirect the traffic out of
an interface that we want (in this case, the physical wireless
interface) using Policy Based Routing. The act of creating
a loopback without changing the IP headers may trigger IP-
Spoofing prevention, a common security feature in Linux that
has another name Unicast-Reverse-Path Filtering (uRPF). Even
if IP-headers have been changed, packets could still be dropped
due to the lack of routing information. Disable this feature
could be dangerous .Fortunately, the Tun/Tap interfaces are
just internal; therefore, disabling IP-Spoofing will not create
any vulnerabilities. On the other hand, Edge devices do not
involve in any enterprise routing, in fact, they only connect
with each other in the same rack. For these reasons, it is
safe to turn-off uRPF. With a few additional tweaks in routing
configuration we made sure that FIB knew where to forward
these traffics. Thus the routing is delegated. As packets go
down to lower layers of the kernel’s network, reaching remote
hosts, the fragmentations if any. will be well take-care by
operating systems as usual. More importantly, the kernel at
receiver site is smart enough to send this packet to Hadoop-
Yarn directly. Hence fragmentation will not border us anymore.
And lastly we can replace multiple sockets implementation
(even raw sockets) with just a few lines of codes.

Fig. 6. Packet journey with VNIC0, delegate most of the complex network
tasks to the kernel

E. Inter-process Messaging

As our implementation is split into several small modules,
each unit in the cluster running an instance of these module.
Yet requires an effective mechanism for these modules to
communication with each other. We adopted ZMQ a light
weight, fast, simple and reliable messaging library. Its allows
us to be able to push hundreds or thousands of hundred-
byte messages per second within the cluster. Although these
message exchanging happen very fast compared with the data
shuffling, we still want to assure they do not interfere with the
data transmission. By having the messaging traffic flows in a
different WiFi channel, we eliminate the interference caused
by inter-process communication if/any.

V. PERFORMANCE EVALUATION

We evaluate OWLBIT on two dedicated clusters of IoT
devices. Table II shows the detail setup and specifications of
these clusters. Each cluster is comprised of nine (9) Rasp-
berry Pi 3 model B with identical hardware and network
configurations. They are all running Raspbian Jessie Lite as
the operating system (Linux 4.9.13-v7), the minimal image
based of Debian Jessie. We attach an additional WiFi NIC to
each Raspberry Pi and use this interface as our main network

TABLE II. CLUSTER CONFIGURATION

Category Configuration
Processors Quad Core 1.2GHz Broadcom

ARM BCM2837 64bit CPU

Memory 1GB RAM

First Wireless Network EW-7811Un USB dongle wireless
LAN

Second Wireless Network BCM43438 Build-in wireless LAN

IOs 4 USB 2 ports, HDMI

Other Network Ethernet LAN 10/100/1000

Number of nodes Per Cluster 09

Wireless Sniffer a commodity computer with Un-
buntu 16

TABLE III. HADOOP CONFIGURATION

Setting Master Slaves
Map Task Memory none 256MB

Map Task CPU none 1 vCore

Reduce Task Memory none 512MB

Reduce Task CPU none 1 vCore

Number of Reducers none 1

AM memory 128MB 128MB

AM CPU 1CPU 1CPU

Replicas 8 8

BlockSize 16MB 16MB

channel in OWLBIT. Since the build-in WiFi NIC is less
flexible in term of configuring and monitoring, we assign
them for the inter-process communication discussed in the
previous section. In addition to keeping the network private and
avoiding middle hops in packet transmitting, we use wireless
ad-hoc mode in stead of managed mode (usually comes with
access points).The maximum measured throughput we can get
with these configurations is, roughly 23 Mbps. We target our
solution to achieve this number. Because IoT devices mainly
use wireless connections to communicate with each other, we
place a wireless sniffer near the clusters, and by this way, we
are able to collect the experiment results.

A. Methodology

We choose a Hadoop-Yarn version that supports ARM
chipsets as the Big Data Framework (Hadoop 2.7.2). One
raspberry pi node in each cluster is assigned as the master,
in charge of Hadoop Jobtracker and Namenode services.
The remaining nodes are the slaves or workers, running the
Hadoop’s services such as Tasktracker and Datanode. Due
to the limitation of hardware’s resources, we cannot reuse
the default configuration provided by Hadoop. For example,
the default requirement of 4 GB of RAM for each map-
task, is fours times larger than the total available RAM of
a Raspberry Pi 3. Moreover, We also realize that such IoT
devices have much slower CPU speed compared with cloud-
site servers. Therefore, large Hadoop Distributed File System
(HDFS) block size will be impractical in term of computational
time. Table III summarizes our version of Hadoop’s default
configurations that are applied to the experiments. For input
data sets, in this paper, we only focus on the shuffle stages
of MapReduce, thus input data sets are distributed to HDFS
before hand with the number of replicas equal to the number
of slaves, i.e., eight replicas. This intensional setup maximizes
the benefits of data locality feature. Hence the network traffics
are mainly data shuffle.
To evaluate OWLBIT against native Hadoop, we setup one
Raspberry Pi cluster with the configurations in Table III
while the other cluster, with the same setup, has OWLBIT

815

installed as the difference. We use terasort and wordcount
benchmarks from Hadoop distribution as well a HIPI based
images transcoding application [19] to evaluate the two clus-
ters. HIPI is an open source library for image processing which
is designed to adopt the advantage of Hadoop MapReduce
parallel computing.

