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Abstract—

Data temperature identification is an importance issue of many
fields like data caching and storage tiering in modern flash-based
storage systems. With the technological advancement of memory
and storage, data temperature identification is no longer just
a classification of hot and cold, but instead becomes a “multi-
streaming” data categorization problem to classify data into
multiple categories according to their temperature. Therefore,
we propose a novel data temperature identification scheme that
adopts bloom filters to efficiently capture both frequency and
recency of data blocks and accurately identify the exact data
temperature for each data block. Moreover, in bloom filter data
structure we replace the original OR operation with the XOR
masking operation such that our scheme can delete or reset
bits in bloom filters and thus avoid high false positives due to
saturation. We further utilize twin bloom filters to alternatively
keep unmasked clean copies of data and thus ensure low false
negative rate. Qur extensive evaluation results show that our
new scheme can accurately identify the exact data temperature
with low false identification rates across different synthetic and
real I/O workloads. More importantly, our scheme consumes
less memory space compared to other existing data temperature
identification schemes.

Index Terms—Data Temperature, Bloom Filters, Stream Iden-
tification, Flash Memory, Multi-stream SSDs, Caching, Tiering

1. INTRODUCTION

The industrial and economical growth increases the data
appetite of computer systems. The fundamental efficiency of
all wear-leveling and garbage collection algorithms mainly de-
pends on the data temperature identification'. This is because
the performance and lifetime of flash-based storage devices are
significantly affected by the placement of data with different
temperatures [1]-[3]. Moreover, the hybrid and all flash data-
centers [4] that contain layers of different storage devices
for tiering or caching are becoming popular. In order to best
use these storage stacks, it is very important to identify and
categorize data according to their temperature, such that the
frequently used data can be placed on faster storage devices.
Lastly, with the recent innovations of memory solutions and
storage technologies such as 3D Xpoint [5], multi-stream
SSDs [6] and key-value SSDs [7] , the key towards well using
these hardware advancements is also to identify and categorize
data with respect to its temperature.
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Thus, data temperature identification is no longer just a
classification problem where the data is either classified as
hot or cold. Instead, it becomes a “multi-streaming” data
categorization problem where we need to classify data into
multiple (more than two) categories according to their tem-
perature. For example, modern storage devices such as multi-
stream SSDs would require up to 16 different data streams
categorized according to data temperatures. However, we find
that many of existing methods [3], [8]-[13] that are effective
for hot/cold data classification, fail to be able to identify more
than two categories. Moreover, although there do exist some
previous techniques [1], [3], [6], [14], [15] that are capable
of identifying exact access frequency for “multi-streaming”
data categorization or can be modified to support it, we notice
that all these existing methods either introduce significant
memory-space overheads (e.g., using data structures like tables
or queues to track data access time) or require considerable
computing overheads (e.g., in the emulation of the Least-
Recently-Used (LRU) method).

To address the above issue, bloom filter? (BF) [16] has been
adopted by some existing techniques [17], [18] to identify and
store data access frequency. However, existing BF methods
either requires many BFs in order to capture high data access
frequency, or inherits one main drawback of bloom filter, i.e.,
due to the OR operation, the BF bits that are set to 1 cannot
be reset to 0. Thus, data elements cannot be removed from
the BE. Consequently, when data set size increases or more
data elements are added to the BF, the false positive® rate of
that BF increases. To reduce the false positive rate, one has
to increase the size of the BF (i.e., the number of bits in the
BF), which thus consumes larger memory space.

Therefore, this paper strives to develop a new efficient
data temperature identification scheme, called BloomStream,
which is able to (1) provide the exact weighted data access
frequency under the consideration of data recency, which we
combinedly refer to as data temperature, and (2) reduce the
false identification rate (i.e., including both false positives and
false negatives) with low memory and computational overhead.
In particular, the output of our new scheme is the exact data
temperature for each data element and thus can be used as an

2Bloom filter is a space-efficient probabilistic data structure for checking if
an element is a member of a set or not. The time complexity of bloom filters
to check for any particular element is constant, i.e., O(1).

