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Abstract—Erasure Coding based Storage (ECS) is replacing
tradition replica-based systems because of its low storage over-
head. In an ECS, however, every task needs to fetch remote
pieces of data for its execution, and data verification is missing
in the current framework. As security issues keep rising and
there have been security incidents occurred in big data platforms,
the compromised nodes in a computing cluster may manipulate
its hosted data fed for other nodes yielding misleading results.
Without replicas, it is quite challenging to efficiently verify the
data integrity in ECS. In this paper, we develop ROVER, which
is an efficient and verifiable ECS for big data platforms. In
ROVER, every piece of data is monitored by its checksums stored
on a set of witnesses. Bloom filter technique is used on each
witness to efficiently keep the records of the checksums. The data
verification is based on the majority voting. ROVER also supports
a quick reconstruction of Bloom Filter when a node recovers
from a failure. We present a complete system framework,
security analysis, and a guideline for setting the parameters. The
implementation and evaluation show that ROVER is robust and
efficient against the attack from the compromised nodes.

I. INTRODUCTION

Big data applications and platforms have become popular
in recent years. The common paradigm is to deploy a large
scale cluster to process the data in a parallel and collaborative
approach. In the past few years, however, big data platforms
have been targeted by security attacks, and some breach
incidents have been reported in [1], [2]. Besides losing the data
and computing resources on the compromised machines, the
adversary could cause more damages to the entire cluster with
the knowledge of the big data platforms. This paper studies
the merging Erasure Coding based storage framework in a big
data processing system, and aims to provide security protection
against the attacks from internal compromised nodes.

Traditional distributed systems such as HDFS (Hadoop
distributed file system) are designed based on data replication.
An input file is split into equal-sized data blocks, and copies of
these blocks are distributed among the cluster. In replica-based
storage, lost data blocks can be recovered immediately, at the
cost of a large storage overhead. Recently, Erasure Coding
based storage (ECS) system is emerging as a more efficient
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alternative. In an ECS, an input file is stripped into data cells,
and a certain amount of parity cells will be calculated based
on the EC policy. When some cells are lost, the original files
can still be reconstructed with the remaining cells in the same
group. This scheme reduces the storage overhead and increases
fault tolerance significantly.

However, the original EC scheme does not consider the
security concern in an untrusted environment leaving vul-
nerabilities for potential attacks. First, in ECS, every task’s
input data includes pieces from remote nodes, i.e., there is no
local data block as in the traditional HDFS. A compromised
node can affect a lot of tasks running on other nodes by
manipulating the data it hosts. Second, without replicas, it is
more challenging to verify the data integrity in ECS.

In this paper, therefore, we develop a new Erasure Coding
scheme called ROVER with enhanced security protection that
allows each node to verify the received data before executing
its tasks. Basically, we assign every node a set of witness nodes
that monitor the data cells it hosts. When a node fetches a data
cell from a remote node, it will check with the remote node’s
witnesses to verify the data. To be feasible and efficient, each
data cell is represented by its checksum and our solution use
Bloom Filter structure on the witness nodes to record all the
data cells they monitor. In this paper, we present a complete
system design, security analysis against potential attacks, and
the guideline for setting the parameters. The performance
is evaluated by simulation with various configurations. The
results confirm the robustness and efficiency of our solution

II. RELATED WORK

There has been existing work on EC implementation in
the literature such as Zebra [3] and Quantcast [4] that are
based on RAID [5]. To improve the performance of an EC
based system, the authors in [6] developed HACFS, which
dynamically converted policies between two erasure codes
according to read/write operation frequencies of files. CherryP-
ick [7] leveraged Bayesian optimization with Gaussian process
to minimize customer’s cost in a cluster by looking for a
satisfied configuration with limited calculation overhead. EC-
Cache [8] designed a Erasure Coding based caching strategy
to overcome the load imbalance caused by big data block
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caching. Recently, Hitchhiker’s guide [9] is introduced as a
new EC scheme. It produced three different erasure coding
schemata based on a combination of Reed-Solomon and XOR
calculation considering various factors. All of these work can
be easily integrated with our security framework in this paper.

