
Skyfiles: Efficient and Secure Cloud-assisted File

Management for Mobile Devices

Ying Mao Jiayin Wang Bo Sheng

Department of Computer Science

University of Massachusetts Boston

{yingmao, jane, shengbo}@cs.umb.edu

Abstract—This paper targets the application of cloud storage
management for mobile devices. Because of the limit of band-
width and other resources, most existing cloud storage apps for
smartphones do not keep local copies of files. This efficient design,
however, limits the application capacities. In this paper, our goal
is to extend the available file operations for cloud storage service
to better serve smartphone users. We develop Skyfiles, an efficient
and secure file management system that supports more advance
file operations. Our basic idea is to utilize cloud instances to
assist file operations. Particularly, Skyfiles supports download,
compress, encrypt, convert operations, and file transfer between
two smartphone users’ cloud storage spaces. In addition, we
design protocol for users to share their idle instances.

I. INTRODUCTION

With recent advances, smartphones have become one of the

most revolutionary devices nowadays. According to Nielsens

report made in March 2012, about 50.4% of U.S. consumers

own a smartphone. Consequently, a variety of applications

have been developed to meet users’ demands in all aspects

(both Apple Store and Google Play hit 1 million apps in 2013).

Today’s smartphones have gone far beyond a mobile telephone

as they have seamlessly dissolved in people’s daily life.

In this paper, we consider the smartphone application of

cloud storage service which is another recent emerging tech-

nology. Representative products include iCloud [1], Drop-

box [2], Box.com [3], Google Drive [4], and others [5], [6].

Basically, each user holds a certain remote storage space in

cloud and can access the files from different devices through

the Internet. Synchronization and file consistence are guaran-

teed in these cloud storage services. When smartphones be-

come popular, it is ineluctably for users to couple cloud storage

service with their smartphones. However, users and developers

have encountered specific challenges due to the limitations

of smartphones. First, the storage capacity of a smartphone

is limited compared to regular desktop and laptops. Second,

the network bandwidth of the cellular network is limited. At

this point, major U.S. mobile networks carriers rarely provide

unlimited data plans and the service scalability is limited by

fundamental constraints. Finally, energy consumption is a crit-

ical issue for smartphone users. With the above constraints in

mind, most existing smartphone apps for cloud storage service

follow one important design principle of not keeping local

copies of the files stored in cloud because smartphones may

not have sufficient space to hold all the files, and downloading

those files consume a lot of bandwidth and battery power.

Instead, only meta data is kept on smartphones by default.

Though this design is efficient, it limits the capabilities of

the apps. Some file operations that can be easily done with

local copies become extremely hard, if not impossible, for

smartphone users, e.g., compressing files and transferring files

to another user.

In this paper, we develop Skyfiles system for smartphone

users to manage their files in cloud storage with more capa-

bilities. Our basic idea is to launch a cloud instance to assist

users to accomplish some file operations. It is motivated by the

fact that the cloud instance is inexpesive and sometimes free.

For example, Amazon Web Service (AWS) [7] provides 750

free Micro instance hours per month. By using the resources

of the instance, smartphone users will significantly reduce

the bandwidth consumption for file operations. Skyfiles does

not require users to keep local copies of files, but possesses

the following new features: (1) It extends the available file

operations for mobile devices to a more enriched set of

operations including download, compress, encrypt, and convert

operations. (2) It includes a protocol for two smartphone

users to transfer files from one’s cloud storage space to the

other’s cloud storage. (3) It includes secure solutions for

all the above operations to use shared cloud instances, i.e.,

instances created by other users. The rest of this paper is

organized as follows. Section II overviews the related work

and Section III introduces background information about cloud

storage service. In Section IV, we present the basic solution for

cloud-assisted file operations and file transfer between users.

Section V includes more efficient solutions that allow users to

use shared instances. We evaluate the performance of Skyfile

in Section VI and conclude in Section VII.

II. RELATED WORK

One category of related prior work focuses on offloading

computation for mobile devices. MAUI [8], Cuckoo [9] and

ThinkAir [10] implement an Android framework on top of

the existing runtime system. They provide a dynamic runtime

system which can decide whether a part of an application

should be executed on the mobile device or a remote server.

Our work in this paper targets on file operations rather than

general computation, and our main objective is to save the

network bandwidth for mobile devices.