3A false positive error here indicates an existence of data, when it does
not.
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input for any multi-category data temperature identification.
More importantly, one of our main goals is to achieve a
low false identification rate, where false identification error
indicates a mismatch between the identified data temperature
and the actual data temperature. We notice that although
traditional BF-based methods can ensure false negative rates
to be zero by using the OR operation to insert data, they
inevitably get high false positive rates when data set sizes
become large, as discussed above. Whereas, in the problem
of multi-category data temperature identification, we need to
reduce both false negative and false positive rates, and more
precisely, reduce any mismatch between identified and actual
data temperature, i.e., false identification rate. In summary, the
main contributions of this paper are as follows:

o XOR Masking: We first modify the traditional bloom filter
by using the XOR masking operation to replace the original
OR operation when inserting data access. By this way, our
scheme can delete data (i.e., reset 1 — 0) to avoid its satu-
ration and high false positive. We analyze this modification
in Section III-A.

o Twin Bloom Filters: We further adopt two Bloom filters to

track data access alternatively and ensure that at any moment

at least one BF stores the unmasked clean copy of data.

By combining two bloom filters with XOR masking, our

scheme correctly indicates data access (i.e., decrease false

negatives) and meanwhile avoid saturating BFs (i.e., reduce

false positives). The details are presented in Section III.

Recency: Finally, we use a history BF and a history counter

list to record aggregated history information for data look

up. We periodically decay the access frequency in the
history counter list and maintain aggregate data temperature
considering frequency and recency. This transition process

is described in Section III-D.

e The source code of our data temperature identification
framework can be available at Github*, hoping towards its
better usability and further improvement.

II. MOTIVATION AND BACKGROUND

In this section, we present our workload analysis on data
access frequency and discuss the existing data temperature
identification schemes as well as the existing bloom filter
related hot/cold data identification schemes.

A. Workload Analysis

As discussed in Section I, access frequency is one of the
very important metrics for data categorization [2], [19], [20].
Thus, we first analyze different real I/O workload traces and
study the distribution of their data access frequency. Figure 1
plots the probability density functions (PDFs) of 2 sample
I/0 workloads. The detailed description of these workloads
will later be discussed in Section IV. From Figure 1, we
can observe that the distribution of access frequency (e.g.,
the peak of PDFs and the range of access frequency) varies
widely across different I/O workloads. For example, the MSR
workload (see Figure 1 (a)) has access frequency of its

“https://github.com/bhimanijanki/bloomStream
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Figure 1: Probability density functions for access frequency of
different real traces such as a) MSR, and b) FIU

majority I/Os (i.e., the peak point of its PDF) around 100
and has a long tail in the distribution with access frequency
up to 1200. In contrast, the FIU workload (see Figure 1 (b))
have majority of their I/Os with access frequency around 4 and
their maximum access frequency is less than 100. Given these
observations, we believe that the traditional schemes [8], [17],
[21], which only capture up to some limited access counts,
may not be able to give a good data temperature categorization
for all I/O workloads.

B. Existing Data Categorization Schemes

Now, we turn to discuss some existing schemes that are
capable to separate data into multiple categories rather than
just hot or cold. In [18], Hsieh et al. proposed a hot data iden-
tification algorithm, named a direct address method (DAM)
as their baseline. By using a list of logical block addresses
(LBA), simple counters and periodic decay, DAM captures
the frequency and recency information of each LBA. We also
use DAM as the baseline to compare the correctness of data
temperature identification in our evaluation.

There are some machine learning based data temperature
identification schemes that are also capable of identifying
more than two categories of data. [1] and [14] presented
the clustering schemes based on extents and features to split
the address space into up to N hot and cold categories
of different sizes. Although these machine learning based
algorithms are very flexible in terms of number of temperature
categories and number of features, they still need a large
amount of computational cycles (more than 2,000 clock cycles
per operation).