Furthermore, security issues have also been explored from
different aspects. AONT-RS [10] is a method based on All-
Or-Nothing and Reed-Solomon algorithms. They started by
adding one known word at the end of each data block, then
checking the last bytes of re-constructed data to verify this
block. Verifying Distributed Erasure-coded Data [11] proved
the fingerprinted cross checksums can be consistent with data
fragments. It indicates that the verification that can be switched
to the checksum sequence instead of the fragment itself, which
makes a better usage of the computation and network resources
under the guarantee of accuracy. Many distributed storage
systems, AVID [12] for example, can benefit from this so-
lution, especially tolerate Byzantine clients [13]. Two-Server-
Multi-Clients (TSMC) verifiable computation service [14]
was introduced to verify outsourcing data focusing on high
accuracy criteria. In [15], the authors proposed a protection
scheme for distributed storage system based on encryptions
where the focus is on key distribution and management. These
work targeted on different security problem, and none of
them considered the attacks of manipulating the data from
a compromised node.

Finally, our solution use Bloom Filter which is an efficient
tool for checking the existence of an element in a set. It has
been well studied in the literature, and new alternatives are
also proposed, such as Cuckoo filter [16] and BfMR [17]. All
the variant implementations of Bloom Filter or similar filters
can be integrated with our solution in this paper.

III. BACKGROUND

In this section, we introduce essential knowledge of two
major components in our design, Erasure Coding (EC) and
Bloom Filter. We use Hadoop Distributed File System (HDSF)
as an example in the following introduction.

A. Erasure Coding

For a storage framework serving big data platforms, there
are two major performance metrics: (1) the number of simul-
taneously fault tolerance, and (2) the storage efficiency. The
traditional HDFS is based on replication. It splits every file
into HDFS blocks, making copies of every HDFS block and
distribute them among a cluster. By default, HDFS makes two
more copies for every data block, which tolerances 2-block
loss with a 200% space overhead.

Comparing with traditional replication strategy, Erasure
Coding based Storage (ECS) is a new scheme with lower
storage overhead and higher fault tolerant. In ECS, the system
splits an input file into data cells, then calculates a certain
amount of parity cells. This process is called encoding. Even
if some machines in the cluster fail, the original file can still
be recovered with the remaining cells, either data or parity
cells. This reconstruction process is called decoding.

Every EC based storage system can specify its own policy.
Each policy defines a cell size and an EC Scheme. An EC
Scheme includes the number of data and parity cells in one EC
group (e.g., 3+2, 6+3 or 10+4), as well as one codec algorithm
(e.g., XOR or Reed-Solomon [18]). The default EC setting of
HDFS3.0.0 [19] is (6+3, Reed-Solomon,1MB). With HDFS3,
a 1GB file will be stripped into 1024 data cells, each 6 data
cells should generate 3 parity cells, so totally 1024/6·3 = 512
parity cells. These cell exist in many HDFS blocks. One HDFS
block can host either data or parity cells only, and we call it
either data block or parity blocks. If current HDFS block size
is set as 64MB, one HDFS block will contain at most 64 EC
cells, either data or parity. Cells on a data (parity) block will
be assigned to 6 (3) different machines.

B. Bloom Filter

Bloom Filter is a data structure that we use to test if an
element exists in a set. A common design of a Bloom Filter is
a binary array with κ Hash functions and two basic operations:
adding and testing.

Initially every bit in the array is ‘0’. When being added,
each element will be hashed κ times, κ locations in the
Bloom Filter will be set into ‘1’. After adding in the whole
set, the Bloom Filter becomes an array with multiple ‘0’s and
‘1’s. To test the existence of an element, we hash it κ times,
and check if all corresponding κ bits are all ‘1’s. If they are,
the Bloom Filter confirms that this element exists in the set.
However there is a chance for this decision to be wrong. This
probability is the false positive rate of the Bloom Filter, noted
as α.

We use Bloom Filter in ROVER because its space cost is
low. The length of the Bloom Filter, noted as M can be
affected by the number of elements in the set, noted as n,
together with κ and α. Usually the optimal M and κ are
calculated as

M =
−n · logα
(log2)2

, κ = round(
M
n
∗ log(2)) (1)

Bloom Filter is also highly time efficient. Since there is
no need to iterate through the whole Bloom Filter, time
complexity for both adding and testing is 	(κ).