Besides offloading computation, SmartDiet [11] aims at

offloading communication-related tasks to cloud in order to

save energy of smartphones. Wang et. al [12] investigate

Dropbox users to understand characteristics of personal cloud

storage services on mobile device. Their results show possible

performance bottlenecks caused by either the current system

architecture and the storage protocol. In [13], the authors

focus on the impact of virtualization for Dropbox-like cloud

storage systems. Another related area in the prior work is

to use cloud to enhance mobile device security and privacy.

CloudShield [14] presents an efficient anti-malware tool for

smartphones with a P2P network on the cloud. Confidentiality

as a Service (CaaS) [15] paradigm is proposed to provide

usable confidentiality and integrity for regular users with

little training on security. CaaS separates capabilities and

requires less trust from cloud or CaaS providers, and performs

automatic key management.

III. BACKGROUND

This section introduces background information about cloud

storage service. Most of our experiments in this paper are

conducted on Dropbox platform. Thus, this section regards

Dropbox as a representative service provider and briefly

describes the Dropbox architecture and functions for user

applications. As a leading solution in personal cloud storage

market, Dropbox provides cross-platform service based on

Amazon Simple Storage Service(S3) for both desktop and

mobile users. The architecture of Dropbox follows a layered

structure. At bottom level, Amazon S3 infrastructure provides

a basic interface for storing and retrieving data. The above

layer is Dropbox core system which interacts with S3 storage

service and serves higher level applications. The top layer

is the official Dropbox application and a set of APIs for

developers to build third party applications.

To manage third party applications, Dropbox assigns each of

them an unique app key and app secret. When a user launches

an application, Dropbox server follows the OAuth v1 [16] for

authentication. When launched by a user, the third party app

contacts the Dropbox server to obtain a one time request token

and request secret. Then, the app uses them to form a redirect

link and presents the link to the user. When accessing this link,

the user will be prompted to login with his Dropbox account

and the Dropbox server will verify the redirect link and the

user’s login information. After a successful login, the server

will return an access token and access secret to the application,

which grant access permissions on the user’s data.

IV. BASIC SOLUTIONS

In this section, we first describe the framework of Skyfiles

and cloud-assisted file operations. Then, we focus on the

file transfer between two users’ cloud storage in Skyfiles.

Our objective is to accomplish file operations with minimum

network bandwidth assumption.

A. Framework and Basic Cloud-assisted Operations

In Skyfiles, each mobile device is associated with a cloud

storage account. Similar to other related apps, Skyfiles by

default does not keep local copies of the files stored in cloud

because of the storage limit and bandwidth consumption.

Instead, Skyfiles maintains a shadow file system on the mobile

device which includes the meta information of the files stored

in cloud. This local file system is built on service provider’s

APIs and synchronized with the cloud storage.

Skyfiles supports two categories of file operations. The

first category is the basic file operations that are com-

monly available in service providers’ APIs such as creat-

ing/deleting/renaming a file. The second category is a new

set of advance file operations that require assistance from a

cloud instance. Skyfiles recognizes the category each operation

request from a user belongs to and processes it accordingly.

The first category will be handled by regular API function

calls. For the second category, Skyfiles will create a cloud

instance and then forward the file operation request to the

instance for processing. In particular, we have designed the

following four cloud-assisted operations in Skyfiles:

Download: This operation allows a user to download files

directly to his cloud storage. Given the location of the target

files such as URLs, the conventional way of downloading is

to first obtain the files on user devices and then synchronize

with/upload to the cloud storage. In Skyfiles, the cloud in-

stance will fetch the files and then upload them to the user’s

cloud storage. Thus the downloading and uploading will not

consume mobile device’s bandwidth.

Compress: This operation enables a user to compress existing

files or directories stored in cloud. If user devices hold local

copies of the target files, the operation can be easily accom-

plished and the generated compressed file can be uploaded to

the cloud storage. In Skyfiles or other similar apps for mobile

devices, however, the actual file contents are not available.

Thus we design an interface that the user can select the target

files based on the local shadow file system with meta data

and then the compressing operation is forwarded to a cloud

instance for execution. The instance will fetch the specified

files from the cloud storage, compress them, and upload the

compressed file back to the cloud storage.