C. Existing Schemes Using Bloom Filters

Bloom filter (BF) [16] is an efficient data structure. It
contains a bit array of m bits, initially set to 0. To insert an
element to the BF, the element is first fed to & hash functions
and then set the corresponding k bit positions in the BF’s
array to 1. To check if an element is in the set, we first get
the k bit positions by feeding the key value of that element
to all £ hash functions. If all the k bits are equal to 1, then
the element is in the BF. However, there exist two possible
cases if all the k bits are 1: (1) the element is actually in the
set, and (2) the element is actually not in the set. We call
the latter case as a false positive that is caused due to the
insertion of other elements. Given the number (n) of elements
expected to have in the BF and the acceptable error rate (p),
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we can use the following formulas to calculate the number
(m) of bits needed in the BF and the number (k) of hash
functions we should apply. Where, m = —n * In(p)/(In(2)?)
and k = m/n * In(2). Usually, the false positive rate in the
BF-based algorithms is low. However, when the number of
elements stored in the BF increases, the rate of false positive
also increases, i.e., indicating an existence of an element when
that element is not present. Additionally, major drawback of
the BF lies in its incapability of deleting data. As a result,
no longer important or older information cannot be removed
without deleting entire BF.

Hsieh et al. [18] presented a scheme MHF that adopts
multiple hash functions and one BF with a D-bit counter for
each bit position in the BF. It captures the frequency of a data
block by increasing the counter values of its corresponding
BF bit positions by one for each access. The recency of
a hot data block is captured by dividing its corresponding
counter values by 2 periodically. If the values of all D/2
most significant bit positions are equal to 0, then that data
is considered as cold otherwise hot. To make it capable to
separate data into multiple categories, we need to modify it
by introducing multiple thresholds. For example, with the 4-
bit counters, one can say that the data belongs to the hottest
category if its access counter values are all greater than or
equal to 8 (binary - 1000). If its counter values are greater
than or equal to 4 (binary - 0100), but lesser than 8 (binary -
1000), then that data belongs to the next hotter category and
so on. Moreover, MHF still faces all bloom filter’s issues as
discussed above. Later, in our evaluation, we use the modified
MHF to compare with ours.

Recently, [17] proposed another BF based scheme called
multiple bloom filter (MBF) to efficiently classify data into
hot or cold. This scheme adopts a set of V' independent BFs
to capture the V times occurrences of data. In order to record
higher number of occurrences of data, MBF needs to have
more physical BFs, especially for the workloads with large
peak access frequency such as MSR, as shown in Figure 1
(a), MBF needs to have at least 100 BFs. Given that, we note
that MBF is not suitable to directly adapt to multiple categories
identification.

III. FRAMEWORK

In this section, we present BloomStream, a new data tem-
perature identification scheme that aims to achieve accurate
multiple stream data categorization with low overhead of
computation and memory space. The goal of our scheme is to
keep track of I/O requests of logic blocks, and when queried
with a LBA (logic block address), return a temperature value
indicating the predicted access frequency and recency of that
block. The main performance metric is the accuracy, i.e., the
difference between predicted and actual temperature values.

Figure 2 depicts the main structure of our proposed Bloom-
Stream. We divide a sequence of I/O requests into multiple
windows each consisting of the same number of I/O requests.
Our scheme records two sets of information: one for the
current window (left side of the dashed line in Figure 2),
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Figure 2: Our scheme BloomStream and its operation

and the other for aggregated historical requests (right side in
Figure 2). Both sets consist of Bloom filter(s) and a list of
counters, where each counter is associated with a bit in the
Bloom filter(s). Our basic intuition is to use Bloom filter to
check the existence of a LBA in the history, and if it does exist,
use the counter to return a temperature value. The information
for the current window consists of two Bloom filters (BF
and BF’) each with M bits, and a counter list (Counter).
The aggregated information is represented by one Bloom
filter and another counter list (BF'_hist and Counter_hist).
Different from the traditional Bloom filter, our Bloom filter
adopts XOR masking operations. In the rest of this section,
we first explain the motivation and effects of our new XOR
masking technique (Subsection III-A). Then, we describe our
algorithms for the two basic operations, LBA data insert and
query (Subsections III-B and III-C). Finally we present our
algorithm that aggregates the historic information for access
prediction considering data recency (Subsection III-D).

A. XOR Masking in Bloom Filter

In this paper, when adding a data into a Bloom filter, we use
XOR masking rather than regular OR operation based on the
following two motivations. First, traditional Bloom filter does
not support deleting data, thus could get saturated when we
keep adding new data. It results in a high false positive rate.
XOR masking used in this paper can play a role of resetting
the bits (1 — 0) in a Bloom filter, and help mitigate the
saturation problem. Second, our goal of using Bloom filter is
different from regular Bloom filter usage. Traditional Bloom
filter needs to guarantee O false negative, and the only accuracy
metric is the false positive. When using XOR masking, our
scheme yields both false negative and false positive. However,
our goal is to return accurate temperature value upon a LBA
query. Thus, a false positive is as bad as false negative. In
this subsection, we first analyze the impact of XOR masking
on BF saturation. Then, we define our new accuracy metric
considering both false negative and false positive.