IV. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we briefly introduce the system model
considered in this paper, and formulate our target problem.
Hadoop YARN/HDFS Setting. We consider a Hadoop YARN
cluster consisting of one master node and n slave nodes.
All slave nodes are data nodes forming the HDFS, i.e, each
slave node hosts partial data in HDFS. The HDFS data block
size is indicated by B. We assume the HDFS adopts the
erasure coding scheme for hosting the data. The erasure coding
parameters are represented as EC(d, p) indicating that p parity
cells are generated per d data cells, and any d out of these d+p
cells can reconstruct the d data cells. We use C to denote the
cell size in EC(d, p), and generally C � B. The current
implementation of EC in HDFS considers striped data layout
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(as shown later in Fig. 1). Thus, for any data block that will
be processed by a task, the executing node has to fetch data
cells from other nodes and concatenate them to form the data
block. If the node holds a part of the cells, it needs to contact
the other d − 1 nodes in the group, otherwise, the data cells
will be transferred from other d nodes.
Adversary Model. We assume that at most A slave nodes
could be compromised by the adversary. The adversary can
access all the data hosted on the compromised nodes. In
addition, the adversary can manipulate the data and messages
sent by the compromised nodes to other slave nodes and the
master node. In particular, we consider that the adversary may
launch the following three attacks,
• Manipulate attack: This is the major attack we consider in

this paper, where a compromised node may manipulate the
hosted data cells sent to a victim node, and convince the
node to accept them;

• Replay attack: This is a special case of manipulate attack.
Instead of manipulate arbitrary data cells, the adversary may
send to the victim another legitimate cell.

• Undermine attack: This is another minor goal of the adver-
sary, that is to undermine the data verification process when
it exists, e.g., mislead other nodes to consider a legitimate
node as a compromised node.

Objectives. In this paper, we aim to develop a verifiable and
robust storage system with the following two requirements: (1)
a legitimate slave node is able to verify the data block received
from other slave nodes with a certain security guarantee;
(2) the system can tolerate F simultaneous node failures or
data cell corruptions. In addition, we mainly consider two
performance metrics: (1) the storage overhead incurred by
the protection scheme; (2) the impact on data reconstruction
when node failures occur. We will specify these objectives and
performance metrics with more details after we introduce our
design.

Table I is a summary of the notations we will use later.

n number of data nodes
d, p EC parameters, d data cells and p parity cells
B/C HDFS block size / EC cell size
S the total data size on each data node
A number of compromised nodes
F number of failed nodes that can be tolerated
M bit length of the Bloom Filter
k/K number of hash functions in a BF / hash function pool size

TABLE I: Notations

V. DESIGN OF ROVER

In an HDFS with EC framework, a node running a data
processing task, e.g., a map task in MapReduce, needs to fetch
data cells from other nodes to form the input data block. In an
untrusted environment considered in this paper, the node needs
to verify the received cells before conducting the process task.

A. Motivation

There are two traditional approaches to verifying the data
cells. The first approach is based on public key infrastructure

assuming each node’s public key is known by other nodes
in the cluster. When dispatching the data cell, the system can
attach a signature by an authorized node, either the client node
that submits the data or the name node of the cluster. In the
latter case, the name node can sign the hashed value of the
data cell to avoid transferring the data contents. Then, when a
node fetches the needed cells from other nodes, the signatures
will be received and the node can easily verify the integrity
of the data cells. In practice, however, the number of cells
in a HDFS block is large, e.g., in a regular HDFS setting
where B = 256M and C = 64K, there are B

C = 4096 cells.
Conducting such a large number of cryptographic operations
yields a large computation overhead when uploading and
processing the data.

The second approach is to use checksum which is a common
technique for detecting data errors. When a data cell is written
to the HDFS, the system calculates and stores its checksum.
Then, when a node receives a data cell, it will generate the
checksum of the received data contents and compare to the
checksum stored in the system. The data integrity is verified
if they match. Our solution in this paper adopts the second
approach aiming to incur the minimum overhead into big data
processing jobs. However, the complete system design is still
challenging because of the following two concerns.
Security Concern. The challenge of using checksums is
where to store the initial checksums. In regular file systems,
checksums are often stored with the data blocks as a part of the
meta data. In our setting with possibly compromised nodes,
however, the checksums cannot be stored on the same node
with the data cells because the adversary can easily replace the
checksums to match the manipulated data cells. Therefore, the
system needs to store a data cell and its checksum on different
nodes. Since our solution adopts the similar framework, we
first define the following three roles involved in this approach
for a given data cells,
• Host: the node that stores the data cell;
• Witness: the node that stores the checksum of the data cell;
• Verifier: the node that fetches the data cell for executing a