Encrypt: This operation is similar to compress and does not

exist in current apps that do not keep local file copies. In

Skyfiles, the user can choose the target files and the cipher

suite including the cryptographic algorithm and key. The

encryption operation will be sent to a cloud instance. Similarly,

the cloud instance will download the target files from the user’s

cloud storage, encrypt them, and send the ciphertext back to

the cloud storage.

Convert: The last operation is particularly for media files

such as pictures and video clips. When a user wants to

view a picture stored in cloud, he has to download it to his

smartphone. Nowadays, high-resolution picture files could be

very large, but a smartphone user may not benefit from it

because of the limited screen size. In Skyfiles, therefore, a

user can specify an acceptable resolution when viewing a

picture and the request will be processed by a cloud instance.

The original picture will be downloaded to the instance and

then converted to a smaller file according to the user-specified

resolution. Finally, the converted picture is sent to the user.

Overall, we develop the above set of advance file operations

for mobile devices which are impossible to achieve without

local file copies. In Skyfiles, a cloud instance is launched

to assist a user to accomplish these file operations. During

the execution of the file operations, the cloud instance will

periodically send heartbeat messages to the smartphone to

report the progress and status. The smartphones only consumes

a small amount of bandwidth for exchanging control messages

with the cloud storage server and the cloud instance.

B. File Transfer between Users

In this subsection, we present an important feature of

Skyfiles which allows file transfer between users. While most

cloud storage services allow a user to share files with another

user, copying files across different user spaces is not supported.

However, file sharing between users cannot substitute file

transfer (make a copy). With file sharing, a user’s actions on

the shared files will affect other users. For example, if a user

deletes the shared files, all the other users lose those files

too. In this subsection, we consider the file transfer between

user spaces illustrated in Fig.1. Assume two users carrying

smartphones with data plan subscription meet with each other

and both have storage spaces in cloud. One user (as the

sender) wants to transfer files in his cloud storage to the other

user’s (as the receiver) cloud storage. We aim to develop an

efficient solution to support this feature with as little network

bandwidth consumed as possible. In the conventional solution,

the sender can download the target files to his smartphone and

send them to the receiver’s phone through Internet or short

range connection such as Bluetooth and NFC. Upon receiving

the files, the receiver’s phone can upload or synchronize them

with the cloud storage. This solution, however, is not efficient

in terms of bandwidth consumption, especially when the target

files are large, e.g., bunch of pictures and video clips, as the

sender has to download the entire files and the receiver has to

upload all the files.

F

(a) Conventional Solution

F

Control

Messages

(b) Skyfiles

Fig. 1: File Transfer between Two Users

In Skyfiles, we solve the problem by following the same

design principal that utilizes a cloud instance to assist users

to transfer files between their cloud storage spaces. Basically,

a cloud instance is initialized and plays a role of relay node.

It fetches the target files from sender’s cloud storage space

and then forwards them to the receiver’s cloud storage. In this

means, both sender and receiver’s smartphones do not have

to hold a local copy of the target files and the bandwidth

is consumed only by control messages between smartphones

and the cloud instance/cloud storage server. The basic design

of using a cloud instance, however, is challenging in practice

when no trust has been established between the sender and

receiver. The cloud instance can be created by either the sender

or receiver. In either case, it is not a secure solution for

the party who does not own the instance because the cloud

instance will need to obtain the security credentials of cloud

storage from both sender and receiver to complete the file

transfer. Therefore, the owner of the cloud instance will be able

to access the cloud storage space of the other user which could

breach data privacy and lead to other malicious operations.

Algorithm 1 File Transfer from UA to UB

1: UA starts a cloud instance IA
2: UA → IA (cellular network) : UA’s security credentials to

access his cloud storage space, source file location Fsrc,

and intermediate file location URIF
3: IA downloads F from UA’s cloud storage to and stores it

at URIF
4: UA → UB (NFC) : URIF (file location on IA)

5: UB starts a cloud instance IB
6: UB → IB (cellular network) : UB’s security credentials

to access his cloud storage space, URIF , and destination

file location Fdst

7: IB copies F from IA (URIF) to its local storage

8: IB uploads F to UB’s cloud storage space (Fdst)