BF saturation ratio. We define BF saturation ratio as the ratio
of the number ‘1’s over the BF bit length. Assume that the
hash functions are independent and perfectly random, we use a
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BF with m bits, £ hash functions, and n is the amount of data
to be stored in BF. An operation of changing bit from 0 — 1
is refereed as set a bit and that from 1 — 0 is refereed as reset.
In a traditional BF with OR operations, the probability that a
given bit is set to 1 when adding an item with & hash functions
is 17(17%)'\ In another word, a bit is 1 if at least one of the k
hash functions select it to be set. After n data items are added,
the probability that a bit is ‘1’ is Plor = 1— (1 — %)”‘k.
Let PSor(x) represent the probability that there are exactly
x ‘1’s in a traditional BF,

( )

PSor(z) = P16 - (1= P1or)™ ™
When we use XOR masking, among multiple arrivals of

the same data, for each odd number of arrivals, XOR hash
can set a bit. Therefore, the probability of setting a given bit
tolis Plxor = 1—(1— %)"‘k. Similarly, the probability
of having z ‘I’s is

( )
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Figure 3: Comparison of the probability that a specific set of k bits
are 1 in a BF of size m for traditional BF with OR and a BF with
XOR masking (m = 5, k = 3)

Figure 3 shows a comparison of the saturation probability

of a specific set of k bits, i.e., P15z and P1% yg, where
k= 3 and m = 5. We see that traditional BF gets saturated
with maximum 6 elements, while our BF with XOR masking
allows more than twice the number of elements (14 elements)
before getting saturated.
False identification. We use false identification to indicate the
errors of BF caused by both false positive and false negative.
If an existing element is not found, or a non-existing element
is found, the false identification value is increased by one.
Figure 4 illustrates an example of inserting 3 data requests and
querying a set of 10 data elements (a—j). It shows a comparison
of false identification and saturation of a tradition BF with OR
and a BF with XOR masking. We see that traditional BF using
OR gate cannot reset 1 — 0, thus once the BF bits are saturated
then the false identification drastically increases. While the
BF with XOR masking results into less number of total false
identification (7 in Figure 4) than that of traditional BF (16
in Figure 4). Depending upon I/O stream the number of false
identification may vary but from our experiments we notice
that overall number of false identifications remains smaller
compared to traditional BE.

/O stream of data chunks- a, b, b’, #hash function—3,

#BF bits—5, BFhashmap-a:1,2,3 b:3,4,5
BF with OR BF with XOR Other Possible
I/O streams I/O streams | Data
abb abb | ¢1,3,5
1 0111 0111 I d:1,3,4
2 0111 0111 | e:1,2,4
[
$13 0111 0101 I £.1,4,5
§4 0011 0010 | g:1,25
5 0011 0010 I h:2,3,4
False Positive: 0 0 8 8 0040 | 12,35
FalseNegative: 0 0 00 0021 I ji2,4,5
TotalFalse 0404848216 0+0+6+1=7
Identification:
BF Saturation
Ratio: 0,0.6,1,1 0,0.6,0.8,0.6

Figure 4: Comparison of false identification and saturation of a
tradition BF with OR and a BF with XOR masking

B. Data Insert

In this subsection, we describe our algorithm for inserting
the LBA data (see alg. 1). Overall, BloomStream uses two M -
bit BFs, a list of M counters, and K hash functions to maintain
access frequency of data in the current window. Once an I/O
request is issued to the Flash Translation Layer (FTL), the
corresponding LBA is hashed by the K hash functions. The
output value of each hash function corresponds to an index
(1 ~ M) in the Bloom filter. Instead of directly setting the
corresponding bit in the bloom filter as 1, BloomStream uses
an XOR operation to mask the current bit value with 1 and
stores the new value into the Bloom filter.