Hadoop Benchmarks. We choose terasort as the main Hadoop
benchmarking since the intermediate data size generated by
this program are naturally at least the size of the input. To
test OWLBIT with various size of data sets, we ran teragen to
generate multiple sets of data, this is a data generator program
that’s also included in Hadoop distribution. For wordcount,
we have a bash script that can generate large text files of
none duplicated words, this type of text files make wordcount
emits as much intermediate data as the input. We divide these
Hadoop benchmark workloads into three categories, based on
the size of input data: small, medium and large. Small jobs
are jobs with the input of 256 MB or less, medium jobs have
input size of 512 MB and 1024 MB are the large jobs.

Fig. 7. Architecture of a HIPI MapReduce program

Image processing with HIPI. In this experiment, we simulate
a real-life scenario where a private cloud of IoT devices can as-
sist traditional cloud by pre-processing data. We deploy HIPI,
a handful open source library to our clusters. As described
in [19], HIPI facilitates efficient and high-throughput image
processing with MapReduce style parallel programs typically
executed on a cluster. It provides a solution for how to store
a large collection of images on the HDFS and makes them
available for efficient distributed processing. Fig. 7 illustrates
every step of a MapReduce program that uses HIPI library.
The input data is an image bundle object (HIB) which is a
collection of pictures in a folder (any type of image format).
This object can be easily created by the provided handful tools.
At the first stage, input file (HIB object) will be extracted to a
series of selected images that satisfied the predefined filtering.
Then these selected images will be assigned to map tasks
proportionally to perform some common prepossessing such
as cropping, color space conversion and scaling. Map tasks
then emit and shuffle intermediate data to reduce phases for
next computation tasks, e.g., compressing, feature extracting or
format converting. For this experiment, we adopt one of the
HIPI’s example codes, i.e., HibToJpeg, this application will
convert pictures of various format to jpeg extension. Since the
original source code does not have reduce phase, we modified
the codes so that the program will run some extra activities at
reduce phases hence there must be the shuffle sub stages.

B. Results

Improvement of Job Execution Time: We first show the
advantage of OWLBIT via the Job Execution Time. For each
job type and workload .e.g., terasort with 256MB input data,
wordcount with 512MB input data, HibToJpeg and 256MB

Fig. 8. Job Execution Time Comparison

of input pictures etc., we take the difference between job
execution time associates with native Hadoop cluster and the
one under OWLBIT to show the improvement. We average
each job over five iterations.

In Fig. 8, we plot the differences in job completion
time of all types of jobs and data sizes. The plot shows
that under OWLBIT, the execution times of every job are
shorter compare with native Hadoop. Terasort job in OWLBIT
cluster with 256MB input data has the shortest execution time
about 212 seconds and this trend continues to the greater
data sizes (512MB and 1024MB). OWLBIT generated big
distances from the corresponding trend in native Hadoop with
the peak reached 168 seconds. The figure also shows other
jobs have longer completion times than terasort , for exam-
ples, the image conversion jobs (HibToJpeg) require heavier
computation, while wordcount needs to distribute the result
at the end. However all jobs associate with OWLBIT have
shorter execution time than their Hadoop native counterparts,
the differences are from 33 to 116 seconds earlier. These
achievements are because of the improvements in quality of
wireless network, but there is another factor that expedite
the job completion. Recall that our scheduling algorithms
granulate network traffic to intermediate data unit which is a
block size of data, as OWLBIT tries to deliver a full block per
time-window. The arrival time of the first intermediate block
must be sooner than the case in native Hadoop where output
data blocks transmitting in waves (send multiple at a time).
As soon as receiving a whole intermediate block, the reducers
start the computation and thus the execution time of reduce
phases must be shorter.

Fig. 9. Hadoop Benchmarks Shuffle Time Comparison

816

Fig. 10. HibToJpeg Shuffle Time Comparison

Accumulated Shuffle Time : As mentioned, shuffle stage
is our main target which usually dominates a large por-
tion in job completion time. The results in Fig. 9 show
that Hadoop benchmarks achieved significant improvement
in shuffling time, from 12% to 33% faster than the Hadoop
native. These achievements re-appear in the image processing
experiments with reductions of shuffling time are from 10%
to 15% (Fig. 10). Our scheduling solution reduce a great
deal of interference by assuring only one host can transmit
at a time. By extracting the information from the sniffer, we
collect WiFi traces and plot the transmissions of all nodes
through time. We note that the rate adaptation is barely seen
in the traces, hence the overall throughput in shuffle stages are
nearly maximum speeds (23 Mbps). Our piloting in Fig. 11
hardens this conclusions by showing the clarity of different
transmission sessions. Each chunk of connected bars with the
same color represents the shuffling traffic of a node during a
time-window.