To address the above issue, in Skyfiles, we develop a

solution that requires a cloud instance from both sender and re-

ceiver. In particular, we implement the following Algorithm 1

to accomplish the file transfer. Assume user UA is trying to

send a file F (F can also represent a set of files) to user

UB . Let Fsrc be the location of F in UA’s cloud storage and

Fdst be the destination location that UB will put in his cloud

storage. In our protocol description, UA and UB also represent

the users’ smartphones. The following Algorithm 1 presents

the major steps for file transfer. First, UA starts a cloud

instance (IA) and uploads the security credentials for accessing

his cloud storage space to the instance. UA’s request also

includes the source file location Fsrc and an intermediate file

location URIF (uniform resource identifier) which indicates

where to store F on the instance. The cloud instance will use

the security credentials to download the target file F to its local

disk. At this point, IA needs to make F accessible to user UB .

It first sends UA the intermediate file location URIF . Then, IA
can set F publicly available or create a guest account and set

the permissions of F so that only the guest account can access

it. In the latter case, the security information for logging as the

guest account, such as login password or identity file, needs to

be sent back to UA as well. After that, the steps on UA’s side

have been completed. Then, UA needs to notify UB necessary

information for accessing F . Since this step of communication

includes sensitive information, Skyfiles adopts NFC protocol

to securely deliver URIF and optional login information from

UA’s smartphone to UB’s phone. At receiver’s side, UB also

starts a cloud instance IB which obtains F from IA based

on URIF . Finally, IB uploads F to Fdst. Here, both sender

and receiver start a cloud instance to behave as their agents.

The data transfer of F is between cloud instances and cloud

storage servers which does not consume bandwidth of users’

smartphones. Meanwhile, the security credentials for accessing

cloud storage are only sent to the instance created by the same

owner. Thus, in Skyfiles, file transfer between two users’ cloud

storage is efficient and secure.

V. SOLUTIONS WITH SHARED CLOUD INSTANCES

The solutions presented above efficiently enable smartphone

users to manage their files in cloud by launching cloud in-

stances for assistance. In practice, however, the following two

issues may hinder the deployment of the proposed solutions.

First, initializing a cloud instance incurs a significant overhead,

e.g., the overhead ranges from 15 seconds to 30 seconds

in our experiments in SectionVI. The second issue is the

cost of launching cloud instances. Although cloud service

is inexpensive, frequently starting cloud instances may still

increase the cost of users.

In this section, we propose an enhancement for Skyfiles that

solves the overhead and cost issues by allowing users to share

cloud instances with each other. It is motivated by the fact that

cloud service providers charge the instance service at a certain

time granularity. For example, most providers [7], [17], [18]

charge the usage of cloud instance at the granularity of an hour.

For regular file operations, it is an excessive time period. When

starting a cloud instance for file operations, a user does not

have to terminate the instance when the operation is done. The

instance can be kept running until an additional cost is about

to be charged. For example, assume a service provider charges

the instance service in the time unit of an hour, when a user

starts an instance and finishes his file operations in the first 5

minutes, the instance can stay active for another 55 minutes

without extra cost. During this idle time period, the instance

can serve other users or other file operations from the same

user. While benefiting the performance, the design of sharing

instances among users incurs challenge for security. First, it

is risky for a user to upload his security credentials of cloud

storage account to other users’ cloud instances. The owner of

the instance may monitor and catch the security credentials,

and gain the access to the user’s cloud storage space. Second,

when open to public, the shared cloud instances may be used

by malicious users to launch attacks.

In Skyfiles, we have developed a framework for sharing

instances which requires a trusted server. This server maintains

a list of available cloud instances for sharing and coordinates

the users who request instances and share instances. Skyfiles

applies the following two basic policies to address the security

concerns. First, an instance is shared in the form of launching

a background service and accepting requests from other users,

rather than allowing other users to login and execute arbitrary

programs. Second, when using a shared instance, a user does

not upload the security credentials of his cloud storage account

in plaintext, but in an encrypted format. In this way, the

owner of the instance can not gain the access to the tenant

user’s cloud storage space and any user’s privileges on shared

instances are limited to the specified file operations.

... ...

k = H(kP || R)

decrypt(k, C)

... ...

Program PkP

R, C=(SC)kU

Fig. 2: Structure of Service Program P : secret kP is embedded in P

which can generate kU and decrypt ciphertext C.