BloomStream adopts two BFs and alternatively inserts the
access information into one of these two BFs (see alg. 1). The
main purpose is to help reduce the false negative caused by
XOR masking. One of the Bloom filters (say BF) is initialized
as the current BF. BloomStream always first checks the current
BF to see if a particular LBA already exists. Later, we explain
how to look up for LBAs in our modified Bloom filter in
alg. 2. If that LBA does not exist in the current BF, then
BloomStream adds the LBA in it by masking the values in
the corresponding bits with 1 (lines 4-6). If the current BF
already includes LBA, then BloomStream stores that LBA in
the other alternative Bloom filter BF’ (lines 7-9), and switch
the role of current Bloom filter to BF” (line 10). In this way,
BloomStream can ensure that the data, after insertion, always
remains in one of the BFs and thus improve the identification
accuracy. Additionally, the corresponding counter values in
the M-bit counter list are incremented by 1 for tracking data
access frequency (lines 11-12).
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Algorithm 1 INSERT_BF()

1: procedure INSERT(X; )

2 Get one entry from submission queue - Xj

3 Hash the entry with hash functions f «— f1, f2, f3, ..., fk
4 if NOT in BF then

St /* Insert in BF %/

6: BF [f(Xj)] = BF [f(X;)] XOR 1

7 else

8: /* Insert or Mask over in BF’ */

o: BF' [f(X;)] = BF' [f(X;)] XOR 1

10: Shift the current pointer

11: /* Increment corresponding Counter bits */
12: CLAX)] = CLAX )] + 1

13: end if

14: return

15: end procedure

C. Data Query/Lookup

The other importation operation in our framework is data
query/lookup, i.e., given an LBA data return its temperature
value. alg. 2 describes the lookup procedure in our framework.
First, we apply the K hash functions on the input LBA X;
resulting into K indexes. Then, we record the index whose
corresponding counter value is the smallest. Next, we check
the index bit in the Bloom filter that we are querying (BF),
BF’, or BF_hist). If the BFs have ‘1’ on that bit, the
algorithm considers the LBA exists, and returns the aggregated
counter value (Counter) as its temperature value (lines 5—
8). Otherwise, we consider the LBA has not been accessed,
and return O as its temperature (lines 9—13). All the lookup
to query the temperature of a data are performed on BF_hist
and Counter_hist. As mentioned earlier in Section III-B, BF
Lookup while inserting the data (see line 5 in alg. 1) in BF
and BF’ is also done with the same process of alg. 2.

Algorithm 2 LOOKUP_BF()

1: procedure LOOKUP_BF(X;)

2: Hash the entry with hash functions f <« f1, f2, f3, ...
3 /% Get index of smallest counter bit */

4: index « IndexOf(min(C[f1 (Xj)1, CLf2(Xj )., CLfi (Xj)D)
5: if all BF [index == 1 then
6.
7
8

s fk

/% the I/O chunk exist */
membership < true

: temperature «— Counter[index]
9: else

10: /* the 1/0 chunk does not exist */
11: membership «— false

12: temperature «— 0

13: end if

14: return membership, temperature

15: end procedure

The main function of this module is to identify the existence
of a given LBA in Bloom filter. In order to get aggregated data
temperature, we first transition twin BFs to BF-hist that we
explain in the next sub-section. The BF-hist and Counter_hist
maintains the aggregated temperature values considering fre-
quency and recency.

D. Transition to History

Periodically the current state of both the Bloom filters and
the counter is preserved as the “history bloom filter” and
the “history counter”, that represent the aggregated historical
access information. In our solution, the previous value of
counter are decayed by half when aggregated with the new
value. alg. 3 describes the process of this transition. For each
bit in BF_hist, we first check if the counter value is less than
1 after the decay. If so, it indicates that the data has not been
accessed recently, thus this bit will be reset to ‘0’ (lines 5-7).
Then, we examine if the bit is a minimum frequency bit of a
data that has been added. If so, the bit value is constructed by
an OR operation of BF, BF' and the previous history bloom
filter (line 8—10). All other bits in BF'_hist will be reset to
‘0’ (lines 11-12). In addition, the value of the current counter
is added to the decayed value of the history counter (see line
13). Then finally, after the successful transition, Bloom filters
BF, BF’ and Counter are reset (see line 15) and returned.