task and needs to verify its integrity.
Basically, a verifier fetches a data cell from the host, and
verifies the integrity with the assistance of the witness. In the
untrusted setting we consider in this paper, the compromised
nodes are also the witnesses of some data cells and they may
manipulate the hosted checksums to undermine the verification
process. Therefore, for each data cell, we need a group of
witnesses to hold the checksums, and when they provide
inconsistent checksums, the majority is taken and the nodes
presenting different checksums are considered as compromised
nodes. Therefore, in our setting, considering the maximum
number of compromised nodes (A) and concurrently failed
nodes (F ), each data cell needs at least W = 2 · A + F + 1
witnesses to guarantee that the legitimate nodes outnumbers
the compromised nodes in any witness group.
Efficiency Concern. Since the verification is a frequent pro-
cess with every task, it is desired that each node loads the
checksum table in the memory to avoid disk I/O overhead.
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Fig. 1: Write operation ( EC(3 + 2) )

However, as a big data processing platform, the HDFS usually
hosts a large volume of data consisting of many data cells. The
checksum table could be too big to fit in the memory space
without affecting regular computation tasks.

For example, consider a setting with B = 256M,C =
64K,A = 3, F = 3, each cell needs w = 10 witnesses.
Assume we use EC(6+3) erasure coding scheme, i.e., d = 6
and p = 3, and SHA256 to calculate the checksums for
all the cells including data cells and parity cells. Each node
maintains a checksum table that includes file ID, cell ID, and
the checksum for each data cell the node witnesses. Assume
the file ID and cell ID take 4 bytes, we need to store 36
bytes for each cell. Assume each node host S = 1T data,
the total additional checksum data kept on each node will be
S ·n · d+pd /C ·w ·36/n = 8.85G. This is a quite heavy burden
for big data platforms, as regularly the memory allocated for
executing a task is about a few Gigabytes.

In our design, therefore, we use Bloom filters to represent
a set of checksums instead of keeping a checksum for each
data cell. The benefit is apparently the small memory size. But
it also inherits the false positive of Bloom filter that may be
utilized by the adversary. In the rest of this section, we present
the basic design of ROVER, and the two major operations in
the process.

B. Design

In our design, when a data cell is written to the HDFS, its
checksum is calculated. Multiple replicas of the checksum are
distributed across the cluster. We use w to indicate the number
of replicas. In addition, each data node i is assigned a set of
w witnesses represented by Wi(|Wi| = w).

For node i that is a witness of j, i.e.g, i ∈ Wj , it keeps a
Bloom filter j, indicated by BFij . The Bloom filter represents
all the data cells stored on node j. We assume that the Bloom
filter uses k different hash functions, fij indicate the j-th hash
function used by node i. The system defines a pool of K hash
functions for each data node i, and each witness node j of

node i (j ∈ Wi) selects k hash functions from the pool to
construct its own Bloom filter. When a checksum is added
into the Bloom filter, the following Algorithm 1 is applied.
Besides the cell content, its host ID, the file ID and cell ID
are also included in the hash function in line 2. The purpose
is to distinguish the cells with the same content against replay
attack. When queried with a checksum, each node will apply
regular Bloom filter test operation and return the boolean result
to the requesting node. The details will be presented in the
following two subsections.

Algorithm 1: Add a checksum at node i
Input: H(c): checksum of cell c, h: host of c,

FID/CID: input file ID / cell ID of cell c
1 for ( fij , j ∈ [1, k] ) do
2 x = fij(h||H(c)||FID||CID);
3 BFih[x] = 1;
4 end

C. Write operation
The details of writing a file to the HDFS in our solution

is illustrated in Fig. 1. The client submitting an input file
first divides the file into cells and generate the parity cells
according to the EC parameters. For example, in EC(3 + 2)
scheme, every 3 cells are grouped together and 2 additional
parity cells are calculated (step 1 in Fig. 1). Multiple EC
groups including data and parity cells form a HDFS block
according to the setting of HDFS block size. Then in steps
2–4, following the current implementation of EC in HDFS,
the client sends a request to the name node and receives a set
of randomly selected data nodes to store the data. After that,
an HDFS block will be sent to each data node in a stripped
layout as shown in Fig. 1. Note that for EC(d+ p), the write
request is sent when d + p HDFS blocks are ready counting
the size of data cells and parity cells. And the number of data
nodes selected by the name node is also d+ p.
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Fig. 2: Read operation ( EC(3 + 2) and 3 witnesses for each cell)