Fig. 11. An example of sorting 256MB data with OWLBIT

VI. CONCLUSION

In this paper, we present a framework that supports big data
platforms running on IoT devices. The main design intuition is
to utilize application-layer information to guide the data packet
scheduling at the link layer. We implement all the modules in
state-of-art devices and platforms (Raspberry Pis and Hadoop-
Yarn). Our evaluation is based on real system experiments, and
the results show significant performance improvement.

REFERENCES

[1] Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma, Khaled Elmele-
egy, Scott Shenker, and Ion Stoica. Delay scheduling: A simple
technique for achieving locality and fairness in cluster scheduling. In
Proceedings of the 5th European Conference on Computer Systems,
EuroSys ’10, pages 265–278, New York, NY, USA, 2010. ACM.

[2] Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi Wieder, Kunal
Talwar, and Andrew Goldberg. Quincy: Fair scheduling for distributed
computing clusters. In Proceedings of the ACM SIGOPS 22nd Sympo-
sium on Operating Systems Principles, SOSP ’09, 2009.

[3] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang. The hibench
benchmark suite: Characterization of the mapreduce-based data analy-
sis. In 2010 IEEE 26th International Conference on Data Engineering
Workshops (ICDEW 2010), pages 41–51, March 2010.

[4] S. Ibrahim, H. Jin, L. Lu, S. Wu, B. He, and L. Qi. Leen:
Locality/fairness-aware key partitioning for mapreduce in the cloud.
In 2010 IEEE Second International Conference on Cloud Computing
Technology and Science, pages 17–24, Nov 2010.

[5] M. Hammoud, M. S. Rehman, and M. F. Sakr. Center-of-gravity reduce
task scheduling to lower mapreduce network traffic. In 2012 IEEE Fifth
International Conference on Cloud Computing, pages 49–58, June 2012.

[6] Faraz Ahmad, Srimat T. Chakradhar, Anand Raghunathan, and T. N.
Vijaykumar. Shufflewatcher: Shuffle-aware scheduling in multi-tenant
mapreduce clusters. In 2014 USENIX Annual Technical Conference
(USENIX ATC 14), pages 1–13, Philadelphia, PA, 2014. USENIX
Association.

[7] Vivek Shrivastava, Nabeel Ahmed, Shravan Rayanchu, Suman Banerjee,
Srinivasan Keshav, Konstantina Papagiannaki, and Arunesh Mishra.
Centaur: Realizing the full potential of centralized wlans through a
hybrid data path. In Proceedings of the 15th Annual International
Conference on Mobile Computing and Networking, MobiCom ’09,
2009.

[8] M. Kim, S. Han, and M. Lee. Demand-aware centralized traffic
scheduling in wireless lans. In 2016 IFIP Networking Conference (IFIP
Networking) and Workshops, pages 144–152, May 2016.

[9] J. Manweiler, N. Santhapuri, S. Sen, R. Roy Choudhury, S. Nelakuditi,
and K. Munagala. Order matters: Transmission reordering in wireless
networks. IEEE/ACM Transactions on Networking, 20(2):353–366,
April 2012.

[10] Ramana Rao Kompella, Sriram Ramabhadran, Ishwar Ramani, and
Alex C. Snoeren. Cooperative packet scheduling via pipelining in
802.11 wireless networks. In Proceedings of the 2005 ACM SIGCOMM
Workshop on Experimental Approaches to Wireless Network Design and
Analysis, E-WIND ’05, pages 35–40, New York, NY, USA, 2005. ACM.

[11] P. Garg, R. Doshi, R. Greene, M. Baker, M. Malek, and Xiaoyan
Cheng. Using ieee 802.11e mac for qos over wireless. In Conference
Proceedings of the 2003 IEEE International Performance, Computing,
and Communications Conference, 2003., pages 537–542, April 2003.

[12] A. Banchs, M. Radimirsch, and X. Perez. Assured and expedited
forwarding extensions for ieee 802.11 wireless lan. In IEEE 2002 Tenth
IEEE International Workshop on Quality of Service (Cat. No.02EX564),
pages 237–246, 2002.

[13] C. Crespo, J. Alonso-Zarate, L. Alonso, and C. Verikoukis. Distributed
point coordination function for wireless ad hoc networks. In VTC Spring
2009, pages 1–5, April 2009.

[14] Young-Jae Kim and Young-Joo Sun. Adaptive polling mac schemes for
ieee 802.11 wireless lans. In The 57th IEEE Semiannual Vehicular
Technology Conference, 2003. VTC 2003-Spring., volume 4, pages
2528–2532 vol.4, April 2003.

[15] M. Barry, A. T. Campbell, and A. Veres. Distributed control algorithms
for service differentiation in wireless packet networks. In IEEE
INFOCOM 2001, 2001.

[16] owlBIT. https://github.com/bboycoi/RPi-Hadoop/.

[17] Rasmus V. Rasmussen and Michael A. Trick. Round robin scheduling -
a survey. European Journal of Operational Research, 188(3):617–636,
August 2008.

[18] TunTap kernel description. https://www.kernel.org/doc/Documentation/
networking/tuntap.txt.

[19] HIPI hadoop image processing interface. http://hipi.cs.virginia.edu/.

817