Algorithm 3 UPDATE_BF _hist()

1: procedure UPDATE_BF_HIST(BF, BF ', Counter,
BF _hist, Counter_hist)

2: /* After every fixed decay period */

3: if num_of_I/Os 2 decay period then

4: for i-th bit in BF _hist do

5: if Counternistlil < 1 then

6: BF_hist[i] < 0

7: end if

8: if i is the minimum frequency bit of a data then

9: BF _histli] = BF_hist[i]|| BF[i]|| BF [i]

10: else

11: BF_hist — 0

12: end if

13: Counter_hist = w + Counter

14: end for

15: BF = BF' = Counter = NULL
16: return BF, BF ', Counter, BF _hist, Counter_hist
17: end procedure

E. A Complete Example

In order to clearly explain overall functioning of our scheme
we illustrate an example in Figure 5. In example, we consider
3 hash functions. Suppose the output value of these 3 hash
functions for data chunk a, b, and ¢ are given by hash map
mentioned in line 3 of Figure 5. Initially BF, BF’ and
Counter are NULL. As described in subsection III-B, at the
beginning current pointer is at BF. Upon arrival of a and
b they are inserted into BF'. The corresponding counter bits
are incremented. Then after, when a arrives for second time
(shown by a’ in I/O stream), because BF already has a copy
of a, so following alg. 1, a’ is inserted into BF’ and a’s
counter bits are incremented. The current pointer now points
to BF’. Following alg. 1, the remaining inserts are performed
as seen from the states of BF', BF' and Counter in Figure 5.
Suppose, after every 4 1/Os the periodic decay and transition
to history is activated. Then BF_hist and Counter_hist
are determined following alg. 3. The state of BF_hist and
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1/O stream of data chunks- a,a’,a",b,b",c,a""",b"™
# hash function — 3, Decay period —4, Decay factor —2
BF hash map-a: 19,28,46 b:19,33,57 «¢:19,33,65 d:19 28,33

BF BF’ Counter | BF—hist Counter - hist
1/0 streams  1/O streams  1/O streams | Decay Interval Decay Interval
aa ba’ abcb aaabbca bl
{‘30101001010012345678} 000 0 4 2+8=10
2:.80100101111012333344| 011 0 3 1+4=5
§é30001100101000012334l 010 0 1 0+4=4
§§60100101111012333344I 011 03 1+4=5
570001100110000012223| 011 0 1 0+3=3
3 00000011 0000 001 0 0 0+1=1

65 00 oo111l

Query eachdatachunk—a:5, b:3, c:1,d:0

Figure 5: Illustration showing the working of our scheme with an
example

Counter_hist can be seen in Figure 5 on the right side of
the dashed line. Finally, if we want to lookup the membership
and temperatures of a, b, ¢ and d, then we follow alg. 2.
We look the bloom filter bit at the index corresponding to
the smallest counter value, among the output values of the 3
hash functions. For data chunk a, it is the bit corresponding
to address 28. For data chunk b, it is the bit corresponding to
address 57 and for data chunk c, it is the bit corresponding to
address 65. Thus, as seen from Figure 5, finally our scheme
response that the data temperature considering frequency and
recency of access for data chuck a was 5, b was 3, ¢ once and
d is not seen yet.

IV. EVALUATION

In this section, we present our experimental results and com-
parative analyses for evaluating the effectiveness of Bloom-
Stream, our new data temperature identification scheme.

A. Experimental Setup

o 1/0 Workloads: We evaluate the proposed BloomStream by
using both synthetic workloads of different sizes and 100+ real
enterprise workloads for obtaining practical in-sites. Table I
shows the main characteristics of four real workloads that
we chose as a representative. Specifically, SSD is an I/O
block trace of one 450GB Samsung SSD that is collected
over 1 week on a desktop computer (Xeon E5-2690, 2.9GHz,
Ubuntu 16.04) in our lab. SSD represents the workload for
general purpose programming, web surfing, data transfer from
other servers, etc. MSR is a write intensive workload that
contains 1-week block 1/O traces of enterprise servers at Mi-
crosoft Research Cambridge Lab [22]. FIU is a read intensive
trace collected from Florida International University research
group [23] over 1 month. UMASS is a trace from a popular
search engine. It is from the University of Massachusetts at
Amberst Storage Repository [24]. UMASS has a high reuse
factor as given by hit(%) in Table I. We also show the total
number of requests (including both read and write I/Os) and
the ratio between reads and writes of each trace in Table I.
We can see that among all these four real traces, MSR is the

Table I. Workload Characteristics

Workloads # Total R:W (%) Mean VO Hit (%)
Requests Size (KB)
SSD 2,402,296 51:49 16 70.89
MSR 30,205,489 2773 29 91.34
FIU 10,653,454 75:25 9 72.04
UMASS 1,056,055 64:36 8 99.07

most write intensive workload with the largest number of I/O
requests.