In ROVER, for security protection, we have the follow-
ing additional steps. In step 5, the client will send all the
checksums from the input file, and a signature of the concate-
nation of them to the name node. We assume a public key
infrastructure has been deployed between the name node and
slave nodes. The name node is aware of each slave node’s
public key. In this step, the client submitting the input file,
provides the evidence of the checksums, and the signature by
its private key preserves the non-repudiation security property.
Meanwhile (in steps 6–7), each data node hosting at least one
new HDFS blocks from the input file will send the checksums
of the new cells to the nodes in its witness set. The data
node also contacts the name node, and verifies the checksums
it calculates with the ones that name node received from
the client. This step can be done before or after sending
the checksums to its witness nodes. After the checksum is
verified, it will be added into each witness node’s Bloom filter
following Algorithm 1.

D. Read operation

When a slave node is assigned a map task, it needs to
fetch the corresponding input data from the HDFS. This read
operation is illustrated in Fig. 2. The name node hosts the
directory service maintaining the locations of each data block
(HDFS block). With EC storage, each block is distributed
across multiple data nodes. In step 1, the name node sends
all the hosts of the input data block as well as their witness
sets to the requesting slave node.

Then, in step 2, the slave node fetches the data cell from
multiple data nodes, and assemble the HDFS block as the input
data for the map task. If one or more data cells are missing,
it will further fetch the parity cells in the same EC group,
and launch the EC reconstruction process to recover the data
cells. In ROVER, each received data cell or parity cell has
to be verified before using it in any computation. From the
name node, the requesting slave nodes receives the witness
set of each data node that hosts a data cell or parity cell. It
calculates the checksum of the cell received from a data node,
and sends it to the data node’s witness nodes (step 3). Those
witness nodes will check their own Bloom Filters, and respond
‘accept’ if the checksum exists, and ‘decline’ otherwise (step
4). The verifier node then checks if the majority of responses

from the witnesses. If it is ‘accept’, the data cell is considered
legitimate, otherwise, the data cell will be discarded and the
host node is reported as a suspicious node. In any case when
there are inconsistent responses, the minority witnesses will
be marked as suspicious nodes.

E. Bloom filter reconstruction

When a node recovers from a failure, its Bloom Filters are
lost and have to be reconstructed. In practice, it takes an ex-
tremely long overhead to re-add all the checksums. Therefore,
in ROVER, the Bloom Filter reconstructed by aggregating the
Bloom Filters from other nodes. Specifically, the recovered
node contacts each witness group it belongs to, and finds a
subset of the witnesses whose union of their hash functions
cover the hash functions it selects. The node then fetch the
Bloom Filters of those witnesses, and merge them with OR
operation. For example, assume node a, b, and c belong to
the same witness set, and their choices of two hash functions
are (H1, H2), (H1, H3) , (H2, H4). If node a recovers from
a failure, it can fetch node b and c’s Bloom Filters for
reconstruction, because the union of hash functions include
(H1, H2). While this reconstruction is quite fast, the down side
is that the resulting Bloom Filter has a higher false positive
because it is built with more hash functions than the original
one. In ROVER, we pick the subset of the witnesses that
yield the fewest additional hash function. The increased false
positive is one of the performance objectives we will optimize
in the next section.

VI. SECURITY ANALYSIS AND PARAMETER
OPTIMIZATION

In this section, we present the security analysis and use
the result to derive the optimal parameters in ROVER. We
focus on the manipulate attack mentioned in Section IV. The
other two attacks, replay attack and undermine attack, can be
prevented by using signatures and unique identifier of each
data cell, shown in Algorithm 1 and Algorithm 2. The detailed
analysis is omitted due to the page limit.

Basically, we consider that when a compromised node
receives a request for a data cell it hosts, it will try to
manipulate the cell and pass the verification of its witnesses.
The adversary is given a limited time to respond as a long
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delay would be suspicious to the requesting node. In the rest
of this section, we first present the best attacking strategy for
the adversary, and then analyze the probability of a successful
attack. At the end, we derive the parameters in ROVER that
fulfill the security requirement.

A. Adversary Strategy

The basic attacking strategy for the adversary is to keep
generating a random data cell within the given time, and send
the cell with the highest probability to pass the verification to
the requesting node. The key component in the attack is how
to determine the likelihood of passing the verification of the
witnesses.