Specifically, there are three types of entities in our design,

a trusted server S, a user UA who wants to conduct file oper-

ations on a shared instance, and an available cloud instance I
owned by another user UB . The trusted server holds a binary

program P that can be running on a shared instance to provide

Skyfile services to other users. Once a user (UB) decides to

share his instance (I), the instance will contact the server

and forward the basic information about I such as operating

system, hardware setting, and the time left for sharing. The

response from the server is an executable binary P , where a

secret key kP is embedded. We assume kP is protected by

program obfuscation techniques and IB is not able to derive

kP from P (see Fig. 2). In addition, the server will periodically

change kP and re-compile the binary. Upon receiving P , I
will execute P as a service and be ready to accept other

users’ requests. The server, on the other hand, adds IB into

the list of available instances for sharing. Finally, each shared

instance I can set a scheduled task to automatically shut down

the instance before the additional charge is incurred. During

the shutdown process, I also notifies the server S which will

consequently remove I from the list of available instances for

sharing.

I → S: willing to share;

S → I: program P embedded with a key kP ;

I executes P ;

S adds I into the list of available instances

Single User Operations: When a user (UA) requests to

use a shared instance to conduct operations on his files in

cloud, he needs to first contact the trusted server S. S will

generate a random seed RA for the requesting user and apply

a hash function H on kP and RA to generate another key kA,

kA = H(kP ||RA). The server then chooses a shared instance

from the list to serve UA and it could be an interactive process

that involves UA’s opinion. Assume I is selected, the server

sends {RA, kA} and the IP address of I back to the user UA.

Next, UA will encrypt the security credentials of his cloud

storage using key kA and upload the ciphertext and RA to the

shared instance I . The security credentials will be decrypted

in the execution of P , which takes RA as an input parameter

and apply the same hash function H on kP and RA. Multiple

users could share the same instance and the server S will

assign different random number R and key k.

UA → S: request a shared instance;

S → UA: I , RA and kA;

UA encrypts security credentials SCA with kA, {SCA}kA
;

UA → I: R and {SCA}kA
.

File transfer between users: In Skyfiles, two users can also

request a shared instance for transferring files between their

cloud storages. Following the design in Section IV, the sender

will initialize the process and request a shared instance from

the server. Compared to the single user operations, file transfer

requires both sender (UA) and receiver (UB) to send the

security credentials of their cloud storage account to the shared

instance. In addition, the sender needs to notify the receiver

the instance assigned by S. The following Algorithm 2 shows

the major messages exchanged in our design. We assume that

the server holds a pair of public key/private key, indicated by

k+
S
/k−

S
and the public key is known by UA and UB .

Algorithm 2 File Transfer with a Shared Instance

1: UA → S: request a shared instance

2: S → UA: I , RA, kA, and {UA, I}k−

S

3: UA encrypts security credentials with kA, {SCA}kA

4: UA → I: RA, {SCA}kA
, Fsrc, and URIF

5: I downloads F from Fsrc and stores it at URIF
6: UA → UB: I , URIF , and {UA, I}k−

S

7: UB → S: UA and I
8: S → UB : RB and kB
9: UB encrypts security credentials with kB , {SCB}kB

10: UB → I: RB , {SCB}kB
, URIF , and Fdst

11: I uploads F from URIF to Fdst

Sender UA initializes the request by contacting the server

S. In the response, besides the same information for single

user operations, the server sends an additional certificate back

{UA, I}k−

S

, which is a signature of the requesting user’s ID

and the assigned instance I . UA will upload the encrypted

security credentials to I as well as the source file location

(Fsrc) and intermediate file location (URIF). Then UA will

notify the receiver UB the shared instance I and the location

of the target files (URIF). This message is attached with the

certificate from S so that the receiver can verify the shared

instance I is legitimate. Next, the receiver UB sends the server

a request with (UA, I). After verifying there exists a shared

instance I serving UA, the server will send back RB and

kB to UB so that UB can encrypt his security credentials in

the same way as UA. Eventually, UB uploads the encrypted

security credentials and the intermediate file location (URIF)

and destination file location (Fdst) to the shared instance I .