Additionally, any request for a real trace can further be
divided into multiple sub-requests based on its I/O size and
chunk size. For example, let us consider a write request
"WRITE 200, 64K”, i.e., writing data into 64K consecutive
LBAs from the LBA 200. If we set chunk size to 4K, i.e., one
I/O write is composed of a whole 4K block, then that write
request is considered as (or divided into) 16 (i.e., 64K/4K)
write sub-requests in our experiments.

e Baseline Algorithms: We consider two hot data identifica-
tion schemes, i.e., the Multiple Hash Function scheme (here-
after, refer to as MHF) [18] and the Direct Address Method
(hereafter, refer to as DAM) [17], as the main baseline for
comparison. We modify these two schemes to report multiple
data temperature categorization rather than just classifying hot
or cold data and use multiple thresholds in these schemes for
different data temperatures. In addition, we adopt an expo-
nential batch decay approach [18] as a solution for a counter
overflow problem in MHF that as discussed in Section II-C
uses a D-bit counter for each bit position in the BF. By this
way, we can fairly maintain similar delay thresholds in both
MHF and our BloomStream. We also compare our Bloom-
Stream scheme with two recently proposed data temperature
identification algorithms, i.e., MQ (Multi-Queue) [6] and SFR
(Sequentiality, Frequency, and Recency) [6], for evaluating the
memory and computing overhead.

In our experiments, we calculate the size of BF (i.e., the
number of bits in BF) and the number of hash functions using
equations for m and %k explained in Section II. We also run
MHF with the same memory space and the same number of
hash functions for fair comparisons. In addition, the chunk
size is set as 4KB and the decay period is 4,000 I/Os in our
scheme if not explicitly mentioned.

e Performance Metrics: We use “Identification Difference”
as one of the main metrics to indicate the gap (or difference)
between the identified temperature and the actual temperature.
For example, given a particular LBA’s actual temperature is
40, we say the identification difference of this LBA is 6 if its
identified temperature is either 34 or 46. Then, identification
difference of 0 means that the identified temperature exactly
matches the actual one. We present the distribution of identi-
fication difference by showing the proportion of data blocks
(or LBAS) across various identification differences. Using this
distribution result, we can report the “False Identification
Ratio” (FIR) by summing the proportions of all LBAs that
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Table II: Evaluating BloomStream using synthetic workload with
different number of I/O requests (Req. - Requests, Amt. - Amount,
Mem. - Memory, FIR - False Identification Rate)

#1/0 Mean Amt. of Mem. | # Hash FIR
Req. 1/0 Size Data (KB) Func.
(KB) (MB)

2,022 64 129 1.0 4 0.041
4,007 64 256 2.0 5 0.057
6,058 64 387 3.0 6 0.070
8,089 64 517 4.0 7 0.080
10,034 64 642 5.0 8 0.083
11,948 64 764 5.9 9 0.087
13,973 64 894 6.9 10 0.086
15,971 64 1022 7.9 12 0.088
17,968 64 1149 8.9 13 0.090
19,997 64 1279 9.9 16 0.089

have their identification difference more than 0.

Another main metric we use in our evaluation is “Toler-
ance”, which is the measure of an allowable difference in
temperature identification. For example, if the tolerance is
1, then we can say a temperature identification is correct
if its identification difference is smaller than or equal to 1.
We further measure the “Error Rate” with respect to different
tolerances to help us understand the proportion of LBAs that
have their identification difference violating a given tolerance.
We note that such an error rate is a more relax metric compared
to the false identification ratio. Besides, we also consider
memory consumption as an important factor because SRAM
size is very limited in flash memory.

B. Results and Analysis

We now discuss our experimental results in terms of the cor-
rectness, efficiency and sensitivity for evaluating our scheme.