Before further analysis, we first define a single-hashed
Bloom Filter, which is the Bloom Filter constructed by using
one hash function. A regular Bloom Filtercalculated by k
hash functions can be considered as the aggregation of k
single-hashed Bloom Filter by the OR logic operation. To
distinguish with single-hashed Bloom Filter, we also call the
regular Bloom Filter multi-hashed Bloom Filter in this paper.
For instance, as shown in Fig. 3, BF1 is a multi-hashed
Bloom Filter generated by (H1, H2). The two hash functions
can create two single-hashed Bloom Filters respectively, noted
as F1 and F2, and BF1 = F1 ∨ F2.

Given a target witness set, we assume that the adversary
is aware of the hash function pool this witness set uses, but
does not know the choice of each witness. The best strategy to
attack is to find a cell that can pass the tests of the most single-
hashed Bloom Filter. The more single-hashed Bloom Filter a
data cell can pass, the more likely it will convince a witness.
If the hash functions a witness chooses are all included in the
passed set of single-hashed Bloom Filter, the manipulated cell
will definitely pass the verification of this witness.

The details are presented in Algorithm 2. For each manipu-
lated cell c, we enumerate each hash function Hi in the pool,
and exam if c is included in the single-hashed Bloom Filter
Fi. The variable maxCount keeps the largest counter, and
ret is the data cell that yields the bets value.

Algorithm 2: Attack strategy of a malicious node

1 while before the deadline do
2 Manipulate a data cell c, count← 0;
3 for Hi in hash function pool do
4 if isIncluded(Fi, c) then count++;
5 end
6 if count > maxCount then
7 maxCount = count;
8 ret = c;
9 end

10 end
11 return ret;

B. Security Analysis

Our analysis includes the following three components:
(1) Given the deadline (e.g., τ trials), how many single-

H1

1 0 1 0 1 0 0 0 1 0 1 0

1 0 0 0 1 0 0 0 1 0 1 0

1 0 1 0 1 0 0 0 0 0 1 0

F1

F2

BF1

1 0 1 0 1 1 0 1 1 0 1 0

1 0 1 0 1 0 0 0 0 0 1 0F2

BF2

0 0 1 0 0 1 0 1 1 0 0 0F3

H2

H3

H4

H5

Fig. 3: Two Bloom Filters with Overlapping Hash Functions

hashed Bloom Filters (SHBF) can be compromised (passed)?
(2) Given the number of compromised single-hashed
Bloom Filters, how likely will a witness be convinced? (3)
Finally, what is the overall success attack rate after convincing
at least w

2 witnesses?
Probability of compromising SHBFs. Recall that the bit
length of the Bloom Filter is M . After adding one checksum,
each bit has 1

M probability to become ‘1’. Therefore, for a
given manipulated cell and a single-hashed Bloom Filter, the
probability for this cell to be accepted is

Ps = 1− (1− 1/M)dS/Ce, (2)

where S
C is the number of cells hosted by each data node.

Thus, the probability of the cell being accepted by ε single-
hashed Bloom Filters is

P(ε) =
(

ε
K

)
Pεs · (1− Ps)K−ε. (3)

After τ trials, the probability of finding at least one such cells
is

P(ε, τ) = 1− (1− P(ε))τ . (4)

Probability of convincing a witness. Now consider that ε
hash functions have been compromised by the adversary, and
each witness’ Bloom Filter is formed by k hash functions.
Assume x of these k hash functions are compromised, and
the remaining k − l Bloom Filters are from the rest of the
pool. The manipulated cell needs another specific k− l bits to
be ‘1’ in the multi-hashed Bloom Filter, and these ‘1’s can be
produced by either the x compromised hash functions or the
other k− l hash functions s as well. The probability of having
all necessary ‘1’s is

Pmul(ε, x) =

(
x
ε

)(
k − x
K − ε

)
(

k
K

) · (1− (1− Ps)k)(k−x).

(5)
Probability of a successful attack. A compromised node
needs to convince at least w

2 witnesses to launch a successful
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attack. According to the previous analysis, therefore, the
probability of a successful execution is

Psuc =

w∑
ζ=w

2 +1

k∑
x=1

K∑
ε=1

P(ε, τ) · Pmul(ε, x)ζ

·(1− Pmul(ε, x))w−ζ (6)

C. Parameter Setting

The above analysis derives the attack success rate as a
function of all the involved parameters. We aim to set the
proper values for the parameters so that the attack success
rate is lower than a user-specified threshold, i.e., Psuc < δ.
However, the function of Psuc is a quite complex combination
of parameters, and affects other performance metrics such as
storage overhead. Therefore, in this paper, we simplify this
step with a heuristic process that separately sets a group of
parameters according to different factors.