VI. PERFORMANCE EVALUATION

In this section, we present the evaluation results of Skyfiles

based on experiments. We have implemented Skyfiles system

on Android with Dropbox [2] storage service and tested it

on Google Nexus smartphone. For cloud-assisted operations,

we use the service provided by Amazon Web Service [7] and

all the experiments are conducted on the Micro instance. The

major performance metrics we consider are time overhead

and bandwidth consumption. For each particular setting, we

conduct five independent experiments and the average values

are reported in this section.

A. Basic file operations

We first present the bandwidth consumption of basic file

operations implemented by official Dropbox APIs. In this

test, we create a new Dropbox account with a folder “test”

containing 1000 text files (22 bytes each). The operations we

have tested are 1. log into dropbox; 2. create/delete a folder

(under the root directory); 3. create/delete/rename a file (under

“test”); 4. enter/leave a folder (“test”).

Fig. 3: Bandwidth Consumption of Basic File Operations

For each file operation, Dropbox server requires security

credential to be attached and the communication is based on

SSL. As shown in Fig. 3, the login process consumes the

most bandwidth because of the interaction for authentication

and Dropbox APIs that recursively fetch meta data to synchro-

nize/update the local shadow file system. Creating and deleting

an empty folder consumes 7.3K and 3.9K bytes respectively

which are the minimum costs among the tested operations.

Creating and deleting a text file is similar to the previous

case. When tested in the folder “test,” it certainly incurs more

bandwidth cost (15.5K and 11.2K bytes). The reason is that

the folder contains 1000 other files and once a change is

made in the folder, Dropbox APIs will re-fetch the list of

files in it. Finally, when a user enters the folder and then

leaves, the bandwidth cost (9.7K bytes) is slightly lower than

creating/deleting a file.

B. Cloud-assisted advance file operations

In this subsection, we evaluate the cloud-assisted file opera-

tions in Skyfiles, particularly download and compression. Due

to the page limit, we omit the results for encrypt and convert

operations. We first present the overhead of starting a cloud

instance and then show the performance of these operations

under the assumption that a cloud instance has been available.

The workload we use for evaluation includes 4 sets of files:

one picture (16M bytes), five pictures (83M bytes), and two

video clips (63M and 127M bytes).

Overhead of starting a cloud instance: We conduct five

groups of tests in this experiment at different time of a day.

Each group contains 5 individual operation of starting a AWS

Micro instance. The operation ends when the user is able to log

into the instance. The following Fig. 4 illustrates the results of

the average value and variance. Overall it is a time-consuming

process as all the tested cases spend more than 15 seconds in

starting an instance. After sending the request, the user has to

wait a long time until the cloud instance to be ready. In the

rest part of this subsection, the performance overhead does

not include the initial phase of starting an instance, thus it

is for the case of using shared instance. If the user starts his

own cloud instance, the extra overhead could range from 15

seconds to 30 seconds based on Fig. 4.

Fig. 4: Overhead of Starting a Cloud Instance

Overhead of download operations: In this test, we let

the cloud instance download the files in our workload and

upload them to our Dropbox storage space. The target files

are hosted in one of our servers. As we can see from

Table I, upload/download overhead is roughly proportional to

the file size. Uploading is faster than downloading because

the instance we use (AWS EC2) and the Dropbox service

(AWS S3) belong to the same cloud service provider. Overall,

the transmitting rate is 12.9Mbps which is much faster than

downloading files to the smartphone and then uploading them

to Dropbox cloud storage via cellular networks.

1-Pic(16M) 5-Pics(83M) Video1 Video2

Download time 14.7s 59.4s 34.2s 58.9s

Upload time 6.9s 31.8s 33.9s 58.7s

TABLE I: Overhead of Download Operations

Overhead of compress operations: In this experiment,

we test compression operations on Dropbox files. Particularly,

we use gzip to compress the files downloaded to the cloud

instance and then upload the compressed file back to Dropbox

cloud storage. Table II shows the breakdown time overhead

of this operation. Uploading process normally costs the most,

followed by downloading and compression process. This oper-

ation in Skyfiles is fast. For example, compressing one picture

(16M) and 5 pictures (83M) cost 10.4s and 38.7s in total. The

compressed files in these two cases are 7.7M and 40.0M bytes.