1) Synthetic Workloads

We first conduct our evaluation under a set of synthetic
workloads. Table II shows the configuration of these synthetic
workloads that have different number of I/O requests. Each
row in the table represents one synthetic workload setup. We
fix the mean I/O size, but increase the total number of I/O
requests such that the total amount of data increases as well.
Besides, we show the required memory space and the number
of hash functions in the table. The last column in Table II
gives the False Identification Rate (FIR) of our scheme by
comparing our identified results with the actual ones that are
obtained from trace using simple baseline DAM scheme that
considers frequency and recency. We can see that our scheme
in overall consumes a small amount of memory space even
when we have a large workload. More importantly, the false
identification rate of our scheme remains very low for all
synthetic workloads, which indicates the majority (>90%) of
data blocks have their identified temperature exactly matching
their actual ones.

Then, we look closely to the distribution of identification
difference for in-depth analysis of temperature differences.
Figure 6 plots the proportion of data blocks (or LBAs)
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across various temperature identification differences for the
last synthetic workload (i.e., with 19,997 I/O requests) shown
in Table II. We can see that the temperature of 91% of data
is correctly identified, which means that only 9% of data is
false identified, i.e., with at least 1 identification difference.
Furthermore, the identification difference is only up to 14
and most of the false identified data have their identification
difference of 6.

2) Real Traces

Now, we use real I/O traces to further validate the efficiency
and accuracy of our BloomStream scheme. The workload
characteristics of the four I/O traces have been shown in
Table I.

e Error Rate: We evaluate the performance of MHF and our
scheme by plotting the error rates across different tolerances
in Figure 7. In overall, BloomStream achieves lower error
rates than MHF under all four real workload traces. More
importantly, BloomStream significantly reduces the error rate
especially when the tolerance is small. In detail, as illustrated
in Figure 7(a)-(c), BloomStream obtains the error rate less
than 20% for zero tolerance under the first three workloads.
This signifies that our scheme could identify around 80% of
data correctly even with such a strict allowance. While, the
UMASS workload has a very high reuse rate (i.e., 99.07%)
such that almost all LBAs are re-accessed. For such a workload
with high reuse, BloomStream is able to exactly identify
temperatures of 60% of LBAs without any difference. Upon
increasing tolerance, the error rate decreases especially under
the MHF scheme. We also notice that because MHF uses
only one BF, it suffers relatively higher error rate for large
real workloads, such as MSR in Figure 7(b). In contrast, our
BloomStream keeps maintaining a stable, low error rate under
such large workloads.

o Memory Size: We next analyze the impact of memory size
on temperature identification. Figure 8 depicts the false identi-
fication ratio as a function of memory size (including the space
for BFs and counters) under both MHF and BloomStream for
the SSD workload. More memory space allows both schemes
to obtain less false identification ratio. However, the reduction
under MHF is not significant until the memory size reaches
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Figure 8: Our scheme BloomStream and its operation

30KB. Moreover, our proposed scheme clearly outperforms
MHEF under the same memory space. To get a reasonable false
identification ratio (say around 20%), BloomStream just needs
memory space of 45KB while MHF requires more than 1MB
memory space. The other previous works of MQ and SFR does
not uses BFs but instead uses queue and table as their basic
data structures. These data structures consumes considerably
higher memory when compared to bloom filter. The memory
space required for the above discussed SSD workload with
SFR scheme is 8MB and with MQ scheme is 30MB, which
is much higher than that of BloomStream.

V. CONCLUSION

In this paper, we proposed a novel data temperature iden-
tification scheme using bloom filters for flash memory-based
storage systems. Our scheme overcame the short-comings of
traditional bloom filter by using two bloom filters along with
the XOR masking operation for inserting new data. As a
result, our scheme is able to delete (i.e., reset to 0) data in
the BFs for avoiding the saturation and meanwhile obtain
the unmasked clean copy of data from one of the two BFs.
Our scheme also captures recency and allows simultaneous
insert and look-up operations by using an additional history
BF and counter. We extensively evaluated the efficiency and
accuracy of our framework under both synthetic and real I/O
workloads. We showed that our scheme outperforms the state-
of-the-art schemes with lower false identification rates, and
lower memory overhead.
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