First, the parameters for Bloom Filter, the bit length (M )
and the number of hash functions (k), are determined by the
number of cells on each data node and a system-specified
target false positive. Second, the number of witnesses for
each data node is configured based on the storage overhead.
The size of the witness set is the same as the number of
Bloom Filters each node has to maintain.

Finally, we focus on setting the hash function pool size
(K). This is an important parameter in Psuc, and it affects
the performance of the reconstruction of Bloom Filters. In-
tuitively, if the hash function pool size is small, the false
positive of the reconstructed Bloom Filter will be slightly
increased. On the other hand, if the pool size is extremely
large, then the hash functions selected by each node has few
or even no overlappings. It will be hard, if not impossible, to
reconstruct the lost Bloom Filters. In ROVER, we set K to be
the minimum value that satisfies Psuc < δ.

VII. IMPLEMENTATION AND EVALUATION

This section presents how we implement and evaluate
ROVER for both performance and cost perspectives. The
results show that ROVER can provide a feasible configuration
with a specific cluster security requirement.

A. Implementation

We implement the process of ROVER with Java 8 and run
it on a dedicated machine with 8 CPUs (3.4 GHz) and 32 GB
RAM. The simulator is built with following main components:
(1) Core. This component contains necessary material for
any testbed, which includes Node simulation, logging and
history, job Generator and Runner, cluster configuration. One
can define the number of nodes and witnesses in a cluster,
after that, witnesses will be assigned randomly and uniformly
for every node. When a job needs to be processed, its tasks
will be randomly assigned among the cluster. To optimize
the performance, scheduling policies are out of the scope
of this project. We also provide an interface as well as
implementations for the attacking strategy. Moreover, with this
interface, future designed attacks can be plugged-in easily. In

the task processing stage, if a node is playing the role of an
attacker, it will modify the data by guessing cells following
Algorithm 2. Each instance of node is built in with a recovery
mechanism. That is, when in offline mode, the node will
contact as few nodes as possible to recover all Bloom Filters
stored on it.
(2) HDFS. This component defines the essential elements
of a distributed file system, including data block and cell,
Logic Block, Erasure Code Policy and lastly File object. A
user can specify a file size, block size, cell size in Bytes and
an Erasure Code policy. The files will be generated and filled
up by random bytes according the user’s requirement. After
that, data blocks are distributed among the cluster randomly.
Each file is considered as one job, so that its Logic Blocks are
taken into tasks which will be processed by the job Runner of
Core component.
(3) Security. This component is the primary reflection of
our ROVER, simulates all the security related functions. We
implement the Bloom Filter objects for the witnesses, based
on a Hash-Assignment mechanism. In detail, every node has a
certain amount of initial seeds which are random long numbers
representing each hash function. When a Bloom Filter checks
its cells, it calculates each cell’s hashcode. Each hash function
generates one random number, whose seed is set to be the
initial seed plus hashcode. This random but deterministic
number defines the bit location in the Bloom Filter that will
be set to 1.

After file blocks are assigned among the cluster, Hash-
Assignment mechanism creates a hash function pool for every
node and assigns a portion of this pool (a number of hash
functions in the pool) to every witness node. In the attack
stage, a certain number of machines (A) will be randomly
chosen and set to be attackers in the cluster by utilizing our
handful implemented attack types.

B. Evaluation

To show the performance of ROVER, we examine two main
parameters: witness number and hash function pool (pool size).
In our default setting, we consider the adversary can apply τ =
107 trials to manipulate a data cells, the number of adversary
is A = 1, the concurrent failures is F = 2. Therefore, the
default number of witnesses for each data node needs to be
at least 2 · A + F + 1, thus w = 5. In addition, we consider
a cluster of 50 nodes, and by default, each node hosts 20K
data cells. In our evaluation, each parameter configuration is
tested repeatedly with 100 independent jobs, and we show the
average values in this section.

1) Impact of Witness Number: We first examine the impact
of the number of witnesses assigned to each data node. Intu-
itively, the more witnesses there are, the harder the adversary’s
attack can be successful, because more witnesses have to be
convinced by the manipulated data cell.