1-Pic(16M) 5-Pics(83M) Video1 Video2

Download time 4.9s 14.8s 19.1s 44.6s

Compression 0.8s 4.6s 4.2s 9.2s

Upload time 4.6s 17.9s 45.8s 70.4s

TABLE II: Overhead of Compress Operations

Bandwidth consumption of advance file operations: The

bandwidth consumptions of advance file operations are similar

as only control messages are being exchanged. We only show

the performance of compress operation in Table III due to

the page limit. Uplink cost which includes control messages

from the smartphone to the cloud instance is very small. The

downlink bandwidth varies for different file sizes and most of

it is consumed by our periodical heartbeat messages reporting

the status of the operation.

1-Pic(16M) 5-Pics(83M) Video1 Video2

Downlink cost 48.2K 147.4s 127.1K 184.0K

Uplink cost 3.9K 4.0K 3.8K 3.3K

TABLE III: Bandwidth Consumption of Compress Operations

C. File Transfer between Users

In this operation, the target files are downloaded by an

instance from sender’s storage and then uploaded to receiver’s

storage. When using shared instances, the extra costs for

communicating with the trusted server is negligible compared

to the total performance. The following Table IV lists the time

overhead and bandwidth consumption of file transfer (both

sender and receiver) with a shared instance. The binary pro-

gram hosted by the server is 4.9M bytes in our implementation.

1-Pic(16M) 5-Pics(83M) Video1 Video2

Download time 8.5s 40.7s 31.4s 59.3s

Upload time 7.3s 25.8s 30.1s 59.8s

Bandwidth 63.4K 245.8K 221.2K 505.9K

TABLE IV: Performance of File Transfer (shared instances)

VII. CONCLUSION

This paper presents Skyfiles which uses cloud instances to

help smartphone users manage files stored in cloud. Skyfiles

includes an extended set of file operations without local file

copies. In addition, Skyfiles supports file transfer between

users and all the file operations in Skyfiles can be securely

executed on shared instances.

REFERENCES

[1] “iCloud,” https://www.icloud.com/.
[2] “Dropbox,” http://www.dropbox.com.
[3] “Box,” http://www.box.com.
[4] “Google Drive,” https://drive.google.com/.
[5] “Microsoft SkyDrive,” https://skydrive.live.com/.
[6] “Ubuntu One,” https://one.ubuntu.com/.
[7] “Amazon Web Service,” http://aws.amazon.com/.
[8] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,

R. Chandra, and P. Bahl, “Maui: making smartphones last longer with
code offload,” in Proceedings of the 8th international conference on

Mobile systems, applications, and services, 2010.
[9] R. Kemp, N. Palmer, T. Kielmann, and H. E. Bal, “Cuckoo: A compu-

tation offloading framework for smartphones,” in MobiCASE, 2010.
[10] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “Thinkair:

Dynamic resource allocation and parallel execution in the cloud for
mobile code offloading,” in INFOCOM, 2012.

[11] A. Saarinen, M. Siekkinen, Y. Xiao, J. K. Nurminen, M. Kemppainen,
and P. Hui, “Smartdiet: offloading popular apps to save energy,” in
SIGCOMM, 2012, pp. 297–298.

[12] I. Drago, M. Mellia, M. M. Munafo, A. Sperotto, R. Sadre, and A. Pras,
“Inside dropbox: understanding personal cloud storage services,” in
Proceedings of the 2012 ACM conference on Internet measurement

conference, ser. IMC ’12, 2012.
[13] H. Wang, R. Shea, F. Wang, and J. Liu, “On the impact of virtual-

ization on dropbox-like cloud file storage/synchronization services,” in
Proceedings of the 2012 IEEE 20th International Workshop on Quality

of Service, ser. IWQoS ’12, 2012.
[14] M. V. Barbera, S. Kosta, J. Stefa, P. Hui, and A. Mei, “Cloudshield:

Efficient anti-malware smartphone patching with a p2p network on the
cloud,” in P2P, 2012, pp. 50–56.

[15] S. Fahl, M. Harbach, T. Muders, and M. Smith, “Confidentiality as a
service – usable security for the cloud,” in Proceedings of the 2012

IEEE 11th International Conference on Trust, Security and Privacy in

Computing and Communications, 2012.
[16] “OAuth v1.0,” http://oauth.net/core/1.0a/.
[17] “Microsoft Azure,” http://www.windowsazure.com.
[18] “HP Cloud,” https://www.hpcloud.com.