In Fig. 4, the number of witnesses ranges from 5 to 10.
We compare the curves of K = 10, 15, 20. The trends of the
curves are decreasing as expected. The change is sharper when
the pool size is smaller (e.g., K = 10). In our tested case, with
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10 witnesses, the successful attack rates of the three curves
drop to 1% or lower. Note that our tests include 100 individual
runs, so 1% is the smallest unit we can illustrate in the figures.

Fig. 4: ROVER successful attack rate with various witnesses

Another concern with the number of witnesses is the mem-
ory cost. Fig. 5 shows that when a node hosts 1TB files, the
memory cost for one single Bloom Filter can be as high as
1GB. When a node witnesses 10B nodes at the same time,
the memory cost can reach 10GB, which can be a burden for
certain types of machines.

Fig. 5: Bloom Filter memory cost on each node

2) Impact of Pool Size: Next, we evaluate the size of the
hash function pool (K) which is also an important factor for
the security protection. We fix the witness number to be 5, 8,
and 10 and increase the pool size from 10 to 30 with an interval
of 5. The results of successful attack rates are shown in Fig. 6.
The curves are decreasing with larger hash function pools, and
show a long tail after significant drops in the beginning. Given
a deadline with a limited number of trials (τ ), the number
of compromised hash functions is certain. When the hash
function pool is larger, it is less likely for a witness to pick
a hash function from the set of compromised hash functions.
And we observe that this improvement is more effective when
the pool size is small. After the pool size is sufficiently large,
including more hash functions does not help much with the
security concern.

In addition, we also evaluate our theoretical analysis and
guidelines for setting the pool size mentioned in Section VI.
We omit the details due to the page limit. But our derived pool
sizes satisfy the security requirements (we set target successful
rate δ = 0.01, 0.0.2, 0.03) referring to the results in Fig. 6.

Fig. 6: ROVER successful attack rate with various pool size

Should one notice that the capacity of each node is set to
be 2 ∗ 104 cells in above tests. In real systems more cells can
be expected. Fig. 7 indicates that ROVER maintains stable
successful attack rates even with more cells on each machine.
By enlarging pool size from 10 to 15, the attacking rate can
degrade from 4% to 0% for 3 ∗ 104 cells on each node.

Fig. 7: ROVER successful attack rate with various cell number

3) Recovery Cost: A larger Hash Function Pool can de-
grade the risk of successful attacks, however the pool size is
also limited by the recovery phase. If the pool is larger than a
certain threshold, it will take more Bloom Filters from other
nodes to recover the lost one. Merging too many Bloom Filters
will generate a high false positive Bloom Filter, which is a
hidden danger in the future verification on that node.

In this test, we assign 5 witnesses for each node in a 50
nodes cluster and fix the false positive ratio to be 0.05. Then
take down one node in each cluster, and use minimum number
of Bloom Filters from other nodes to recover this one. We run
100 tests for each setting with pool size varies from 10 to 20.

A fully recovery can be achieved if the failure node can
recover all Bloom Filters on it. Fig. 8 tells that the larger the
pool is, the harder a fully recovery can be. With 5 witnesses,
a size of 10 Hash Function Pool can guarantee a recovery
chance of 10%. Taking Fig. 6 and Fig. 4 into consideration,
with a successful rate target as 5% for this cluster, a size 15
hash pool is enough to provide a sufficient low attacking rate
and a 90% recover rate.
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Fig. 8: Bloom Filter recovery possibility

Fig. 9: number of hash function used in recovery
To recover a Bloom Filter from a large hash pool, it requires

more single-hashed Bloom Filters from other witnesses. For a
fixed size Bloom Filter, the more single-hashed Bloom Filters
are merged, the larger the false positive rate can be. One can
tell the average number of single-hashed Bloom Filters that
are used in recovery and the accumulated false positive rate
in fully recovery from Fig. 9 and Fig. 10. For example, to
recover a Bloom Filter from a size 10 Hash function pool
with 5 witnesses, averagely 7 single-hashed Bloom Filters will
be merged together, which increase the false positive rate by
150.71%. This increase can arrives 748.73% for a size 20 hash
function pool with 15 witnesses.

VIII. CONCLUSION

This paper develops ROVER, which is a new strategy to
protect data integrity in a cluster computing environment.
By assigning witnesses to every machine in a cluster, every
piece of data will be verified before being used in a task
execution. We demonstrate the possible manipulate attacks
from compromised nodes, and ROVER can provide suitable
cluster configurations to suppress the successful attack rate
under a desired threshold.
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